CN103237961B - 采用有机朗肯循环的排放临界增压冷却 - Google Patents

采用有机朗肯循环的排放临界增压冷却 Download PDF

Info

Publication number
CN103237961B
CN103237961B CN201180038724.XA CN201180038724A CN103237961B CN 103237961 B CN103237961 B CN 103237961B CN 201180038724 A CN201180038724 A CN 201180038724A CN 103237961 B CN103237961 B CN 103237961B
Authority
CN
China
Prior art keywords
boiler
working fluid
fluid
temperature
power cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180038724.XA
Other languages
English (en)
Other versions
CN103237961A (zh
Inventor
T·C·恩斯特
C·R·尼尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cummins Intellectual Property Inc
Original Assignee
Cummins Intellectual Property Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cummins Intellectual Property Inc filed Critical Cummins Intellectual Property Inc
Publication of CN103237961A publication Critical patent/CN103237961A/zh
Application granted granted Critical
Publication of CN103237961B publication Critical patent/CN103237961B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • F02C1/06Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy using reheated exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/08Semi-closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

本公开提供了一种包括朗肯动力循环冷却子系统的系统,该朗肯动力循环冷却子系统提供对内燃机进气口上游的输入增压流的排放临界增压冷却,该输入增压流包括废气再循环(EGR)源和增压空气源中的至少一个。该系统包括:锅炉,该锅炉流体连接到所述输入增压流,并被配置为将来自所述输入增压流的热传送到所述朗肯动力循环子系统的工作流体并使所述工作流体蒸发;能量转换装置,该能量转换装置流体连接到所述锅炉,并被配置为接收蒸发的工作流体并转换所传送的热能;冷凝器,该冷凝器流体连接到所述能量转换装置,并被配置为接收所述工作流体,其中,从所述工作流体转换能量;泵,该泵具有流体连接到所述冷凝器的出口的入口以及流体连接到所述锅炉的入口的出口,所述泵被配置为将来自所述冷凝器的流体移送至所述锅炉;调节器,该调节器调节所述朗肯动力循环子系统的至少一个参数,以改变离开所述锅炉的所述输入增压流的温度;以及传感器,该传感器被配置为感测所述蒸发的输入增压流的温度特性。该系统包括控制器,该控制器能够确定所述输入增压流的足以满足或超过预定目标排放的目标温度,并使得所述调节器调节朗肯动力循环的至少一个参数以达到预定目标排放。

Description

采用有机朗肯循环的排放临界增压冷却
相关申请的交叉引用
本申请是2008年3月31日提交的美国申请No.12/058,810的部分继续申请(CIP),本申请要求2010年8月5日提交的临时专利申请No.61/371,162的优先权权益,通过引用将其全部内容并入本文。
关于联邦资助研究或开发的声明
本发明是在由能源部(DOE)资助的合同号为DE-FC26-05NT42419的“废气能量回收”项目下由政府支持完成的。政府对本发明具有特定的权利。
技术领域
本发明涉及废热能量转换,更具体地,涉及采用提供排放临界增压冷却的朗肯循环(RC)系统的废热回收系统。
背景技术
诸如有机朗肯循环(ORC)的朗肯循环(RC)能够捕获通常会被浪费的热能(“废热”)的一部分并将所捕获的一部分热能转换为能做有用功的能量。采用朗肯循环的系统通常被称作废热回收(WHR)系统。例如,来自内燃机系统的热量,例如废气热能和其它发动机热源(例如,发动机润滑油、废气、增压气体、水套)能被捕获并被转换成有用的能量(例如,电能或机械能)。按照这种方式,废热能的一部分能够被回收,以提高包括一个或更多个废热源的系统的效率。
发明内容
在本发明的一个方面中,一种系统包括朗肯动力循环子系统,该朗肯动力循环子系统提供对内燃机进气口上游的输入增压流的排放临界增压冷却,该输入增压流包括废气再循环(EGR)源和增压空气源中的至少一个。该系统包括:锅炉,该锅炉流体连接到输入增压流,并被配置为将来自所述输入增压流的热传送到朗肯动力循环子系统的工作流体并使所述工作流体蒸发;能量转换装置,该能量转换装置流体连接到所述锅炉,并被配置为接收蒸发的工作流体并转换所传送的热能;冷凝器,该冷凝器流体连接到所述能量转换装置,并被配置为接收工作流体,其中,从该工作流体转换能量;泵,该泵具有流体连接到所述冷凝器的出口的入口和流体连接到所述锅炉的入口的出口,所述泵被配置为将来自所述冷凝器的流体移送至所述锅炉;用于调节朗肯动力循环子系统的至少一个参数,以改变离开所述锅炉的所述输入增压流的温度的机构;传感器,该传感器被配置为感测所述输入增压流的温度特性;以及控制器。所述控制器被配置为确定输入增压流的足以满足或超过预定目标排放的目标温度,并使得所述调节机构调节所述朗肯动力循环的至少一个参数以达到预定目标排放。
在本发明的另一个方面中,一种内燃机包括朗肯动力循环冷却子系统,该朗肯动力循环冷却子系统提供对内燃机进气口上游的输入增压流的排放临界增压冷却,该输入增压流包括废气再循环(EGR)源和增压空气源中的至少一个。该朗肯子系统包括:锅炉,该锅炉流体连接到所述输入增压流,并被配置为将来自所述输入增压流的热传送到所述朗肯动力循环子系统的工作流体并使所述工作流体蒸发;能量转换装置,该能量转换装置流体连接到所述锅炉,并被配置为接收蒸发的工作流体并转换所传送的热能;冷凝器,该冷凝器流体连接到所述能量转换装置,并被配置为接收工作流体,其中,从所述工作流体转换能量;泵,该泵具有流体连接到所述冷凝器的出口的入口以及流体连接到所述锅炉的入口的出口,所述泵被配置为将来自所述冷凝器的流体移送至所述锅炉;调节器,该调节器被配置为调节所述朗肯动力循环子系统的至少一个参数,以改变离开所述锅炉的所述输入增压流的温度;传感器,该传感器被配置为感测所述输入增压流的温度特性;以及控制器,该控制器被配置为确定所述输入增压流的阈值温度,低于该阈值温度就足以满足或超过预定目标排放,并使得所述调节器调节所述朗肯动力循环的至少一个参数,以将所感测的温度维持在所确定的阈值温度内。
在本发明的另一个方面中,提供了一种冷却内燃机进气口上游的输入增压流的方法,所述输入增压流包括废气再循环(EGR)源和增压空气源中的至少一个,该方法包括以下步骤:向朗肯动力循环子系统的锅炉提供所述输入增压流,以将来自所述输入增压流的热传送到所述朗肯动力循环子系统的工作流体并使所述工作流体蒸发;转换所传送的热能;使所述工作流体冷凝,其中,从所述工作流体转换能量;泵送所述冷凝的工作流体以移送所述工作流体通过朗肯动力循环;确定所述输入增压流的足以满足或超过预定目标排放的目标温度;感测离开所述锅炉的所述输入增压流的温度;以及控制所述朗肯动力循环的至少一个参数,以将所述输入增压流的温度维持在所述目标温度或维持为低于所述目标温度。
附图说明
图1是根据示例性实施方式的包括朗肯循环的一般废热回收系统的图示。
图2是根据示例性实施方式的包括朗肯循环和换热器旁通的废热回收系统的图示。
图3是根据示例性实施方式的包括用于至少冷却EGR气体的朗肯循环的废热回收系统的图示。
图4是根据示例性实施方式的包括用于冷却EGR气体和增压空气混合物的朗肯循环的废热回收系统的图示。
具体实施方式
下文将结合示例性实施方式对各个方面进行说明。然而,本公开不应被理解为限于这些实施方式。相反,提供这些实施方式以使得本公开是全面的并且完整的,这些实施方式将向本领域技术人员充分表达本发明的范围。可能由于清晰和简洁的原因而未描述对公知的功能和结构的说明。此外,除本文描述的实施方式以外,还可以包括任何变型和进一步的改进以及对所公开的原理的进一步应用,这些对于本公开所涉及的领域的技术人员来说是容易想到的。
本文公开的实施方式使用ORC来执行针对增压气体的排放临界冷却的至少一部分,所述增压气体包括新鲜增压空气和/或EGR气体。为了满足当前的排放水平,增压气体必须冷却到特定目标温度值,以获得良好的NOx/颗粒物质折衷。
图1描述了系统10的示例性实施方式,该系统10将有机朗肯循环与发动机(例如,柴油发动机)结合以从发动机回收废热,并将该热能转换为动功(motivework)或按照其它方式应用或传送该能量。系统10通常包括锅炉(或过热器)12、可以连接到负载(例如,发电机)的能量转换装置(例如,诸如涡轮机的膨胀机、热交换器等)14、冷凝器16、泵18、换热器22和控制器63,它们共同构成了RC子系统。
下面进行进一步描述,工作流体(例如霍尼韦尔(Honeywell)的GenetronTMR-245fa、TherminolTM、陶氏(Dow)化学公司的DowthermJ、Fluorinol、甲苯、十二烷、异十二烷、甲基十一烷、新戊烷、新戊烷、辛烷、水/甲醇混合物或蒸汽)通过一系列管道穿过系统10。管道24连接在冷凝器16的出口26与泵18的入口28之间。管道30连接在泵18的出口32与换热器22的入口36之间。管道38连接在换热器22的出口40与锅炉12的入口44之间。管道46连接在锅炉12的出口48与能量转换装置14的入口50之间。管道52连接在废热源54与锅炉12的入口56之间。废热源54可以是任何可接受的废热源,诸如EGR气体、增压空气、发动机冷却剂或发动机废气。管道58连接在锅炉12的出口60之间。根据废热源54的性质,通过管道58离开锅炉12的废热可以被传送至例如发动机的EGR回路、车辆排气系统、增压空气回路或发动机冷却回路。
管道62连接在能量转换装置14的出口64(例如,扩散器出口)与换热器22的入口66之间。管道68连接在换热器22的出口70与冷凝器16的入口72之间。管道74连接在低温源76与冷凝器16的出口78之间。低温源76可以是例如发动机冷却剂、低温冷却剂回路和/或环境空气。最后,管道80连接在冷凝器16的出口82与(根据应用)发动机冷却回路、散热器或大气之间。
在系统10中,锅炉12被设置为利用来自废热源54的热,该热通过锅炉12以在高压下增加供应给锅炉12的工作流体的温度。下文对此进行详述,在特定工作状况下,工作流体从换热器22通过管道38在出口44处供应至锅炉12。当工作流体在出口48离开锅炉12时,由于从废热源54传送至工作流体的热穿过锅炉12,工作流体在高压高温下处于气体状态。该气体通过管道46到达能量转换装置14,在能量转换装置14中,来自气体的能量能够利用本领域公知的技术来用于做功。例如,能量转换装置14可以是涡轮机,其使轴(未示出)转动以驱动发电机(未示出)生成电能或驱动其它机械部件以产生机械能和/或电能。该附加转换能量可以按照机械或电的方式被传送至发动机曲轴,或用来向寄生电池和/或存储电池供电。另选地,该能量转换装置可以用于将来自系统10的能量传送到另一个系统(例如,将来自系统10的热能传送到加热系统的流体)。
能量转换装置14不会将来自工作流体的全部热能转换为功。因而,在出口64从能量转换装置14排出的工作流体在高温下保持为气体状态(对于一些工作流体)。下文进行详述,工作流体穿过管道62到达换热器22,在换热器22中,在特定工作状况下,被用来将热能传送到从冷凝器16排出的工作流体。然后,工作流体穿过管道68到达冷凝器16,在冷凝器16中,工作流体被连接到冷凝器16的低温源76冷却。通过管道24从冷凝器16排出的工作流体处于低温低压的液态。如本领域技术人员所了解的,出于至少两个原因,冷凝器16被用来降低工作流体的温度。第一,尽管高温工作流体是所期望的,以从能量转换装置14获得最大功(即,以获得朗肯循环的最大效率),但是系统10的首要要求是维持穿过锅炉12的废热源54的期望热损耗。因此,低温工作流体应当被供应给锅炉12。第二,在液态下增加工作流体的压力所耗费的能量比在气态下增加其压力所耗费的能量少得多。因此,相比其它情况下的气泵,用来提供压力增加的泵18的强度要求更低并且更加便宜。
泵18的出口32处的工作流体通过管道30供应给换热器22的入口36以及旁通阀20的入口34。下面进行详述,在高负载发动机工作状况下,由控制器63控制的旁通阀20被移动至开启位置,使得至少一部分低温工作流体通过而直接到达锅炉12。在构成正常发动机工作状况的部分负载发动机工作状况下,旁通阀20被移动至闭合位置,从而使得低温工作流体能够流经管道30到达换热器22。如上所述,换热器22提供从来自涡轮机14的高温排气向由泵18供应的低温流体的热传递。该热传递增加了供应给锅炉12的工作流体(其维持在液态)的温度。当然,较高温度的工作流体不能像较冷的工作流体那样有效地冷却通过锅炉12的废热流,但是在大部分工作状况下,由较高温度的工作流体提供的热损耗是让人满意的。此外,因为工作流体在升温后进入锅炉12,所以相比另外的未使用换热器22的情况,从锅炉12供应到涡轮机14的工作流体(在气态下)处于更高的能量状态。这给涡轮机14提供了更多的能量,进而能够产生更多的输出功。
如上所述,系统10应被设计为能够在较广的工况范围下工作。针对系统10的目的,工作状况主要由供应给锅炉12的废热的温度和压力来反映。当废热源54是EGR回路的一部分时,废热排气58必须不能超过最大阈值温度。在一些应用中,从锅炉12流经管道58的废热的出口温度必须足够低,以使得发动机能够满足针对发动机的排放要求。如果所需的发动机废热流冷却不被满足(如果是增压空气、发动机冷却剂或EGR气体),则发动机将不符合排放规定。如果废热流是排气,则因为排气器排出的排气不需要进行冷却,所以这不成为问题。
此外,发明人已经认识到,可以使用系统10来实现至少一部分所需的增压冷却,以达到目标排放值,例如,政府强制排放值。这是通过根据由控制器63执行的控制方案将来自增压空气和/或EGR的热传送到RC子系统中的高压工作流体来实现的。控制器63可以是发动机控制模块(ECM)(还被称作发动机控制单元(ECU))或独立于ECU的其它控制器或与ECM/ECU进行通信的一个或更多个分布式控制装置。该控制器可以包括用于确定EGR和/或流经管道58到发动机的进气歧管(未示出)的增压空气的最大阈值温度废热的软件和/或硬件,并且包括用于控制系统10的至少一个参数以确保发动机在所需的最大排放水平内工作的其它模块。
例如,图1示出了多个控制器信号线90-98,各个控制器信号线可以传送感测和/或控制信号。在实施方式中,控制器能够接收由设置在管道52和/或58处的传感器提供的信号。该传感器可以是温度(T)传感器或T传感器和压力(P)传感器的组合(例如,增量(delta)温度或压力传感器),以在信号线90和/或92上生成表示在这些管道中流动的废热的温度和/或温度/压力组合的信号,并且控制器接收来自信号线90和/或92的信息,并且确定要调节朗肯子系统的哪些参数,以使得废热流的温度,例如,离开锅炉/过热器12的输入增压(EGR气体和/或增压空气)的温度低于将排放维持为等于或低于所要求或期望的最高水平时所需要的最大阈值温度。用于将排放维持为等于或低于所要求或者期望的最高水平的最大温度(和/或压力)的确定可以涉及使用算法,访问查找表、图或一些其它已知的确定最大输入增压温度值的方法。另外,EGR和/或增压空气的废热的最大阈值温度可以根据发动机的实时运行模式或预测运行模式而变化。控制器可以为系统10的运行提供调节,例如使全部废热流的一部分旁通经过系统10的一个或更多个部件。例如,如下面详述,信号线98可以向换热器22或通过换热器连通废热流的系统部件(图1中未示出)提供控制信号。其它控制可以包括:控制朗肯循环子系统的参数,以控制由低温源76经由控制器信号线94进行冷却的冷却量或冷却速率,以及经由控制器信号线96控制泵18,例如,通过调节泵速或限制流体在泵18中或沿着RC循环回路的其它点的流动。此外,控制器信号线90-98可以向控制器63提供关于各个系统部件是否运行正常的信息(例如,实时信息)。
在一般发动机负载状况下,来自冷凝器16的低温工作流体为经过锅炉12的废热流提供足够的冷却。因此,在正常负载状况下,工作流体经过换热器22,该换热器22降低了供应给冷凝器16的工作流体的温度并且增加了供应给锅炉12的工作流体的温度。更具体地,当气态工作流体从入口66至出口77流经换热器22的第一流动路径时,其将热能传送到流经从入口36到出口40的第二流动路径的较低温液态工作流体。由此,供应给冷凝器16的气态工作流体温度较低,冷凝器16也更荣易将其冷凝为液体。此外,供应给锅炉12的液态工作流体处于较高温度。此后,在锅炉12中受热后供应给能量转换装置14的气态工作流体相比在循环中未使用换热器22的情况处于更高的能量状态。尽管在正常负载状况下从废热中去除了较少的热量,但是废热温度能够被维持为低于满足所需排放的最大阈值。因而,系统10可以容纳由换热器22提供的附加的热,并且因为该附加的热使得能量转换装置14能够做出更多有用功或者传送更多的能量,所以实现了更高的效率。
当发动机负载增加时(例如,加速期间、上坡、拖拉重物等),负载越增加,则提供给锅炉12的废热温度越高。如上所述,在废热源54在EGR回路中和/或增压空气回路中的发动机系统中,例如,锅炉12必须从废热源抽取足够的热,以确保其维持为低于最高阈值温度,进而确保在预定排放目标值的工况下或者低于预定排放目标值的工况下运行。因此,系统10被设计为感测增加的负载状况,并相应地启动控制以经由控制器26调节废热流温度。如上所述,可以基于与目标排放水平对应的目标温度来启动控制,并且针对不同的运行模式和/或负载,目标温度可以具有不同的值。
图2是根据示例性实施方式的系统100的图示,在该实施方式中,对增压空气和/或EGR进行冷却,以满足使用RC(例如,ORC)的工作流体的目标排放水平,并且控制工作流体在各种发动机负载状况下旁通经过换热器。在该实施方式中,能量转换装置包括膨胀机(涡轮机)140与发电机142的组合。图2以及下文描述的图3和图4中的部件具有与以上给出的图1中的部件相同的附图标记。
如图2所示,管道30连接在泵18的出口32、旁通阀20的入口34以及换热器22的入口36之间。管道38连接在换热器22的出口40、旁通阀20的出口42以及锅炉12的入口44之间。温度传感器61连接到管道58以检测离开锅炉12的废热的温度,并且在信号线90上向控制器63提供输出信号,该控制器63在信号线98上提供用来控制旁通阀20的位置的信号。
随着发动机负载的增加,更高温度的废热被供应给锅炉/过热器12。如上所述,在废热源54处于EGR回路和/或增压空气回路中的发动机系统中,例如,锅炉12必须从所述废热提取足够的热,以确保将其维持为低于该负载的最大阈值温度,从而确保在等于或低于预定排放目标值的状况下运行。系统100感测到负载状况增加,相应地启动旁通阀20,如有必要,直接将工作流体从冷凝器16(通过泵18)引导到锅炉12。在图2所述的实施方式中,传感器61感测流经管道58的废热温度。在实施方式中,传感器61能够向控制器63提供表示废热温度的输出信号。控制器63包括能够解释来自传感器61的输出信号的电子器件(未示出)以确定发动机负载水平。当负载水平达到预定水平时,如传感器61所指示,控制器63使得旁通阀20部分开启,从而将流经管道30的一部分较冷工作流体直接从泵18引导至锅炉12。随着发动机负载增加,控制器63可以进一步开启旁通阀20,以将更多的较冷工作流体直接引导至锅炉12(即,旁通经过换热器22)。系统100可以被设计为使得当旁通阀20完全开启时,向锅炉12提供足够的较冷工作流体,以防止离开锅炉12的废热超过预定最大温度。
需要明白的是,其它控制系统可以用来感测或确定发动机负载并相应地控制旁通阀20。例如,本领域技术人员可以容易地设想预测控制系统,其中,更直接地监测发动机负载,并且基于离开锅炉12的废热流的预期温度来调节旁通阀20。在该配置中,系统预测由于发动机工作状况的变化而导致的热交换器中的热惯性。
由于上述旁通的结果,在负载增加的状况下,至少一部分工作流体没有经过换热器22,在换热器22中,工作流体在进入锅炉12之前温度会升高。在这些状况下,相比系统中没有换热器旁通阀的情况,由于去除了来自换热器22的热输入,所以工作流体的流速减小。随后,从涡轮机140排出的较高温度的气体被冷凝器16冷却。这导致冷凝器16处的较高的压力,涡轮机140处的较低的压力比以及相应的涡轮机140处的较低的功率输出。换句话说,由于冷凝器16必须在没有换热器22冷却工作流体的益处的情况下冷却从涡轮机140排出的工作流体,并且由于从锅炉12供应给涡轮机140的工作流体未被换热器22预热,系统100的效率降低了。由于高负载状况在发动机工作时间中仅占相对小的百分比(例如,百分之五到百分之十),所以此效率损失是可接受的。
从上文可明显看出,当换热器22的旁通特性使得系统10能够容许在高负载状况下发生的峰值热损耗要求时,系统10可以被设计为在最通常的运行点(即,正常发动机负载状况)下有效运行。因此,可以选择较低功率的涡轮机140。更具体地,如果系统10中不包括旁通阀20,则要求涡轮机14能够承受上述的高负载工作状况,即使这些高负载工作状况出现频率不高。这就需要更加坚固并且更加昂贵的涡轮机140(例如,最大输出为35KW),其可能实质上在大部分时间中(即,正常负载状况下)未被充分使用。通过实现上述旁通特征,可以使用强度和价格较低的涡轮机140(例如,最大输出为25KW)。
此外,通过将旁通阀20置于泵18的输出部而非系统100的高温侧,旁通阀20可以被设计为在较低温度液态而非高温气态下运行。因此,相比其它所需的情况,旁通阀20可以更加紧凑、简单和便宜。此外,相比其它所需的情况,泵18的流速和功率也更低。
图3示出了根据实施方式的示例性ORC冷却系统200,在该实施方式中,利用ORC子系统A仅冷却EGR气体,其中通过子系统A的增压冷却要求满足目标排放水平,该目标排放水平可以是预定的当前允许水平或者是期望的发动机排放水平。
如图3所示,ORC子系统A将离开发动机211的排气歧管210的EGR气体的热能传送至子系统A的工作流体。更具体地,ORC子系统A包括传送泵18,该传送泵18将高压液态工作流体移送到锅炉/过热器12的锅炉入口处,其中来自EGR增压气体的热能被传送到ORC工作流体。在锅炉/过热器12中,工作流体汽化并产生高压蒸汽,该高压蒸汽在过热器处离开锅炉/过热器14,并进入高压膨胀机(涡轮机)140的入口。
ORC冷却系统200能够从高压涡轮机140产生附加的做功输出。例如,所述附加功可以通过电能或机械能的方式传送到发动机的传动系统,或者可以用来向电力装置、寄生电池或存储电池供电。在图3所示的实施方式中,膨胀蒸汽带动涡轮机140,涡轮机140带动发电机142。发电机142产生的功率可以经由功率电子器件222馈送至传动马达发电机(DMG)220。膨胀的气体从涡轮机16出口离开并且随后经由凝汽器16被冷却和冷凝,其可以由LTS冷却,在该情况下中LTS是包括具有RAM空气流的冷凝冷却器226和冷凝冷却泵228的液体回路,尽管如此,还可以采用其它冷凝冷却装置,例如直接空气冷却热交换器。该冷凝工作流体从冷凝器16的出口处离开并被供应至传送泵18,以完成循环并增加工作流体压力。尽管未示出,但是还可以设置增压泵,以防治传送泵18出现气穴。
图3示出,ORC子系统A包括位于从涡轮机140到冷凝器16的工作流体路径中以及位于从传送泵18到锅炉/过热器12的锅炉的路径中的换热器22,以提高RC的热效率。如上所述,换热器22是包括两条路径的热交换器。工作流体在从涡轮机140的出口(未示出)离开后进入冷凝器16之前沿着两条路径中的第一条移动。然而在第一路径中,换热器22在工作流体进入冷凝器16之前降低了工作流体的温度。在穿过冷凝器16后,工作流体在第二路径中被供给泵18移送通过换热器22。沿着第二路径,热从换热器22传送回温度较低的工作流体,随后被供应至锅炉/过热器12。尽管图3中未示出,但是离开ORC子系统A的EGR气体需要使用传统冷却系统的辅助冷却,例如,使用低温液体冷却回路或利用空气直接冷却。
EGR增压可以与由压缩机234压缩的增压空气组合,所述压缩机234连接到由离开排气歧管210的废气供电的涡轮机236并被其驱动。所述增压空气在被压缩机234压缩时被加热。该加热的增压空气被供应至增压空气冷却器(CAC)238,在其中冷却后与冷却后的EGR气体在混合器240中组合。包括冷却后的EGR气体和冷却压缩后的空气的组合增压混合物被供应至发动机211的进气歧管242。EGR增压气体流的流量可以由EGR阀232来控制。
系统200还包括连接到锅炉/过热器12的EGR气流上游的传感器261,其用来感测EGR气体的温度,如上文针对图1所述。尽管传感器261被示出为位于EGR阀232的上游,但是传感器261可以设置在锅炉的上游的任意位置。另外,尽管图3中未示出,但是换热器22可以包括图2的系统10中所示的旁通阀20。系统200中的另一个温度控制机构是限流器262,其可被控制器63控制以调节ORC子系统A中的工作流体的流速。系统200可以包括仅一个控制器或更多个控制器来调节流出ORC子系统A的废热流(EGR)的温度。在应用多个控制机构时,各个控制机构有时可以单独使用,或者与其它控制结构相结合以获得期望的冷却速率和用于冷却的气体量。
图4示出了根据实施方式的ORC增压冷却系统300,在该实施方式中,ORC子系统A在组合增压冷却器中对EGR气体和增压空气这二者进行冷却。其中的部件的附图标记与以上所述的系统10、100、200的任意一个中的部件的附图标记相同。
如图4所述,从压缩机234排出的空气增压流在混合器340中与来自EGR阀232的EGR气体进行混合,且该增压混合物被传送穿过ORC热交换器(即锅炉/过热器12),以将热传送到ORC。该冷却后的气体混合物被传送至增压冷却器338(例如,CCAC)的入口以进行进一步冷却,并且离开增压冷却器338的出口的冷却后的气体混合物被供应到发动机211的进气歧管242。
其它实施方式可以包括来自增压气体热输入的变型。这些变型包括仅使用增压空气热输入的系统。其它变体是使用增压空气和EGR冷却,其中这些气体保持非混合,输入到ORC的增压空气和EGR热可以是并行或者是串联热输入构造。同时,增压冷却器可以完全省略,或者在该处设置旁通阀以允许附加温度控制。
此外,关于发动机冷却的其它热源(包括水套冷却、油冷却或废气冷却)可以被包括在使用RC和能量转换装置以提高能量回收的增压冷却系统的实施方式中。
尽管本文描述了有限数量的实施方式,但是本领域普通技术人员容易认识到,可以对这些实施方式中的任一个进行变型,并且这些变型将在本公开的范围内。

Claims (15)

1.一种包括朗肯动力循环子系统的系统,该朗肯动力循环子系统提供对内燃机进气口上游的输入增压流的排放临界增压冷却,该输入增压流包括废气再循环(EGR)源和增压空气源中的至少一个,该系统包括:
锅炉,该锅炉流体连接到所述输入增压流,并被配置为将来自所述输入增压流的热传送到所述朗肯动力循环子系统的工作流体并使所述工作流体蒸发;
能量转换装置,该能量转换装置流体连接到所述锅炉,并被配置为接收蒸发的工作流体并转换所传送的热能;
冷凝器,该冷凝器流体连接到所述能量转换装置,并被配置为接收所述工作流体,其中,从所述工作流体转换能量;
泵,该泵具有流体连接到所述冷凝器的出口的入口以及流体连接到所述锅炉的入口的出口,所述泵被配置为将来自所述冷凝器的流体移送至所述锅炉;
用于调节所述朗肯动力循环子系统的至少一个参数以改变离开所述锅炉的所述输入增压流的温度的装置;
传感器,该传感器被配置为感测所述输入增压流的温度特性;以及
控制器,该控制器被配置为确定所述输入增压流的足以满足或超过预定目标排放的目标温度,并使得所述装置调节朗肯动力循环的至少一个参数以达到预定目标排放,所述至少一个参数对应于由低温源进行的冷却的量或速率、泵速和在所述泵处的流速中的至少一个。
2.根据权利要求1所述的系统,该系统还包括流体连接到所述锅炉并在所述锅炉的上游的混合室,其中,所述输入增压流包括在所述混合室中混合的增压废气再循环(EGR)源和增压空气源这二者。
3.根据权利要求1所述的系统,其中,所述能量转换装置是涡轮机。
4.根据权利要求3所述的系统,该系统还包括连接到所述涡轮机的发电机。
5.根据权利要求1所述的系统,其中,用于调节的所述装置包括换热器旁通阀。
6.根据权利要求1所述的系统,其中,用于调节的所述装置包括所述工作流体的流动路径中的限流器。
7.根据权利要求1所述的系统,其中,用于调节的所述装置包括所述泵中的变速控制器。
8.一种包括朗肯动力循环子系统的内燃机,该朗肯动力循环子系统提供对所述内燃机进气口上游的输入增压流的排放临界增压冷却,所述输入增压流包括废气再循环(EGR)源和增压空气源中的至少一个,该内燃机包括:
锅炉,该锅炉流体连接到所述输入增压流,并被配置为将来自所述输入增压流的热传送到所述朗肯动力循环子系统的工作流体并使所述工作流体蒸发;
能量转换装置,该能量转换装置流体连接到所述锅炉,并被配置为接收蒸发的工作流体并转换所传送的热能;
冷凝器,该冷凝器流体连接到所述能量转换装置,并被配置为接收所述工作流体,其中,从所述工作流体转换能量;
泵,该泵具有流体连接到所述冷凝器的出口的入口以及流体连接到所述锅炉的入口的出口,所述泵被配置为将来自所述冷凝器的流体移送至所述锅炉;
调节器,该调节器被配置为调节所述朗肯动力循环子系统的至少一个参数以改变离开所述锅炉的所述输入增压流的温度;
传感器,该传感器被配置为感测所述输入增压流的温度特性;以及
控制器,该控制器被配置为确定所述输入增压流的阈值温度,低于该阈值温度就足以满足或超过预定目标排放,并使得所述调节器调节朗肯动力循环的至少一个参数以将所感测到的温度维持在所确定的阈值温度内,所述至少一个参数对应于由低温源进行的冷却的量或速率、泵速和在所述泵处的流速中的至少一个。
9.根据权利要求8所述的内燃机,该内燃机还包括流体连接到所述锅炉并在所述锅炉的上游的混合室,其中,所述输入增压流包括在该混合室中混合的增压废气再循环(EGR)源和增压空气源这二者。
10.根据权利要求8所述的内燃机,其中,所述能量转换装置是涡轮机。
11.根据权利要求10所述的内燃机,该内燃机还包括连接到所述涡轮机的发电机。
12.根据权利要求8所述的内燃机,其中,所述调节器包括换热器旁通阀。
13.根据权利要求8所述的内燃机,其中,所述调节器包括所述工作流体的流动路径中的限流器。
14.根据权利要求8所述的内燃机,其中,所述调节器包括所述泵中的变速控制器。
15.一种冷却内燃机进气口上游的输入增压流的方法,该输入增压流包括废气再循环(EGR)源和增压空气源中的至少一个,该方法包括以下步骤:
向朗肯动力循环子系统的锅炉提供所述输入增压流,以将来自所述输入增压流的热传送到所述朗肯动力循环子系统的工作流体并使所述工作流体蒸发;
转换所传送的热能;
使所述工作流体冷凝,其中,从所述工作流体转换能量;
泵送所述冷凝的工作流体以移送所述工作流体通过朗肯动力循环;
确定所述输入增压流的足以满足或超过预定目标排放的目标温度;
调节所述朗肯动力循环子系统的至少一个参数以改变离开所述锅炉的所述输入增压流的温度;
感测离开所述锅炉的所述输入增压流的温度;以及
控制朗肯动力循环的至少一个参数以将所述输入增压流的温度维持在所述目标温度或维持为低于所述目标温度,所述至少一个参数对应于由低温源进行的冷却的量或速率、泵速和在泵处的流速中的至少一个。
CN201180038724.XA 2010-08-05 2011-08-05 采用有机朗肯循环的排放临界增压冷却 Active CN103237961B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37116210P 2010-08-05 2010-08-05
US61/371,162 2010-08-05
PCT/US2011/046852 WO2012019161A1 (en) 2010-08-05 2011-08-05 Emissions-critical charge cooling using an organic rankine cycle

Publications (2)

Publication Number Publication Date
CN103237961A CN103237961A (zh) 2013-08-07
CN103237961B true CN103237961B (zh) 2015-11-25

Family

ID=45559853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180038724.XA Active CN103237961B (zh) 2010-08-05 2011-08-05 采用有机朗肯循环的排放临界增压冷却

Country Status (4)

Country Link
US (1) US8776517B2 (zh)
CN (1) CN103237961B (zh)
DE (1) DE112011102629T5 (zh)
WO (1) WO2012019161A1 (zh)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866157B2 (en) 2008-05-12 2011-01-11 Cummins Inc. Waste heat recovery system with constant power output
US9470149B2 (en) * 2008-12-11 2016-10-18 General Electric Company Turbine inlet air heat pump-type system
US8544274B2 (en) 2009-07-23 2013-10-01 Cummins Intellectual Properties, Inc. Energy recovery system using an organic rankine cycle
US8627663B2 (en) 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
WO2012019161A1 (en) 2010-08-05 2012-02-09 Cummins Intellectual Properties, Inc. Emissions-critical charge cooling using an organic rankine cycle
CN103180553B (zh) 2010-08-09 2015-11-25 康明斯知识产权公司 包括兰金循环rc子系统的废热回收系统和内燃机系统
WO2012021757A2 (en) 2010-08-11 2012-02-16 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
CN103180554B (zh) 2010-08-13 2016-01-20 康明斯知识产权公司 使用换能装置旁通阀进行兰金循环冷凝器压力控制
US20120047889A1 (en) * 2010-08-27 2012-03-01 Uop Llc Energy Conversion Using Rankine Cycle System
WO2012088532A1 (en) 2010-12-23 2012-06-28 Cummins Intellectual Property, Inc. System and method for regulating egr cooling using a rankine cycle
US8826662B2 (en) 2010-12-23 2014-09-09 Cummins Intellectual Property, Inc. Rankine cycle system and method
DE102012000100A1 (de) 2011-01-06 2012-07-12 Cummins Intellectual Property, Inc. Rankine-kreisprozess-abwärmenutzungssystem
US9021808B2 (en) 2011-01-10 2015-05-05 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
EP2665907B1 (en) 2011-01-20 2017-05-10 Cummins Intellectual Properties, Inc. Rankine cycle waste heat recovery system and method with improved egr temperature control
US8707914B2 (en) 2011-02-28 2014-04-29 Cummins Intellectual Property, Inc. Engine having integrated waste heat recovery
DE102011005072A1 (de) * 2011-03-03 2012-09-06 Behr Gmbh & Co. Kg Verbrennungsmotor
US9175643B2 (en) * 2011-08-22 2015-11-03 International Engine Intellectual Property Company, Llc. Waste heat recovery system for controlling EGR outlet temperature
WO2013028173A1 (en) * 2011-08-23 2013-02-28 International Engine Intellectual Property Company, Llc System and method for protecting an engine from condensation at intake
US9074492B2 (en) 2012-04-30 2015-07-07 Electro-Motive Diesel, Inc. Energy recovery arrangement having multiple heat sources
WO2013165431A1 (en) * 2012-05-03 2013-11-07 International Engine Intellectual Property Company, Llc Rankine cycle mid-temperature recuperation
EP2847447B1 (en) * 2012-05-10 2017-09-27 Volvo Lastvagnar Ab Vehicle internal combustion engine arrangement comprising a waste heat recovery system for compressing exhaust gases
US8893495B2 (en) 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
CN102857029B (zh) * 2012-08-13 2015-04-15 福建唐力电力设备有限公司 柴油发电机组废气余热智能冷却装置及方法
US9118226B2 (en) * 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9140209B2 (en) * 2012-11-16 2015-09-22 Cummins Inc. Rankine cycle waste heat recovery system
US9845711B2 (en) 2013-05-24 2017-12-19 Cummins Inc. Waste heat recovery system
TWI654368B (zh) * 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
CN103452815B (zh) * 2013-08-18 2015-07-29 杭州哲达科技股份有限公司 利用空压余热提高空压机运行效率的装置及方法
KR20150073705A (ko) * 2013-12-23 2015-07-01 현대자동차주식회사 내연기관의 배기열 재활용 시스템
JP6217426B2 (ja) * 2014-02-07 2017-10-25 いすゞ自動車株式会社 廃熱回収システム
JP6194273B2 (ja) * 2014-04-04 2017-09-06 株式会社神戸製鋼所 排熱回収装置及び排熱回収方法
WO2015179907A1 (en) * 2014-05-30 2015-12-03 Leartek Pty Ltd Exhaust heat recovery system control method and device
WO2016069658A1 (en) * 2014-10-27 2016-05-06 Cummins Inc. Waste heat recovery integrated cooling module
WO2016069707A1 (en) * 2014-10-31 2016-05-06 Modine Manufacturing Company Cooling module and rankine cycle waste heat recovery system
US9650941B2 (en) * 2014-12-16 2017-05-16 Ford Global Technologies, Llc Rankine cycle for a vehicle
US9890666B2 (en) * 2015-01-14 2018-02-13 Ford Global Technologies, Llc Heat exchanger for a rankine cycle in a vehicle
SE538865C2 (sv) * 2015-05-25 2017-01-10 Scania Cv Ab An arrangement for heating of an exhaust gas treatment component
CN107636262B (zh) * 2015-06-03 2020-07-07 沃尔沃卡车集团 用于废热回收设备中的底循环工作流体焓控制的方法和设备
CN105003351B (zh) * 2015-07-21 2016-08-17 天津大学 对气体机余热能进行梯级回收的多能量形式输出的能源塔
DE102015214363A1 (de) * 2015-07-29 2017-02-02 Robert Bosch Gmbh Verfahren zum Bearbeiten von Sensorsignalen
JP2017053278A (ja) * 2015-09-10 2017-03-16 アネスト岩田株式会社 バイナリー発電装置
US10914201B2 (en) 2015-12-18 2021-02-09 Cummins Inc. Integrated cooling system for engine and waste heat recovery
DE112015007098T5 (de) 2015-12-21 2018-08-02 Cummins Inc. Integriertes steuersystem zur motorabwärmerückgewinnung mithilfe eines organic-rankine-cycle
US20170275190A1 (en) * 2016-03-23 2017-09-28 Solar Turbines Incorporated System using heat energy to produce power and pure water
WO2018147867A1 (en) 2017-02-10 2018-08-16 Cummins Inc. Systems and methods for expanding flow in a waste heat recovery system
SE541889C2 (en) * 2017-03-22 2020-01-02 Scania Cv Ab A method for operating a waste heat recorvery system and a waste heat recovery system
WO2018213080A1 (en) * 2017-05-17 2018-11-22 Cummins Inc. Waste heat recovery systems with heat exchangers
US10815931B2 (en) * 2017-12-14 2020-10-27 Cummins Inc. Waste heat recovery system with low temperature heat exchanger
US11591991B1 (en) 2021-08-27 2023-02-28 Ford Global Technologies, Llc Methods and systems for merging EGR with intake air
US20240042370A1 (en) * 2022-07-21 2024-02-08 Victor Juchymenko System, apparatus and method for managing heat transfer in post combustion (co2 and h2s) gas treating systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677022A (zh) * 2004-03-31 2005-10-05 株式会社电装 利用内燃机的废热的系统

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3232052A (en) 1962-12-28 1966-02-01 Creusot Forges Ateliers Power producing installation comprising a steam turbine and at least one gas turbine
US7117827B1 (en) 1972-07-10 2006-10-10 Hinderks Mitja V Means for treatment of the gases of combustion engines and the transmission of their power
US3789804A (en) 1972-12-14 1974-02-05 Sulzer Ag Steam power plant with a flame-heated steam generator and a group of gas turbines
US4009587A (en) 1975-02-18 1977-03-01 Scientific-Atlanta, Inc. Combined loop free-piston heat pump
US4164850A (en) 1975-11-12 1979-08-21 Lowi Jr Alvin Combined engine cooling system and waste-heat driven automotive air conditioning system
US4204401A (en) 1976-07-19 1980-05-27 The Hydragon Corporation Turbine engine with exhaust gas recirculation
US4271664A (en) 1977-07-21 1981-06-09 Hydragon Corporation Turbine engine with exhaust gas recirculation
CH627524A5 (de) 1978-03-01 1982-01-15 Sulzer Ag Verfahren und anlage zur waermenutzung durch waermeentzug aus mindestens einem stroemenden waermetraeger.
US4267692A (en) 1979-05-07 1981-05-19 Hydragon Corporation Combined gas turbine-rankine turbine power plant
US4428190A (en) 1981-08-07 1984-01-31 Ormat Turbines, Ltd. Power plant utilizing multi-stage turbines
US4458493A (en) 1982-06-18 1984-07-10 Ormat Turbines, Ltd. Closed Rankine-cycle power plant utilizing organic working fluid
US4581897A (en) 1982-09-29 1986-04-15 Sankrithi Mithra M K V Solar power collection apparatus
DE3390316C2 (de) 1982-11-18 1994-06-01 Evans Cooling Ass Verfahren und Kühlsystem zur Verdampfungskühlung von Verbrennungsmotoren
JPS6419157A (en) 1987-07-10 1989-01-23 Kubota Ltd Waste heat recovering device for water cooled engine
US4831817A (en) 1987-11-27 1989-05-23 Linhardt Hans D Combined gas-steam-turbine power plant
US4873829A (en) 1988-08-29 1989-10-17 Williamson Anthony R Steam power plant
JP2567298B2 (ja) 1990-11-29 1996-12-25 帝国ピストンリング株式会社 多気筒エンジンにおけるシリンダの冷却構造
US5121607A (en) 1991-04-09 1992-06-16 George Jr Leslie C Energy recovery system for large motor vehicles
US5421157A (en) 1993-05-12 1995-06-06 Rosenblatt; Joel H. Elevated temperature recuperator
US6014856A (en) 1994-09-19 2000-01-18 Ormat Industries Ltd. Multi-fuel, combined cycle power plant
JPH08200075A (ja) 1995-01-30 1996-08-06 Toyota Motor Corp 内燃機関の燃焼室
US5685152A (en) 1995-04-19 1997-11-11 Sterling; Jeffrey S. Apparatus and method for converting thermal energy to mechanical energy
US5950425A (en) 1996-03-11 1999-09-14 Sanshin Kogyo Kabushiki Kaisha Exhaust manifold cooling
JP3822279B2 (ja) 1996-05-22 2006-09-13 臼井国際産業株式会社 Egrガス冷却装置
US5806322A (en) 1997-04-07 1998-09-15 York International Refrigerant recovery method
US5771868A (en) 1997-07-03 1998-06-30 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
US6138649A (en) 1997-09-22 2000-10-31 Southwest Research Institute Fast acting exhaust gas recirculation system
US6055959A (en) 1997-10-03 2000-05-02 Yamaha Hatsudoki Kabushiki Kaisha Engine supercharged in crankcase chamber
US20020099476A1 (en) 1998-04-02 2002-07-25 Hamrin Douglas A. Method and apparatus for indirect catalytic combustor preheating
US6230480B1 (en) 1998-08-31 2001-05-15 Rollins, Iii William Scott High power density combined cycle power plant
US6035643A (en) 1998-12-03 2000-03-14 Rosenblatt; Joel H. Ambient temperature sensitive heat engine cycle
US6571548B1 (en) 1998-12-31 2003-06-03 Ormat Industries Ltd. Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US6321697B1 (en) 1999-06-07 2001-11-27 Mitsubishi Heavy Industries, Ltd. Cooling apparatus for vehicular engine
DE19939289C1 (de) 1999-08-19 2000-10-05 Mak Motoren Gmbh & Co Kg Verfahren und Einrichtung zur Aufbereitung von Gasgemischen
JP3767785B2 (ja) 1999-10-22 2006-04-19 本田技研工業株式会社 エンジンの排熱回収装置
US6393840B1 (en) 2000-03-01 2002-05-28 Ter Thermal Retrieval Systems Ltd. Thermal energy retrieval system for internal combustion engines
US6247316B1 (en) 2000-03-22 2001-06-19 Clean Energy Systems, Inc. Clean air engines for transportation and other power applications
GB0007917D0 (en) 2000-03-31 2000-05-17 Npower An engine
US6701712B2 (en) 2000-05-24 2004-03-09 Ormat Industries Ltd. Method of and apparatus for producing power
US6960839B2 (en) 2000-07-17 2005-11-01 Ormat Technologies, Inc. Method of and apparatus for producing power from a heat source
JP2002115801A (ja) 2000-10-05 2002-04-19 Honda Motor Co Ltd 蒸発器の蒸気温度制御装置
JP2002115505A (ja) 2000-10-11 2002-04-19 Honda Motor Co Ltd 内燃機関のランキンサイクル装置
US6977983B2 (en) 2001-03-30 2005-12-20 Pebble Bed Modular Reactor (Pty) Ltd. Nuclear power plant and a method of conditioning its power generation circuit
JP3871193B2 (ja) 2001-07-03 2007-01-24 本田技研工業株式会社 エンジンの排熱回収装置
US20030213246A1 (en) 2002-05-15 2003-11-20 Coll John Gordon Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems
US6598397B2 (en) 2001-08-10 2003-07-29 Energetix Micropower Limited Integrated micro combined heat and power system
DE10236501A1 (de) 2001-08-17 2003-04-03 Alstom Switzerland Ltd Startverfahren für eine Kraftwerksanlage
DE10236324A1 (de) 2001-08-17 2003-03-06 Alstom Switzerland Ltd Verfahren zum Kühlen von Turbinenschaufeln
DE10236294A1 (de) 2001-08-17 2003-02-27 Alstom Switzerland Ltd Gasversorgungskontrolleinrichtung einer Gasspeicherkraftanlage
US6637207B2 (en) 2001-08-17 2003-10-28 Alstom (Switzerland) Ltd Gas-storage power plant
JP3730900B2 (ja) 2001-11-02 2006-01-05 本田技研工業株式会社 内燃機関
JP3881872B2 (ja) 2001-11-15 2007-02-14 本田技研工業株式会社 内燃機関
US6748934B2 (en) 2001-11-15 2004-06-15 Ford Global Technologies, Llc Engine charge air conditioning system with multiple intercoolers
US6848259B2 (en) 2002-03-20 2005-02-01 Alstom Technology Ltd Compressed air energy storage system having a standby warm keeping system including an electric air heater
CN100339675C (zh) 2002-05-10 2007-09-26 臼井国际产业株式会社 传热管以及装有这种传热管的换热器
US20030213248A1 (en) 2002-05-15 2003-11-20 Osborne Rodney L. Condenser staging and circuiting for a micro combined heat and power system
US20030213245A1 (en) 2002-05-15 2003-11-20 Yates Jan B. Organic rankine cycle micro combined heat and power system
AT414156B (de) * 2002-10-11 2006-09-15 Dirk Peter Dipl Ing Claassen Verfahren und einrichtung zur rückgewinnung von energie
US9085504B2 (en) 2002-10-25 2015-07-21 Honeywell International Inc. Solvent compositions containing fluorine substituted olefins and methods and systems using same
US7174716B2 (en) 2002-11-13 2007-02-13 Utc Power Llc Organic rankine cycle waste heat applications
US6880344B2 (en) 2002-11-13 2005-04-19 Utc Power, Llc Combined rankine and vapor compression cycles
US6877323B2 (en) 2002-11-27 2005-04-12 Elliott Energy Systems, Inc. Microturbine exhaust heat augmentation system
US6745574B1 (en) 2002-11-27 2004-06-08 Elliott Energy Systems, Inc. Microturbine direct fired absorption chiller
US6751959B1 (en) 2002-12-09 2004-06-22 Tennessee Valley Authority Simple and compact low-temperature power cycle
SE0301585D0 (sv) 2003-05-30 2003-05-30 Euroturbine Ab Förfarande för drift av en gasturbingrupp
US6986251B2 (en) 2003-06-17 2006-01-17 Utc Power, Llc Organic rankine cycle system for use with a reciprocating engine
US6964168B1 (en) 2003-07-09 2005-11-15 Tas Ltd. Advanced heat recovery and energy conversion systems for power generation and pollution emissions reduction, and methods of using same
JP4089539B2 (ja) * 2003-07-22 2008-05-28 株式会社デンソー ランキンサイクル
US7007487B2 (en) 2003-07-31 2006-03-07 Mes International, Inc. Recuperated gas turbine engine system and method employing catalytic combustion
US7159400B2 (en) 2003-10-02 2007-01-09 Honda Motor Co., Ltd. Rankine cycle apparatus
US7174732B2 (en) 2003-10-02 2007-02-13 Honda Motor Co., Ltd. Cooling control device for condenser
US7131290B2 (en) 2003-10-02 2006-11-07 Honda Motor Co., Ltd. Non-condensing gas discharge device of condenser
JP4089619B2 (ja) 2004-01-13 2008-05-28 株式会社デンソー ランキンサイクルシステム
JP4526395B2 (ja) 2004-02-25 2010-08-18 臼井国際産業株式会社 内燃機関の過給システム
US7325401B1 (en) 2004-04-13 2008-02-05 Brayton Energy, Llc Power conversion systems
US7200996B2 (en) 2004-05-06 2007-04-10 United Technologies Corporation Startup and control methods for an ORC bottoming plant
US7290393B2 (en) * 2004-05-06 2007-11-06 Utc Power Corporation Method for synchronizing an induction generator of an ORC plant to a grid
JP2005329843A (ja) 2004-05-20 2005-12-02 Toyota Industries Corp 車両用排熱回収システム
US7469540B1 (en) 2004-08-31 2008-12-30 Brent William Knapton Energy recovery from waste heat sources
US7028463B2 (en) 2004-09-14 2006-04-18 General Motors Corporation Engine valve assembly
US7121906B2 (en) 2004-11-30 2006-10-17 Carrier Corporation Method and apparatus for decreasing marine vessel power plant exhaust temperature
US7665304B2 (en) 2004-11-30 2010-02-23 Carrier Corporation Rankine cycle device having multiple turbo-generators
DE102005013287B3 (de) 2005-01-27 2006-10-12 Misselhorn, Jürgen, Dipl.Ing. Wärmekraftmaschine
US7225621B2 (en) 2005-03-01 2007-06-05 Ormat Technologies, Inc. Organic working fluids
WO2006104490A1 (en) 2005-03-29 2006-10-05 Utc Power, Llc Cascaded organic rankine cycles for waste heat utilization
WO2006138459A2 (en) * 2005-06-16 2006-12-28 Utc Power Corporation Organic rankine cycle mechanically and thermally coupled to an engine driving a common load
US8181463B2 (en) 2005-10-31 2012-05-22 Ormat Technologies Inc. Direct heating organic Rankine cycle
US7775045B2 (en) 2005-10-31 2010-08-17 Ormat Technologies, Inc. Method and system for producing power from a source of steam
US7454911B2 (en) 2005-11-04 2008-11-25 Tafas Triantafyllos P Energy recovery system in an engine
JP4801810B2 (ja) 2006-05-30 2011-10-26 株式会社デンソー 廃熱利用装置を備える冷凍装置
AU2007288134A1 (en) * 2006-08-25 2008-02-28 Commonwealth Scientific And Industrial Research Organisation A heat engine system
WO2008106774A1 (en) 2007-03-02 2008-09-12 Victor Juchymenko Controlled organic rankine cycle system for recovery and conversion of thermal energy
JP2008240613A (ja) 2007-03-27 2008-10-09 Toyota Motor Corp エンジン冷却システム及びエンジン廃熱回収システム
US8438849B2 (en) 2007-04-17 2013-05-14 Ormat Technologies, Inc. Multi-level organic rankine cycle power system
US8132409B2 (en) * 2007-05-08 2012-03-13 Solar Turbine Group, International Solar collection and conversion system and methods and apparatus for control thereof
US20090090109A1 (en) 2007-06-06 2009-04-09 Mills David R Granular thermal energy storage mediums and devices for thermal energy storage systems
US8378280B2 (en) 2007-06-06 2013-02-19 Areva Solar, Inc. Integrated solar energy receiver-storage unit
US8739512B2 (en) 2007-06-06 2014-06-03 Areva Solar, Inc. Combined cycle power plant
US7797938B2 (en) 2007-07-31 2010-09-21 Caterpillar Inc Energy recovery system
WO2009045196A1 (en) 2007-10-04 2009-04-09 Utc Power Corporation Cascaded organic rankine cycle (orc) system using waste heat from a reciprocating engine
DE102007052117A1 (de) 2007-10-30 2009-05-07 Voith Patent Gmbh Antriebsstrang, insbesondere für Lkw und Schienenfahrzeuge
WO2009064378A2 (en) 2007-11-09 2009-05-22 Ausra, Inc. Efficient low temperature thermal energy storage
US9321479B2 (en) 2007-11-28 2016-04-26 GM Global Technology Operations LLC Vehicle power steering waste heat recovery
JP4858424B2 (ja) 2007-11-29 2012-01-18 トヨタ自動車株式会社 ピストン機関及びスターリングエンジン
US8186161B2 (en) * 2007-12-14 2012-05-29 General Electric Company System and method for controlling an expansion system
FR2926598B1 (fr) 2008-01-18 2010-02-12 Peugeot Citroen Automobiles Sa Moteur a combustion interne et vehicule equipe d'un tel moteur
JP2009167995A (ja) 2008-01-21 2009-07-30 Sanden Corp 内燃機関の廃熱利用装置
GB2457266B (en) 2008-02-07 2012-12-26 Univ City Generating power from medium temperature heat sources
US7735323B2 (en) * 2008-02-12 2010-06-15 Lawrence Livermore National Security, Llc Solar thermal power system
JP2009191647A (ja) 2008-02-12 2009-08-27 Honda Motor Co Ltd 排気制御システム
JP5018592B2 (ja) 2008-03-27 2012-09-05 いすゞ自動車株式会社 廃熱回収装置
US7997076B2 (en) 2008-03-31 2011-08-16 Cummins, Inc. Rankine cycle load limiting through use of a recuperator bypass
US7958873B2 (en) 2008-05-12 2011-06-14 Cummins Inc. Open loop Brayton cycle for EGR cooling
US7866157B2 (en) 2008-05-12 2011-01-11 Cummins Inc. Waste heat recovery system with constant power output
US20100083919A1 (en) 2008-10-03 2010-04-08 Gm Global Technology Operations, Inc. Internal Combustion Engine With Integrated Waste Heat Recovery System
CH699804A1 (de) * 2008-10-29 2010-04-30 Alstom Technology Ltd Gasturbinenanlage mit Abgasrückführung sowie Verfahren zum Betrieb einer solchen Anlage.
AT507096B1 (de) 2008-12-10 2010-02-15 Man Nutzfahrzeuge Oesterreich Antriebseinheit mit kühlkreislauf und separatem wärmerückgewinnungskreislauf
DE102009006959B4 (de) 2009-01-31 2020-03-12 Modine Manufacturing Co. System zur Rückgewinnung von Energie
US20100229525A1 (en) 2009-03-14 2010-09-16 Robin Mackay Turbine combustion air system
BRPI1007723A2 (pt) 2009-05-12 2018-03-06 Icr Turbine Engine Corp sistema de armazenamento e conversão de turbina a gás
US8330285B2 (en) 2009-07-08 2012-12-11 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for a more efficient and dynamic waste heat recovery system
US8522756B2 (en) 2009-10-28 2013-09-03 Deere & Company Interstage exhaust gas recirculation system for a dual turbocharged engine having a turbogenerator system
US20110209473A1 (en) 2010-02-26 2011-09-01 Jassin Fritz System and method for waste heat recovery in exhaust gas recirculation
WO2012019161A1 (en) 2010-08-05 2012-02-09 Cummins Intellectual Properties, Inc. Emissions-critical charge cooling using an organic rankine cycle
WO2012088532A1 (en) * 2010-12-23 2012-06-28 Cummins Intellectual Property, Inc. System and method for regulating egr cooling using a rankine cycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677022A (zh) * 2004-03-31 2005-10-05 株式会社电装 利用内燃机的废热的系统

Also Published As

Publication number Publication date
CN103237961A (zh) 2013-08-07
US20120023946A1 (en) 2012-02-02
WO2012019161A1 (en) 2012-02-09
US8776517B2 (en) 2014-07-15
DE112011102629T5 (de) 2013-05-08

Similar Documents

Publication Publication Date Title
CN103237961B (zh) 采用有机朗肯循环的排放临界增压冷却
US9926813B2 (en) Heat energy distribution systems and methods for power recovery
US8991180B2 (en) Device and method for the recovery of waste heat from an internal combustion engine
US11092069B2 (en) Rankine cycle waste heat recovery system and method with improved EGR temperature control
US9745869B2 (en) System and method for regulating EGR cooling using a Rankine cycle
US8365527B2 (en) Drive unit with cooling circuit and separate heat recovery circuit
US9074492B2 (en) Energy recovery arrangement having multiple heat sources
US8938964B2 (en) Waste heat utilization apparatus for internal combustion engine
US20090211253A1 (en) Organic Rankine Cycle Mechanically and Thermally Coupled to an Engine Driving a Common Load
RU2215165C2 (ru) Способ регенерации тепла выхлопных газов в преобразователе органической энергии с помощью промежуточного жидкостного цикла (варианты) и система регенерации тепла выхлопных газов
US4366674A (en) Internal combustion engine with Rankine bottoming cycle
US6986251B2 (en) Organic rankine cycle system for use with a reciprocating engine
CN103180554B (zh) 使用换能装置旁通阀进行兰金循环冷凝器压力控制
Teng et al. Achieving high engine efficiency for heavy-duty diesel engines by waste heat recovery using supercritical organic-fluid Rankine cycle
Teng et al. A rankine cycle system for recovering waste heat from HD diesel engines-WHR system development
US20050262842A1 (en) Process and device for the recovery of energy
US20130074497A1 (en) Waste heat recovery system
US8689554B2 (en) Engine arrangement with an improved exhaust heat recovery arrangement
EP3093456B1 (en) Heat energy recovery system
US9500199B2 (en) Exhaust turbocharger of an internal combustion engine
EP2574753A1 (en) Cooling system for two-stage charged engines
US20190234343A1 (en) Organic rankine cycle waste heat recovery system having two loops
US6145497A (en) Method and installation for recovering heat in the air supercharging an engine
US11035270B2 (en) Internal combustion engine having an exhaust heat recovery system as well as a method for recovering exhaust heat
GB2463641A (en) Making use of the waste heat from an internal combustion engine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant