CN1031415C - 形成压块的方法 - Google Patents

形成压块的方法 Download PDF

Info

Publication number
CN1031415C
CN1031415C CN90103305A CN90103305A CN1031415C CN 1031415 C CN1031415 C CN 1031415C CN 90103305 A CN90103305 A CN 90103305A CN 90103305 A CN90103305 A CN 90103305A CN 1031415 C CN1031415 C CN 1031415C
Authority
CN
China
Prior art keywords
container
briquetting
pressure
fusing point
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN90103305A
Other languages
English (en)
Other versions
CN1048412A (zh
Inventor
莫里斯·杰拉德·费伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of CN1048412A publication Critical patent/CN1048412A/zh
Application granted granted Critical
Publication of CN1031415C publication Critical patent/CN1031415C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/048Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F2003/1042Sintering only with support for articles to be sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F2003/1042Sintering only with support for articles to be sintered
    • B22F2003/1046Sintering only with support for articles to be sintered with separating means for articles to be sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

形式压块的方法包括以下工序:(1)形成一种可压实颗粒混合物,由至少一种第1类金属Ag、Cu、Al与至少一种下列材料组成,即CdO、SnO、SnO2、C、Co、Ni、Fe、Cr、Cr3C2、Cr7C3、W、WC、W2C、WB、Mo、Mo2C、MoB、Mo2B、TiC、TiN、TiB2、Si、SiC、Si3N4;(2)单向压实该颗粒混合物,达到60%至95%密度;(3)在34.568441兆帕(5,000磅/平方英寸)与311.06693兆帕(45,000磅/平方英寸)之间压力以及在低于压块中较低熔点50℃至100℃温度下使压块热压致密,达97%以上的理论密度;(4)冷却压块。

Description

形成压块的方法
本发明涉及一种形成压块的方法。
在断路器和其它电气设备中使用的电气触头含有一些成分,能够有效地从燃弧表面传导高通量的能量,同时触头能耐受在电弧附着点由于熔化和/或汽化而产生的磨蚀。在遮断过程中,电流可能高达200,000安培,局部电流密度在触头阳极表面可达105安/厘米2,在阴极表面可达108安/厘米2。暂态热通量在电弧根部可达106千瓦/厘米2,这进一步突出了对触头材料的要求,应具有最高的导热率和导电率,通常选择银或铜。在应用空气断路器时一般选用银作为触头材料,否则电弧后产生的表面氧化在触头闭合状态下必然伴有高电阻。在用其它遮断介质(油、真空或六氟化硫)防止表面氧化的场合,通常优先选用铜作为触头材料。
尽管选用具有最高导热率的触头金属,如果仅采用一种金属材料的话,如上所述的暂态热通量水平将导致局部表面温度远远超过触头的熔点(对银和铜分别为962℃和1083℃),并且很快就会产生磨蚀。由于这个原因,第二种材料,一般为石墨,或具有高熔点的耐熔金属例如钨和钼,或耐熔的硬质合金、氮化物和/或硼化物与这种导体配合使用,以阻止整体的熔化和粘结。
常规的触头制造工艺通常包括:将具有高导热率和高熔点的粉末状材料混合在一起,将该混合物加压制成压块,然后在还原媒质或惰性气体中进行热烧结。在烧结后,触头将渗入导电金属,它包括将一种金属小块放在每个触头上,然后在一种还原(或惰性)气体媒质中进行炉内加热,这次的加热温度高于该导体的熔点。然后触头可进行再加压,使其密度增加到理论值的96%至98%,并进行后处理,以便最后安装到开关设备上。
这种方法有一些缺点:它限制了工艺的通用性,它包含许多工序导致较高的生产成本,并且限制了可达到的密度和性能指标。美国专利说明书4,810,289号(N.S.Hoyer等人)解决了很多这方面的问题,该专利采用高导电性的银(Ag)或铜(Cu),与氧化镉(CdO)、钨(W)、碳化钨(WC)、钴(Co),铬(Cr),镍(Ni),或碳(C)混合,并与受控的温度、热均衡加压操作相结合,提供了清洁的氧化物金属表面。该专利的工序包括:冷态的单向加压;将加压后的触头装入一个容器中,使用有助于分离的粉剂;抽空该容器;将触头热均衡地加热。
Hoyer等人的工艺流程提供了高密度、高强度的触头,具有强化了的金属与金属之间的结合力。这种触头在燃弧后具有极小的剥离,在电弧根部的磨蚀率也减小了。然而,这种触头在加工过程中因体积收缩而受到损害。需要有一种方法提供尺寸上可再加工的触头,而仍然保持其高强度、耐剥离、以及强化的金属与金属之间结合力的特性。提供制造这种高级触头的方法是本发明的主要目的。
因此,本发明属于形成一个压实的密集压块所采用的方法由以下步骤组成:(1)形成一种可压实的颗粒混合物,由第一类金属银(Ag)、铜(Cu)、铝(Al)及其混合物与由下列材料中选出的(b)类粉末所组成:氧化镉(CdO)、氧化锡(SnO,SnO2)、碳(C)、钴(CO)、镍(Ni)、铁(Fe)、铬(Cr)、碳化铬(Cr2C、Cr3 C2、Cr7C3)、钨(W)、碳化钨(WC,W2C)、硼化钨(WB)、钼(Mo)、碳化钼(Mo2C),硼化钼(MoB,Mo2B)、碳化钛(TiC)、氮化钛(TiN)、硼化钛(TiB2)、硅(Si)、碳化硅(SiC)、氮化硅(Si3N4),或它们的混合物;(2)对这种颗粒混合物单向加压,最大颗粒尺寸约为1,500微米,压实后密度从60%至95%,以提供一个压块;(3)将至少一个压块放入一开口的容器中,容器有一个底面以及侧面,压块在容器内与一种分离材料相接触,这种材料有助于后续工序中使压块和容器相分离;(4)从容器内抽出空气;(5)密封该容器的开口顶部,容器的顶部表面和底部表面至少有一个面可在压力下变形;(6)将许多这样的容器一个换一个地互相堆叠起来,在容器之间插入具有高电阻的板,使得容器和板互相交错,在每个容器和板之间又放入一层导热的颗粒状的压力传导材料,其直径约为1,500微米以下,这种粒状材料的作用是在后续加压状态下对容器中的压块提供均匀的机械载荷,用来提供均匀载荷的板和粒状材料的熔点高于在压块中使用的具有最低熔化温度成分的熔点;(7)将该层叠组合放入一压力机中,使电流通过容器和高电阻的板,以在容器中的压块上产生热效应;单向压缩交叠的容器和板,该压力在34.568441兆帕(5,000磅/平方英寸)和311.06693兆帕(45,000磅/平方英寸)之间,温度比在压缩机中具有最低熔化温度成分的熔点或分解点要低0.5℃至100℃。以此提供均匀的同时热压,并使容器中的压块致密化,可达到理论密度的97%以上;(8)冷却并卸去加在交叠的容器和板上的压力;(9)将容器和板分离,并将压块与容器分离。
由不锈钢、碳化硅或石墨制成的高电阻板供优选用,象碳或石墨一类的导热的,粒状传导压力的材料也供选用,以提供均匀的载荷和热传导。
这种颗粒混合一般为粉末混合物,但也可采用其它方法将第一类金属与其它材料,例如预合金粉末混合在一起。这里自始至终使用“粉末”一词,其含义包括球形、纤维状以及其它形状的颗粒。
本发明进一步属于形成一个压实的密集压块所采用的方法,由以下步骤组成:(1)形成一种可压实的颗粒混合物,由第一类金属银(Ag)、铜(Cu)、铝(Al)或其混合物与下列(b)类材料组成:氧化镉(CdO)、氧化锡(SnO,SnO2)、碳(C)、钴(Co)、镍(Ni)、铁(Fe)、铬(Cr)、碳化铬(Cr3C2、Cr7C3)、钨(W)、碳化钨(WC,W2C)、硼化钨(WB)、钼(Mo)、碳化钼(Mo2C)、硼化钼(MoB,Mo2B)、碳化钛(TiC)、氮化钛(TiN)、硼化钛(TiB2)、硅(Si)、碳化硅(SiC)、氮化硅(Si3N4),或它们的混合物;其中非第一类粉末(b)重量的10%至75%是纤维状材料,其长度至少比其截面尺寸大20倍;该粉末混合物重量的30%至95%包含第一类金属;(2)单向压实该颗粒组合,其最大颗粒尺寸约为1,500微米,压制成具有60%至85%密度的大截面形状,以提供一个大型压块;(3)在真空中热压此压块,压力在34.568441兆帕(5,000磅/平方英寸)和311.06693兆帕(45,000磅/平方英寸)之间,温度比该压块中具有最低熔化温度成分的熔点或分解点要低0.5℃至100℃,以便提供同时热压并使压块密集度达到理论密度的97%以上;(4)将压块截面减少到原有截面的1/2至1/25;(5)切割减小了的压块。
这种实施方案在减小截面工序中的方法最好采用热挤压或冷挤压或滚轧工艺,所存在的任何纤维都会在长度方向变形,因而在切割减小了截面的板料或带料时,这些纤维取向于与切割面相垂直。真空热压一般采用容器密封法或用真空热压机对压块直接热压。
本发明进一步属于形成一个压实的密集压块所采用的方法,其特点在于以下工序:(1)将(a)粉末与(b)粉末混合,(a)粉末由包含Ag、Cu、Al及其混合物的第一类金属中选用,(b)粉末由下列各组成材料中选用:CdO、SnO、SnO2、C、Co、Ni、Fe、Cr、Cr3C2、Cr7C3、W、WC、W2C、WB、Mo、Mo2C、MoB、Mo2B、TiC、TiN、TiB2、Si、SiC、Si3N4,或它们的混合物;(2)将一压模型腔在真空环境下预热,并将该颗粒混合物放入该压模型腔中,最大颗粒尺寸约为1,500微米;(3)从该模压机中抽出空气以消除颗粒混合物之间的空气间隙;(4)压实该颗粒混合物,压力在34.568441兆帕(5,000磅/平方英寸)和311.06693兆帕(45,000磅/平方英寸)之间,温度比该模压机中具有较低熔化温度成分的熔点或分解点要低0.5℃至100℃,以提供同时热压和密集化,所形成的压块的密度可达理论密度的97%以上;(5)冷却并卸去压块上的压力;(6)将压块与模压机的模具型腔分离开。该实施方案中的方法最好采用具有多个模具型腔的压力,以便同时能制造出多个压块。
本发明也进一步属于形成一个压实的密集压块所采用的方法,它由以下工序组成:(1)由第一类金属Ag、Cu、Al或其混合物与(b)类材料CdO、SnO、SnO2、C、Co、Ni、Fe、Cr、Cr3C2、Cr7C3、W、WC、W2C、WB、Mo、Mo2C、MoB、Mo2B、TiC、TiN、TiB2、Si、SiC、Si3N4或其混合物组成一种可压实的颗粒混合物;(2)单向压实这种粉末,其最大颗粒尺寸约为1,500微米,压制成60%至80%的密度,以提供一个压块;(3)在温度低于该压块中具有最低熔化温度成分的熔点或分解点50℃至400℃的条件下烧结该压块,以有效地消除内部互连的孔隙,并提供具有75%至97%密度的压块;(4)热压该压块,压力在34.568441兆帕(5,000磅/平方英寸)与311.06693兆帕(45,000磅/平方英寸)之间;温度比该压块中具有最低熔化温度成分的熔点或分解点要低50℃至300℃,以提供同时热压并使压块的密实度达到理论密度的97%以上;(5)冷却并卸去压块上的压力。
在本发明上述的所有实施方案中,在混合这些粉末后,可以包含两个任选的工序。这两个工序是:在一种还原媒质中加热这些粉末,在能有效地提供粉末氧化物清洁表面的温度下加热,除非存在有CdO、SnO或SnO2,并且能得到非第一类材料更均匀的分布;在加热后使这些粉末粒化,以便使它们的最大尺寸大约为1,500微米。
这些实施方案提供了高性能的压块。这些压块可以用作电气或电气设备的触头,作为一种复合材料,例如与一种高导电性材料(例如铜)相结合的接触层,作为一个散热片,等等。制造触头使用的主要粉末包括Ag、Cu、CdO、SnO、SnO2、C、CO、Ni、Fe、Cr、Cr3C2、Cr7C3、W、WC、W2C、WB、Mo、Mo2C、MoB、Mo2B,以及TiC。散热片所用的主要材料包括Al、TiN、TiB2、Si、SiC,以及Si3N4
在颗粒混合工序中,大多数情况下采用简单的粉末混合已满足要求,但是在某些情况下,可能要形成合金,这些合金可能被氧化或还原,然后形成适合于压实的颗粒。一般的工序是粉末混合工序。有用的粉末包括许多类型。例如,第一类,“类别1”,选自高导电性的金属,如Ag、Cu、Al及其混合物。这些粉末可以与非第1类的粉末,即“类别2”的粉末混合,选自下列材料的组合:CdO、SnO、SnO2、C、Co、Ni、Fe、Cr、Cr3C2、Cr7C3、W、WC、W2C、WB、Mo、Mo2C、MoB、Mo2B、TiC、TiN、TiB2、Si、SiC、Si3N4,以及它们的混合物,最优先选用的是CdO、SnO、W、WC、Co、Cr、Ni和C。
Ag与TiN、TiB2、Si、SiC以及Si3N4的混合物在制造应用于散热装置的制品时特别有用。其它材料在制造用于断路器和其它电气开关设备的触头时特别有用。当所制造的制品是触头时,第一类粉末可以构成粉末混合物重量的10%至95%。应用于触头制造的优选粉末混合物包括Ag+W;Ag+CdO;Ag+SnO2;Ag+C;Ag+WC;Ag+Ni;Ag+Mo;Ag+Ni+C;Ag+WC+Co;Ag+WC+Ni;Cu+W;Cu+WC;以及Cu+Cr,以上仅作为例子列出。这些粉末的最大尺寸均约为1,500微米,并且均匀地混合在一起。
这些粉末在混合前或混合后可以有选择地进行热处理,以提供相对清洁的粒子表面。这通常包括在大约450℃至1,100℃之间在一种还原媒质中将粉末加热约0.5小时至1.5小时,450℃适用于95%重量的Ag+5%重量的CdO;1,100℃适用于10%重量的Cu+90%重量的W;还原媒质最好用氢气或离解的阿摩尼亚。这个工序可以润湿材料,并应从金属表面除去氧化物,但应在足够低的温度下进行,以便不至于使现存的粉末分解。已经发现这个工序对于提供高致密度是很重要的,特别是该工序的工艺流程中后续的热压工序配合使用更是如此。在使用少量第一类粉末的场合,这道工序将这些粉末分布在其它粉末之间,在所有的情况下都提供了第一类金属粉末的均匀分布。
如果颗粒已作过热净化处理,它们通常粘结在一起。因此需将它们粒化以破坏团聚作用,以便颗粒直径在0.5微米至1,500微米之间。这个供选择的步骤可在任选的热净化处理工序之后进行。然后混合的粉末通常放入单向模压机中。若在模压机中采用自动填充模具技术,业已得知,直径超过50微米的粉末比50微米以下的粉末具有更好的流动特性。对于大多数模压工艺来说,优选的粉末直径范围是从200微米至1,000微米。
在某些情况下,为了有选择地提供用于触头的可钎焊的或可软焊的表面,可钎焊金属(例如银铜合金)的薄片、多孔网或类似物,或可钎焊金属(例如银和铜)的粉末状粒子可以放置在压模中主触头粉末混合物的上面或下面。这将提供一种复合型的构造。
然后将模压机中的材料以标准模式即无任何加热或烧结的条件下进行单向压实,其压力通常在3.4568441兆帕(500磅/平方英寸)与311.06693兆帕(45,000磅/平方英寸)之间,以有效地提供一个可处理的、“未加工成”的压块。这样就提供了一种压块,其密度为理论密度的60%至95%。用一种材料覆盖模压机可能是合乎需要的,这种材料有助于在后续工序中使压块与模压机相分离,例如一些松散的颗粒和/或极细颗粒的覆盖层,例如陶瓷或石墨粉子,其直径最好在5微米以下。
为了能更清楚地理解本发明,现在参照附图作为示例对本发明较适宜的实施方案进行描述,附图中:
图1是形成压块的一般方法的方块图;
图2是第一种实施方案所用方法的方块图;
图3是一个局部剖视的正视图,表明该第一实施方案的一种堆叠式配置;
图4是第二种实施方案所用方法的方块图;
图5是第三种实施方案所用方法的方块图;
图6是第四种实施方案所用方法的方块图;
图7概略地表示出各种各样的压块。
现在请参照图1,这个方块图表示出粉末混合工序1,可选择的净化工序2,可选择的粒化工序3以及单向加压工序4;工序1和2之间以及2和3之间的虚线箭头表明了热净化处理和粒化工序的任选性质。
热密集或热压工序5可以在一个装有压块的密闭容器中实施,该容器具有可变形的顶部或底部表面。可以采用单向压力机。如果希望的话也可以采用均衡加压,例如用氩气或其它合适的气体作为介质,施加压力到容器上,并通过该容器对装入的压块施加压力。采用均衡加压可能具有某些控制特性,例如温度和压力的均匀性或其他优点,使得这种方法非常有用。在某些情况下,可以使用一种真空类型的热压机,免除了容器密封的要求。每种热压方法都有自己的优点和缺点。例如均衡加压和真空加压虽然提供了较好的控制性或加工工序的简化,但却意味着较大的设备投资。
这个热压工序及其后面的冷却工序也用于图2至图6所示的本发明的所有实施方案中,现在对这两个工序作一概述。
该热压工序中的压力约为34.568441兆帕(5,000磅/平方英寸)以上,较好的范围是在34.568441兆帕(5,000磅/平方英寸)与311.06693兆帕(45,000磅/平方英寸)之间,最好在103.55822兆帕(15,000磅/平方英寸)与207.41064兆帕(30,000磅/平方英寸)之间。这个工序中的温度应比该制品或压块中较低熔点成分的熔点或分解点低0.5℃至100℃为好,最好比上述熔点低0.5℃至20℃;如前所述,如果使用诸如粉末成分或可钎焊材料薄片组成压块的话,提供的密集度可达理论密度的97%以上,若能超过99.5%则更好。还存在这样的情况,当包含烧结工序时,在热压过程中的温度可以比所述熔点低300℃。正象前面简要描述的那样,如果把压块装在容器中,压力使容器的顶部和底部同时压扁,通过它们与压块相接触,制品或压块受到热压;由于压力传导到容器的顶部和底部使压块致密化。
制品在这个热密集或热压工序中停留的时间可从1分钟至4小时,最常见的是从5分钟至60分钟。作为这个工序的一个例子,在采用90%重量的银(Ag)+10%重量的氧化镉(CdO)粉末混合物的情况下,该热压工序中温度为约800℃至899.5℃的范围,对于这种应用场合,根据简明化学词典第9版,CdO的分解点实际上在大约900℃开始。然后被热压的制品或压块最好经历一段延长时间逐渐过渡到室温状态和一个大气压,通常为2小时至10小时。这种在压力下的逐渐冷却是很重要的,特别是如果采用一种带有组合成分变化的压块更是如此,因为它使成分层中的残余拉伸应力减至最小,并且控制了由于热膨胀特性的差别而产生的翘曲。最后,如果使用容器的话,将该制品或压块从容器中分离开。
举例来说,用这种方法制造的触头压块具有增强了的粒子间全相结合力,导致高的抗电弧磨蚀能力,增强了的热应力抗裂性,并且可以使制品基本上达到100%的密实度。在这个工艺过程中,在热压工序之前一般没有受压制品或压块的加热工序,可制作出具有最小应力的坚固的压块。
在图7中示出了各种各样的压块。这些压块70具有长度71,高度或厚度73,高度轴线A—A,以及顶面和底面。顶部表面可以是平坦的,举例来说,当一钎焊层放置在触头的底部时它具有一种复合结构,如图7(A)所示。该制品或压块也可以有一个如图7(B)所示的曲面顶部,它是非常有用的和普通的形状;或者有一个底部槽,如图7(C)所示。在某些情况下,可以有一种组合成分变化,例如,一种成分或一种特殊金属或其它粉末可能集中在制品或压块的某一层。一种有用的中等尺寸的触头大约为1.1厘米长,0.6厘米宽,并具有一个斜切的顶部,其最大高度大约为0.3厘米到0.4厘米。
现在请参照图2,图中表示本发明的一种优选的高产量生产法,当压块的一个表面是曲面而不是平面时这种方法特别有用。上述的粉末混合、任选的热净化处理、任选的粒化、单向加压、热压和冷却分别示于工序20、21、22、23、28和29中。在单向加压工序23之后,压块与一种分离或脱模材料相接触,即被该材料所覆盖,这种材料在化学上不会与压块相结合。然后把压块放入一个带有可变形表面的槽形容器中,即工序24。这些压块最好按它们全部高度方向放入容器中,就是说,图7中的高度轴线A—A相互平行。该容器具有侧表面,它们与图3中容器的中心轴线B—B相平行。这些压块的高度轴线A—A将平行于容器的中心轴线,它们也平行于容器顶部到底部的侧表面。
在密封后,容器至少有一个表面是在压力下可变形的,并垂直于压块的高度轴线A—A。在一个实施方案中,这种槽形容器可以是一个单体的、非常浅的金属罐式的容器,有一开口顶端,几个金属侧壁以及一个薄的底部,并带有一个薄的密封盖。所有这些容器壁一般是在压力下可变形的。这样压力就能施加到底部和密封盖上,它们又把压力沿着压块的高度轴线A—A施加到压块上。以这种方式施加压力,如果需要的话,可以把压块压至接近100%的理论密度。图3中的这些容器31可以用薄的量具钢以及类似的具有高温度稳定性的材料制成。有可能在每一个容器中压实单层或多层的压块。当压制多层压块时,在压块的各层之间必须放入能传导压力的分离或脱模材料,例如一种薄的石墨涂层钢板。
所有压块都应紧密地堆叠好,以至于在压块和容器侧壁之间没有显著的间隙。一个薄壁顶盖安装在容器上,抽出空气,即图2中的工序25;顶盖用诸如焊接或类似的方法密封在容器的边缘上,即工序26,以提供一个容器的顶表面。密封也可以在一真空容器中完成,这样就合并了顶盖密封和容器抽真空的工序。另一种方法是,容器可以设计成带有一个抽气口,这样抽气和密封可以在焊接以后进行。
每个容器可以容纳大量的,例如1,000个并排的制品或压块;并且许多密封的容器堆叠在一起同时进行热压,即工序27。通常12个制品或压块同时被热压。在容器中,每个压块被一种材料所包围,如前所述,它有助于压块与容器在后续工序中相分离,例如松散的颗粒和/或特细颗粒的覆盖层,和/或高温布。该分离材料最好是以陶瓷制品涂层或松散颗粒的形式,例如铝氧粉或氮化硼,或石墨,直径在5微米以下,最好是亚微米尺寸。
现在请参照图3,它绘出了图2中工序27的细节;如前所述,在各个容器31中布置和密封了交叠的压块层,它们与金属板32一起。堆叠在一块底部热防护板33上,金属板32有较高的电阻;具有大电流容量的导电体34和35位于层叠组件的每一端。高电阻板32可由下列材料中选择一种来制造:不锈钢、碳化硅、石墨、镍、钼、钨、镍合金、铬合金以及类似的耐高温的高电阻材料。一层导热的、粒状的压力传导材料36把每个容器31与相邻的金属电阻板32隔开,材料36的颗粒最大直径约为1,500微米,较好的范围是从100微米到1,500微米,最好是100微米到500微米,以便提供热传导并且若最终要求的压块表面不是平坦的,例如在图7(B)或图7(C)中所示的那种压块,在这种情况下可对触头提供均匀的机械载荷。粉末状的导电材料层36可以是碳或石墨或其它材料,它不会与容器发生化学反应。
容器31和电阻板32的层叠组件被密封在热绝缘层37内部并放入一压力机中,如图3所示。施加所要求的压力并通过导电体34和35使足够大的电流流过层叠的容器31和电阻板32,以使温度上升到热压实所需要的水平。图中还示出了支撑板38和压力推杆39,以及容器的中心轴线B—B。然后将封装的压块放入一热压机中,即工序28。可以使用一种单向压力机。作为最后的工序,压块在压力下冷却,即工序29,也如上述,然后与容器相分离。
对于图2和3中表示的以上刚叙述的方法中所用的一组运行参数,摘要如下:(1)容器薄板尺寸:25.4厘米×25.4厘米,适用于在一单层中容纳大约1,000个小尺寸的触头,这些触头具有前面所指定的组成。
(2)在容器之间插入1.27厘米厚的不锈钢(或其它高电阻金属)板,以作为发热元件,同时放入石墨粉末作为导电层,并能有效地提供均匀的机械载荷。
(3)将层叠组件(容器和电阻板)的周围绝缘以防止侧面的热损失。
(4)压力加工的温度:在标准成形热压机中为960℃。加工率:每次装载量(最多)65个容器,
(5)通过电阻加热容器,提供所需要的热能(达960℃)。
(6)显热:50千瓦时以达到960℃。
假设经2小时的上升时间达到960℃。
热输入功率=25千瓦。
R=10微欧(随温度而变化)。
I=30.7千安;V=0.8伏。
现在请参照图4,图中表示一种用于大块成形的加工工艺,包括热压和减小大块截面并剪切至合适的尺寸;其中在大块里最好包含有纤维材料,以便在剪切至所需尺寸时获得所选择的纤维取向。上述的粉末混合、任选的热净化处理、任选的粒化、单向加压以及热压分别如工序40、41、42、43、48和48′所示。然而,由于这里是对一较大截面进行冷压,并将采用滚轧或挤压以及剪切工序,故这些粉末重量的30%至95%必须是耐高温可延展的第一类金属,即Ag、Cu或Al。最好其重量的70%至95%是第一类金属。非第一类粉末可能含有0%至100%重量的纤维。在这个实施方案中,单向冷压的压力在691.36882兆帕(100,000磅/平方英寸)与1382.7376兆帕(200,000磅/平方英寸)之间,以提供一个具有60%到85%理论密度的压块。通常在单向冷压工序中一次只压制一个大块。这需要一台重型压力机,并且该压模表面必须大力润滑。
这个实施方案一般用来提供圆柱形或矩形压块,其尺寸分别为:1.27厘米至1.90厘米直径×10.16厘米至20.32厘米长;或5.08厘米至10.16厘米宽×10.16厘米至20.32厘米长×1.27厘米至1.90厘米厚。在图4中工序43的单向加压之后,这个大截面在真空中进行热压,可选择两种方法中的一种。在一个选择方案中,将该大截面块放入一个具有可变形表面的槽形大容器中,其内部尺寸比该截面形状的外部尺寸相对要大一些,即工序44。
在密封后,该容器至少有一个表面将受压变形。在一个实施方案中,这个槽形容器可以是一个单体的,较深的金属罐式容器,它有一个开口顶端,几个金属侧壁,以及一个薄的底部,并有一个薄密封盖。所有这些容器壁一般都可受压变形。这样压力就能施加到底部和密封盖上,它们又将压力施加给该定形块。
这些容器可以用薄量具钢,以及类似的具有高温度稳定性的材料制成。该容器一般在其侧壁上有一个抽气管,以便在一薄壁顶盖安装在该容器上以后,抽出空气,顶盖用诸如焊接或类似的方法密封在容器的边缘上,即工序46,从而为容器提供一个顶部表面。密封也可以在一真空容器中完成,这样就合并了顶盖密封和容器抽真空的工序。在该容器中,该大型压块被一种材料所包围,它有助于压块和容器在后续工序中相分离,例如一些松散的颗粒,和/或特细颗粒的覆盖层,和/或高温布。这种分离材料最好是以陶瓷制品涂层或松散颗粒的形式,例如铝氧粉或氮化硼,或石墨,直径在5微米以下。工序48的热压过程如前所述,以提供97%以上理论密度的压块。
另一个进行热压的选择是使用真空热压机。这种压力机虽然昂贵,却是市场上买得到的,它通常包括一个压力机本体,本体具有加工好的石墨压模,其中压力室可以密封,在被压的材料之上可以抽成真空。
这里,该大截面压块被放入一台真空热压机的压模之间,即工序49;将压力室密封,并且在该压块上方抽成真空,即工序50;该压块逐渐被热压,即工序48′。工序48′的热压过程如前所述,用以提供97%以上理论密度的压块。
接着,这个密集了的、压实的压块通过热轧或冷轧、热挤压或冷挤压或一种类似技术将其截面减小,即工序51;该压块的截面将减小到原有截面的1/2到1/25。如果采用滚轧的话,这道工序可能包含多次轧压。第一类金属的百分比愈高,冷轧或冷挤压可能愈有效。最后,减小了截面的压块被切割成所需尺寸,要借助于适当的手段,例如用碳化硅(SiC)刀片剪切,激光切割,用磨蚀剂进行水喷射切割,或类似方法,即工序52,以提供一个具有所需要的形状和尺寸的压块。切割表面通常就是由该压块构成的触头的工作表面。在滚轧或挤压过程中,在压块中存在的任何纤维将会沿长度方向发生变形。当这些压块被切割到最终厚度时,纤维将有利地定向,与压块表面相垂直。在这个实施方案中,非第一类材料中的纤维成分的变动范围以10%到75%的重量为好;最好是从30%的重量到60%的重量。
对图4所示的用于密封容器方案的上述方法中所用的一组运行参数,摘要如下:
(1)将80%重量的第1类金属与20%重量的非第1类材料混合,后者材料中包含75%重量的纤维,纤维长度比其截面尺寸大50倍。
(2)在691.36882兆帕(100,000磅/平方英寸)的压力下单向压实一个5.08厘米宽×10.16厘米长×1.27厘米厚的大块。
(3)用石墨分离粉末将该大块覆盖。
(4)将大块放入一个大容器,其内部尺寸稍许大于该块的尺寸。
(5)密封该容器并抽真空到0.0133322帕(10-4乇(毫米汞柱))。
(6)在960℃和138.27376兆帕(20,000磅/平方英寸)的状态下进行热均衡压实。
(7)冷却4至5小时后除去密封外壳。
(8)用多道工序冷轧该块,每次操作大约减小15%的截面,经过大约10次轧压,厚度大约为0.35厘米。
(9)切割压块,例如使用重型陶瓷尖端的切刀。
现在请参照图5,它描述了一个简化的加工过程,采用真空热压技术,而没有起始的单向冷压工序。前述的粉末混合、任选的热净化、任选的颗粒化、热压、以及冷却分别如工序53、54、55、58和59所示。这里,热压工序采用了一个真空热压机。这些压力机虽然昂贵,但是在市场上可以买到,它通常包括一个压力机本体,本体具有加工好的石墨压模,其中压力室可以密封,并且在被压的材料上可抽成真空。这里的压模必须包含有多个型腔,加工成接近于最后要求的触头尺寸,因此对于每种形状的触头,需要一个单独的压模。该模具型腔可以也需要大力润滑。
粉末以计算好的量放入一个预热的压模,即工序56,以便按照所要求的密度提供合适的尺寸;将压力机抽真空,即工序57。该抽真空工序必须仔细地加以控制,以使这些未被单向压成“未加工成”压块的粉末不会随同逸出的空气从压模中被抽出。这个过程可能要求真空控制达到相当完善的程度。热压工序58如前所述,以提供一个具有97%以上理论密度的压块。最后,压力机温度缓慢降低,并将压块与压力机的模具型腔相分离。
对于图5所示的上述方法中采用的一套运行参数,摘要如下:
(1)将35%重量的第1类金属混合到粉末混合物中。
(2)将所需要的粉末量放入一台真空压力机的石墨模具型腔中,型腔加工成最后需要的触头尺寸。
(3)非常缓慢地将压力机抽成真空,达0.0133322帕(10-4乇(毫米汞柱))。
(4)逐渐加热该压力机达960℃,并在138.27376兆帕(20,000磅/平方英寸)的压力下加压。
(5)冷却4小时并将压块从压力机中取出。
现在请参照图6,图中示出了双重的压实一烧结过程,它不是单独依赖于单一的热压操作来实现最后的致密化,并且可以采用低压的压力机和低温处理工艺。前述的粉末混合、任选的热净化、任选的颗粒化、单向冷压、热压和冷却分别如工序61、62、63、64、67和68所示。单向加压工序64的压力最好在34.568441兆帕(5000磅/平方英寸)到207.41064兆帕(30,000磅/平方英寸)之间,以提供一个最多为80%密度的“未加工成”压块,而不是通常为95%的密度。优选的密度是在60%和80%之间。这就可以容许采用较便宜的压力机。
在冷压工序之后,压块在炉内进行烧结,其温度比该压块中最低熔点成分的熔点或分解点低50℃到400℃。该烧结工序有效地消除了压块中互连的空隙,并提供了一个具有增加了的密度的压块,其范围从75%到97%,即工序65。在烧结后,如果密度低于87%,或者如果希望不考虑密度的话,该压块中可以渗入熔化的第1类金属,通常个别地以粉末状小块形状或呈球形,朝向并进入烧结后压块的残留孔隙之中。在这一工序中采用的温度通常比第1类金属的熔点高75℃至125℃。为了实现良好的渗入,可能不得不在压块表面刻痕或以某种方式使其成锯齿状。渗入工艺通常将提供94%至97%密度的压块。这样,在烧结和任选的渗入工序后,密度可能已经达到97%,因此采用较便宜的压力机进行最后的热压是可能的。
最后的热压工序67如前所述,只是该工序完成的温度比该压块中最低熔点成分的熔点或分解点低50℃至300℃;压力从34.568441兆帕(5,000磅/平方英寸)至207.41064兆帕(30,000磅/平方英寸)通常已足够大。在热压工序中已不需要将压块装入密封容器,也不需要采用真空装置。
对于图6所示的上述方法中所用的一组运行参数,摘要如下:
(1)将35%重量的第1类金属混合到粉末混合物之中。
(2)在69.136882兆帕(10,000磅/平方英寸)的压力下单向加压,使压块密度达到75%。
(3)在温度低于该压块中最低熔点成分的熔点200℃的条件下在炉内烧结,以增大其密度达85%。
(4)把第1类金属的一个小块放到该压块上,并加热到比第1类金属的熔点高100℃,进行渗入,使密度达到97%。
(5)不用密封容器或真空装置,在138.27376兆帕(20,000磅/平方英寸)和温度低于该压块中最低熔点成分的熔点200℃的条件下进行热压。
(6)冷却4小时。

Claims (3)

1.一种形成一个压实的、密集的电触头用压块的方法,其特征在于以下工序:
(1)组成一种可压实的颗粒混合物,由(a)类材料即第1类金属银(Ag)、铜(Cu)、铝(Al)或它们的混合物与(b)类材料组成,即氧化镉(CdO)、氧化锡(SrO、SbO2)、碳(C)、钴(Co)、镍(Ni)、铁(Fe)、铬(Cr)、碳化铬(Cr3C2)、(Cr7C3)、钨(W)、碳化钨(WC)、(W2C)、硼化钨(WB)、钼(Mo)、碳化钼(Mo2C)、硼化钼(MoB、Mo2B)、碳化钛(TiC)、氮化钛(TiN)、硼化钛(TiB2)、硅(Si)、碳化硅(SiC)、氮化硅(Si3N4)及其混合物;
(2)对这种颗粒混合物单向加压,最大颗粒尺寸约为1,500微米,以提供一个密度为60%到95%的压块;
(3)将至少一个压块放入一开口容器中,容器有一个底面并包含有若干侧面;压块在其中与一种分离材料相接触,这种材料有助于后续工序中该压块和该容器相分离;
(4)从该容器中抽出空气;
(5)密封该容器的开口顶部;其中容器的顶部和底部至少有一个表面可受压变形;
(6)将许多这样的容器一个挨着一个互相堆叠起来,在容器之间放入具有高电阻的板,使容器和板互相交叠;在每个容器和板之间又放入一层导热的、粒状的压力传导材料,其直径约为1,500微米以下;这种粒状材料的作用是在后续的加压过程中对容器中的压块提供均匀的机构载荷,其中用于提供均匀载荷的板和粒状材料的熔点高于在压块中所用的具有最低熔点成分的熔点;
(7)将该层叠组件放入一压力机,使电流通过该容器和高电阻板,以在该容器中的压块上产生热效应;单向压缩交叠的容器和板,压力在34.568441兆帕(5,000磅/平方英寸)和311.06693兆帕(45,000磅/平方英寸)之间,温度比在压力机中具有最低熔点或分解点成分的熔点或分解点要低0.5℃至100℃,以提供均匀的同时热压,并使该容器中的压块致密化,达到理论密度的97%以上;
(8)冷却并除去加在交叠的容器和板上的压力;
(9)将容器与板相分离,并将压块与容器相分离。
2.按照权利要求1的一种方法,其特征在于:工序(7)中的热压压力是从103.55822兆帕(15,000磅/平方英寸)至207.41064兆帕(30,000磅/平方英寸),并且温度比最低熔点或分解点成分的熔点或分解点低0.5℃到20℃。
3.按照权利要求1或2的一种方法,其特征在于:高电阻板是由不锈钢、碳化硅、石墨、镍、钼、钨、镍合金和铬合金制成的,并且板之间的粒状压力传导材料是碳或石墨粒子,其直径在100微米与1500微米之间。
CN90103305A 1989-06-30 1990-06-29 形成压块的方法 Expired - Fee Related CN1031415C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/374,324 US4954170A (en) 1989-06-30 1989-06-30 Methods of making high performance compacts and products
US374,324 1989-06-30

Publications (2)

Publication Number Publication Date
CN1048412A CN1048412A (zh) 1991-01-09
CN1031415C true CN1031415C (zh) 1996-03-27

Family

ID=23476288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN90103305A Expired - Fee Related CN1031415C (zh) 1989-06-30 1990-06-29 形成压块的方法

Country Status (16)

Country Link
US (1) US4954170A (zh)
JP (1) JPH0344403A (zh)
KR (1) KR910001833A (zh)
CN (1) CN1031415C (zh)
AU (1) AU623528B2 (zh)
BR (1) BR9003159A (zh)
CA (1) CA2017867A1 (zh)
DE (1) DE4019441A1 (zh)
FR (1) FR2649026A1 (zh)
GB (1) GB2233670B (zh)
IE (1) IE902035A1 (zh)
IT (1) IT1248996B (zh)
MX (1) MX164483B (zh)
NZ (1) NZ234182A (zh)
PH (1) PH26485A (zh)
ZA (1) ZA904460B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000828B (zh) * 2006-01-12 2010-05-12 沈阳金纳新材料有限公司 一种银基电触头材料的制备方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504615A (ja) * 1988-03-26 1991-10-09 ドドウコ・ゲーエムベーハー+コンパニー・ドクトル・オイゲン・デュルベヒテル 銀‐錫酸化物系複合材料から成る電気接点用半製品および粉末冶金によるその製法
EP0474628B1 (de) * 1989-05-31 1993-07-28 Siemens Aktiengesellschaft VERFAHREN ZUR HERSTELLUNG EINES CuCr-KONTAKTWERKSTOFFES FÜR VAKUUMSCHÜTZE SOWIE ZUGEHÖRIGER KONTAKTWERKSTOFF
US5286441A (en) * 1989-12-26 1994-02-15 Akira Shibata Silver-metal oxide composite material and process for producing the same
SE9003521D0 (sv) * 1990-11-05 1990-11-05 Sandvik Ab High pressure isostatic densiffication process
US5145504A (en) * 1991-07-08 1992-09-08 The Dow Chemical Company Boron carbide-copper cermets and method for making same
US5342571A (en) * 1992-02-19 1994-08-30 Tosoh Smd, Inc. Method for producing sputtering target for deposition of titanium, aluminum and nitrogen coatings, sputtering target made thereby, and method of sputtering with said targets
US5654587A (en) * 1993-07-15 1997-08-05 Lsi Logic Corporation Stackable heatsink structure for semiconductor devices
US5514327A (en) * 1993-12-14 1996-05-07 Lsi Logic Corporation Powder metal heat sink for integrated circuit devices
US5693981A (en) * 1993-12-14 1997-12-02 Lsi Logic Corporation Electronic system with heat dissipating apparatus and method of dissipating heat in an electronic system
US5516995A (en) * 1994-03-30 1996-05-14 Eaton Corporation Electrical contact compositions and novel manufacturing method
US5478522A (en) * 1994-11-15 1995-12-26 National Science Council Method for manufacturing heating element
US5624475A (en) * 1994-12-02 1997-04-29 Scm Metal Products, Inc. Copper based neutron absorbing material for nuclear waste containers and method for making same
EP0834594B1 (en) * 1995-05-18 2004-11-10 Asahi Glass Company Ltd. Process for producing sputtering target
DE19543222C1 (de) * 1995-11-20 1997-02-20 Degussa Silber-Eisen-Werkstoff für elektrische Schaltkontakte (I)
DE19543208C1 (de) * 1995-11-20 1997-02-20 Degussa Silber-Eisen-Werkstoff für elektrische Schaltkontakte (II)
US5814536A (en) * 1995-12-27 1998-09-29 Lsi Logic Corporation Method of manufacturing powdered metal heat sinks having increased surface area
EP0798393B1 (en) * 1996-03-29 2001-11-21 Hitachi Metals, Ltd. Method of producing aluminum composite material of low-thermal expansion and high-thermal conductivity
US5831186A (en) * 1996-04-01 1998-11-03 Square D Company Electrical contact for use in a circuit breaker and a method of manufacturing thereof
JPH1060570A (ja) * 1996-08-23 1998-03-03 Injietsukusu:Kk 焼結体およびその製造方法
JP3441331B2 (ja) * 1997-03-07 2003-09-02 芝府エンジニアリング株式会社 真空バルブ用接点材料の製造方法
US5967860A (en) * 1997-05-23 1999-10-19 General Motors Corporation Electroplated Ag-Ni-C electrical contacts
US6096111A (en) * 1998-05-19 2000-08-01 Frank J. Polese Exothermically sintered homogeneous composite and fabrication method
DE10080131D2 (de) * 1999-01-25 2002-04-25 Gfd Ges Fuer Diamantprodukte M Mikroschaltkontakt
TW200710905A (en) * 2005-07-07 2007-03-16 Hitachi Ltd Electrical contacts for vacuum circuit breakers and methods of manufacturing the same
RU2412048C2 (ru) * 2005-10-27 2011-02-20 Конинклейке Филипс Электроникс Н.В. Устройство для одноосного прессования и нагрева
US7871563B2 (en) * 2007-07-17 2011-01-18 Williams Advanced Materials, Inc. Process for the refurbishing of a sputtering target
US8715359B2 (en) * 2009-10-30 2014-05-06 Depuy (Ireland) Prosthesis for cemented fixation and method for making the prosthesis
US8632600B2 (en) 2007-09-25 2014-01-21 Depuy (Ireland) Prosthesis with modular extensions
US9204967B2 (en) 2007-09-28 2015-12-08 Depuy (Ireland) Fixed-bearing knee prosthesis having interchangeable components
US8871142B2 (en) * 2008-05-22 2014-10-28 DePuy Synthes Products, LLC Implants with roughened surfaces
US11213397B2 (en) 2009-05-21 2022-01-04 Depuy Ireland Unlimited Company Prosthesis with surfaces having different textures and method of making the prosthesis
US9101476B2 (en) * 2009-05-21 2015-08-11 Depuy (Ireland) Prosthesis with surfaces having different textures and method of making the prosthesis
JP4898978B2 (ja) * 2010-06-22 2012-03-21 株式会社アライドマテリアル 電気接点材
CN101944397A (zh) * 2010-06-29 2011-01-12 福达合金材料股份有限公司 一种银基陶瓷电触头材料及其制备方法
CN101979694A (zh) * 2010-11-25 2011-02-23 福达合金材料股份有限公司 一种耐电压银碳化钨石墨触头材料及其制备方法
CN102436864B (zh) * 2011-07-28 2013-10-09 攀枝花学院 碳化钛基电触头材料及其制备方法和用途
US20130092298A1 (en) * 2011-10-12 2013-04-18 Abbott Cardiovascular Systems, Inc Methods of fabricating a refractory-metal article, and apparatuses for use in such methods
CN102592701B (zh) * 2012-02-17 2013-10-23 西安理工大学 一种采用原位合成制备AgTiB2触头材料的方法
CN103606479B (zh) * 2013-11-25 2016-02-03 桂林电器科学研究院有限公司 一种铜铬合金的挤压加工方法
CN103794391B (zh) * 2013-12-18 2016-03-23 福达合金材料股份有限公司 一种增强AgNi复合材料中的Ag基体相与Ni增强相润湿性的处理工艺
CN103769589B (zh) * 2014-01-16 2015-11-18 西安交通大学 一种高强韧高导电纯铜烧结块材的制备方法
CN104328298B (zh) * 2014-10-22 2016-09-07 江西省江铜-台意特种电工材料有限公司 铜基复合材料及其制备方法
JP6948396B2 (ja) * 2017-01-17 2021-10-13 ケメット エレクトロニクス コーポレーション アノード接続に対して改善されたワイヤ
CN106956005B (zh) * 2017-03-23 2019-08-16 东莞华晶粉末冶金有限公司 一种不锈钢合金材料、镜面抛光产品及制作方法
CN107723486B (zh) * 2017-09-25 2021-06-04 大连理工大学 一种高通量制备金属块状样品的方法
CN108425032B (zh) * 2018-03-30 2020-01-07 中国科学院金属研究所 具有弥散型复合凝固组织的Cu-Cr电触头合金的凝固制备方法
CN108493024A (zh) * 2018-05-22 2018-09-04 东北大学 一种银-氧化锡电触头材料及其制备方法
CN111014696A (zh) * 2019-11-22 2020-04-17 大同新成新材料股份有限公司 一种TiB2/Cu复合材料制备受电弓碳滑条材料的方法
US20220288679A1 (en) * 2021-03-11 2022-09-15 Claw Biotech Holdings, Llc Metal compositions
CN114515831B (zh) * 2022-03-16 2024-04-26 桂林金格电工电子材料科技有限公司 一种利用铜铬边料制备铜铬触头自耗电极的方法
CN115961174A (zh) * 2022-12-12 2023-04-14 哈尔滨东大高新材料股份有限公司 一种低压电器用动触头材料及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB386359A (en) * 1930-09-08 1933-01-19 British Thomson Houston Co Ltd Improvements in or relating to the manufacture of cemented carbide discs
US3098723A (en) * 1960-01-18 1963-07-23 Rand Corp Novel structural composite material
US3254189A (en) * 1961-05-15 1966-05-31 Westinghouse Electric Corp Electrical contact members having a plurality of refractory metal fibers embedded therein
US3656946A (en) * 1967-03-03 1972-04-18 Lockheed Aircraft Corp Electrical sintering under liquid pressure
US3611546A (en) * 1968-11-26 1971-10-12 Federal Mogul Corp Method of highly-densifying powdered metal
DE2211449C3 (de) * 1972-03-09 1978-10-12 Annawerk Gmbh, 8633 Roedental Verfahren zum Herstellen langgestreckter Körner aus pulverförmigen Substanzen und Vorrichtung zur Durchführung des Verfahrens
SE397438B (sv) * 1976-02-23 1977-10-31 Nife Jugner Ab De tva sadana elektrodstommar poros elektrodstomme for elektriska ackumulatorer sett att tillverka densamma samt elektrodstommeanordning innefattan
SE460461B (sv) * 1983-02-23 1989-10-16 Metal Alloys Inc Foerfarande foer varm isostatisk pressning av en metallisk eller keramisk kropp i en baedd av tryckoeverfoerande partiklar
US4564501A (en) * 1984-07-05 1986-01-14 The United States Of America As Represented By The Secretary Of The Navy Applying pressure while article cools
US4677264A (en) * 1984-12-24 1987-06-30 Mitsubishi Denki Kabushiki Kaisha Contact material for vacuum circuit breaker
DE3604861A1 (de) * 1986-02-15 1987-08-20 Battelle Development Corp Verfahren zur pulvermetallurgischen herstellung von feindispersen legierungen
JPS6362122A (ja) * 1986-09-03 1988-03-18 株式会社日立製作所 真空遮断器用電極の製造法
US4810289A (en) * 1988-04-04 1989-03-07 Westinghouse Electric Corp. Hot isostatic pressing of high performance electrical components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000828B (zh) * 2006-01-12 2010-05-12 沈阳金纳新材料有限公司 一种银基电触头材料的制备方法

Also Published As

Publication number Publication date
US4954170A (en) 1990-09-04
BR9003159A (pt) 1991-08-27
GB9013342D0 (en) 1990-08-08
GB2233670A (en) 1991-01-16
IE902035A1 (en) 1991-06-19
IE902035L (en) 1990-12-30
IT9020763A0 (it) 1990-06-26
KR910001833A (ko) 1991-01-31
AU623528B2 (en) 1992-05-14
PH26485A (en) 1992-07-27
FR2649026A1 (fr) 1991-01-04
FR2649026B1 (zh) 1995-02-17
JPH0344403A (ja) 1991-02-26
GB2233670B (en) 1993-08-18
IT1248996B (it) 1995-02-11
ZA904460B (en) 1991-04-24
IT9020763A1 (it) 1991-12-26
AU5691290A (en) 1991-01-03
DE4019441A1 (de) 1991-01-03
NZ234182A (en) 1992-05-26
CN1048412A (zh) 1991-01-09
MX164483B (es) 1992-08-19
CA2017867A1 (en) 1990-12-31

Similar Documents

Publication Publication Date Title
CN1031415C (zh) 形成压块的方法
CN1031723C (zh) 形成电触头用的压块的方法
CA1334633C (en) Hot isostatic pressing of high performance electrical components
EP2130932B1 (en) Three phase composite material with high thermal conductivity and its production
US6123895A (en) Aluminum base member for semiconductor device containing a nitrogen rich surface and method for producing the same
EP1114807B1 (en) Semiconductor device or heat dissipating substrate therefor using a composite material
US6927421B2 (en) Heat sink material
US5382405A (en) Method of manufacturing a shaped article from a powdered precursor
CN112981164B (zh) 一种高可靠性高导热金刚石增强金属基复合材料的制备方法
CN1948528A (zh) 近全致密高W或Mo含量W-Cu或Mo-Cu复合材料的制备方法
KR100217032B1 (ko) 구리 용침용 텅스텐 골격 구조 제조 방법 및 이를 이용한 텅스텐-구리 복합재료 제조 방법
US6926861B2 (en) Semiconductor package and method for producing heat-radiating substrate for it
WO2004038049A1 (ja) 複合材料、その製造方法およびそれを用いた部材
GB2243160A (en) Molded ceramic articles and production method thereof
CN1042807C (zh) 弥散强化铜电阻焊电极
JP2000192182A (ja) 炭化珪素系複合材料およびその製造方法
JPH11140559A (ja) 複合材料及びその製造方法
JPH04333265A (ja) 半導体放熱基板材料の製造方法
WO2011021923A1 (en) A process for producing a metal-matrix composite of significant δcte between the hard base-metal and the soft matrix
JPH08253833A (ja) 銅モリブデン合金およびその製造方法
JPH0633104A (ja) 傾斜組成を有する無歪合金体及びその製造法
JPH03226541A (ja) パッケージ型半導体装置の高強度放熱性構造部材
JPH0925525A (ja) ヒートシンク台及びその製造方法
Chanthapan et al. PART 1 Industrial Scale Field Assisted Sintering.
JPS63314730A (ja) 電極材料の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee