CN102883811A - 甲烷芳构化催化剂、制备方法和使用该催化剂的方法 - Google Patents

甲烷芳构化催化剂、制备方法和使用该催化剂的方法 Download PDF

Info

Publication number
CN102883811A
CN102883811A CN2011800234954A CN201180023495A CN102883811A CN 102883811 A CN102883811 A CN 102883811A CN 2011800234954 A CN2011800234954 A CN 2011800234954A CN 201180023495 A CN201180023495 A CN 201180023495A CN 102883811 A CN102883811 A CN 102883811A
Authority
CN
China
Prior art keywords
catalyst
temperature
methane
carrier
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800234954A
Other languages
English (en)
Other versions
CN102883811B (zh
Inventor
P·T·塔内夫
A·德朗格奥利韦拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN102883811A publication Critical patent/CN102883811A/zh
Application granted granted Critical
Publication of CN102883811B publication Critical patent/CN102883811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • C07C2523/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/50Silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明描述了用于将甲烷转化为芳香烃的催化剂。所述催化剂包含活性金属或其化合物以及无机氧化物载体,其中活性金属以金属草酸盐的形式加入载体中。相对于由非草酸盐金属前体制备的催化剂,得自金属草酸盐的催化剂在将富甲烷进料转化为芳香烃产物中表现出优异的性能。还描述了制备该催化剂的方法和使用该催化剂的方法。

Description

甲烷芳构化催化剂、制备方法和使用该催化剂的方法
技术领域
本发明涉及可用于将甲烷转化为芳香烃的催化剂,制备该催化剂的方法及使用该催化剂将甲烷转化为芳香烃的方法。
背景技术
芳香烃(特别是苯、甲苯和二甲苯)是汽油调和组分总合中主要的含高辛烷值组分及用作为基础材料以生产高价值化学品和各种消费品,例如苯乙烯、苯酚、聚合物、塑料、药物及其它的重要石化产品。芳香烃主要是从石油衍生的炼油厂原料在例如重质石脑油催化重整和裂解过程中产生的。然而,近来严重的石油短缺和价格上涨导致严重的芳香烃短缺和价格上升。因此,需要开发新的商业路线从高度丰富和廉价的烃原料,如甲烷或闲置(stranded)天然气(通常含约80%-90%的甲烷)生产高价值芳香烃。
世界上有大量的证实的闲置天然气储量。根据一些估算,天然气的储量至少和石油的储量相当。然而,不像石油储量主要集中在几个富油国家并且被适当地和广泛地开采、升级和商品化,天然气储量更广泛的分布在世界各地且明显地未被充分利用。许多发展中国家有丰富的天然气储量但是缺乏适当的基础设施开采它们并将其转化为更高价值产品。经常,在这样情况下,天然气在大气中燃烧并浪费。由于上述原因,存在巨大的经济刺激以开发能有效地将甲烷或天然气转化为更高价值化学品,特别是芳香烃的新技术。
1993年Wang等,(Catal.lett.1993,21,35-41),公开了在大气压力下和温度为700℃时,在含2.0wt%沉积于H-ZSM-5沸石载体上的钼的催化剂上甲烷能部分转化为苯。值得注意的是,在这些实验中观察到低于10%的低甲烷转化率但是非常高的100%的苯选择性。随后,其他研究者重复上述工作并发现Wang等没有完全识别出全部反应产物(萘和其它)且当所有的反应产物识别出后,苯的选择性降至60-70%范围内。这些其他的研究者也指出,催化剂焦化并非常迅速地失活-如在蒸汽上约4-5小时后完全失活所证明。自Wang的发现以来,许多学术和工业研究组已经致力于进一步开发甲烷转化成苯的催化剂和工艺技术的不同方面。制备并测试了许多催化剂配方并开发了多种反应器和工艺条件和方案。
尽管进行了这些努力,仍然没有商业化的甲烷芳构化或甲烷转化成苯的催化剂和工艺。绝大多数的研究者认为开发并商业化高效的、直接的甲烷到苯的工艺的主要障碍是低的甲烷转化率(仍然保持在约7-10%)和快速的焦形成及催化剂失活。
因此,需要开发新的甲烷芳构化催化剂,从而相对于现有技术以相当的或更高的苯选择性提供更高的甲烷转化率。同样,需要开发表现出更低的焦化和失活率的催化剂,即,相对于现有技术的催化剂在作业时间里更好地保持它们的甲烷的转化率和苯的选择性性能(表现出更好的稳定性)。
发明概要
本发明提拱了甲烷芳构化催化剂,其包含活性金属或其化合物,和无机氧化物载体,其中活性金属作为金属草酸盐添加到所述载体中。优选地,催化剂包含作为活性金属的钼和作为无机载体的沸石。
本发明还提供了制备甲烷芳构化催化剂的方法,其包括:将活性金属草酸盐和无机氧化物载体相接触以形成混合物,并煅烧混合物。
本发明还进一步提供了生产芳香烃的方法,其包括:将含甲烷的气体流和含钼的催化剂接触,其中催化剂是由草酸钼和含沸石载体接触制备的。
附图简述
图1显示了实施例中描述的催化剂所获得的甲烷(CH4)转化率相对于反应时间的数据;
图2显示了实施例中描述的催化剂所获得的苯选择性相对于甲烷(CH4)转化率的数据;
图3显示了实施例中描述的催化剂在它们被使用并再生后所获得的甲烷(CH4)转化率相对于反应时间的数据;
图4显示了实施例中描述的催化剂在它们被使用并再生后所获得的苯的选择性相对于甲烷(CH4)转化率的数据。
详细说明
此处所述的甲烷芳构化催化剂包含活性金属和无机氧化物载体。所述活性金属可以是在甲烷芳构化条件下当与含甲烷的物流接触时表现出催化活性的任何金属。所述活性金属可选自:钒、铬、锰、铁、钴、镍、铜、锌、镓、锗、铌、钼、钌、铑、银、钽、钨、铼、钯和铅及其混合物。活性金属优选钼。
无机氧化物载体可以是任何这样的载体,当它和活性金属结合时有助于在甲烷芳构化反应中展示出的整体催化剂性能。载体必须适于用活性金属或其化合物处理或浸渍。无机载体优选具有良好形成的孔结构,该孔结构具有足够高的表面积和孔体积及合适的表面酸度。无机氧化物载体可选自沸石、非沸石分子筛、二氧化硅、氧化铝、氧化锆、二氧化钛、氧化钇、氧化铈、稀土金属氧化物及其混合物。无机氧化物载体包含作为主要成分的沸石。沸石可以是ZSM-5、ZSM-22、ZSM-8、ZSM-11、ZSM-12或ZSM-35沸石结构类型。优选地,本发明的载体包括ZSM-5沸石。ZSM-5沸石还可以具有10到100的SiO2/Al2O3比。优选地,本发明ZSM-5沸石中SiO2/Al2O3之比的范围为20到50。甚至更优选地SiO2/Al2O3之比为20到40且最优选为约30。沸石载体可能还包含约10-30wt%的无机氧化物粘结剂以允许形成所需形式的催化剂并获得工业运行所需的高机械强度和抗磨损性。粘结剂可以选自二氧化硅、氧化铝、氧化锆、二氧化钛、氧化钇、氧化铈、稀土金属氧化物及其混合物。
活性金属或其化合物从金属草酸盐的前体加入到载体中。如果金属草酸盐不能市售得到,活性金属或其化合物和草酸反应以形成所需的金属草酸盐前体。金属草酸盐前体可通过将需要量的金属氧化物粉末加入草酸溶液来形成。优选地,金属氧化物粉末是Mo(Ⅵ)O3。为获得清澈的金属草酸盐溶液,该混合物可能需要搅拌和/或加热。
无机氧化物载体可与金属草酸盐混合以产生固态混合物,该固态混合物然后在干燥的空气流氛围下在炉中经受煅烧作用以蒸发并将活性金属沉积在沸石的孔中。该技术为本领域技术人员所已知的固态离子交换。在一个更优选的实施方式中,金属草酸盐浸渍无机载体是通过将金属草酸盐前体溶液添加到含有需要量的无机氧化物载体的容器中进行的。载体放置与溶液接触足够长的时间以使金属草酸盐渗透进入载体孔中并和沸石活性中心反应。
其他组分或助催化剂可以不同的前体形式和浸渍顺序添加到载体中以改进最终催化剂的物理或机械性能或催化性能的各个方面。例如,助催化剂前体可以在混合或浸渍步骤中在活性金属草酸盐之前、之后或与之同时加入到载体中。
现在浸渍了金属草酸盐的载体被干燥及煅烧以形成本发明的最终的甲烷芳构化催化剂。干燥及煅烧步骤通常包括使干燥空气或氮气以每小时1至60升体积流过催化剂前体,优选地20至50升每小时。浸渍的载体可经历系列的特定的加热速率和升温作用以完成结构交联并形成本发明的最终的包含活性金属氧化物/沸石的甲烷芳构化催化剂。
浸渍的载体优选地通过将其在80℃至120℃的温度下加热至少20分钟、优选60分钟至180分钟的时间段进行干燥和煅烧。温度然后以1℃至10℃每分钟、优选2℃至4℃每分钟的速率升高到275℃至325℃。然后保持该温度至少20分钟、优选60分钟到180分钟的时间段。然后温度再次升高,这次以1℃至10℃每分钟、优选2℃至4℃每分钟的速率升高到475℃至525℃。然后该温度保持至少20分钟,优选20分钟至240分钟,以及甚至更优选120分钟至240分钟。
上述步骤形成的催化剂然后优选冷却至80℃至120℃范围内的温度。
甲烷芳构化催化剂被用于甲烷或富甲烷气如天然气形成芳烃的反应中。天然气定义为具有1至5个、优选1至4个碳数的饱和烃混合物。
含甲烷的气体转化为芳烃通常在包含催化剂的反应器中进行,所述催化剂在甲烷至芳香烃的转化中是活性的。含甲烷的气体进料至包含超过50vol%的甲烷、优选超过75vol%的甲烷以及甚至更优选75vol%至100vol%的甲烷的反应器中。
含甲烷的气体的转化是在空速为100至10000每小时,压力为0.5至10巴和温度为500至850℃条件下进行。更优选地,转化在空速为300至3000每小时,压力为0.5至5巴和温度为600至800℃条件下进行。甚至更优选地,转化在空速为500至1500每小时,压力为0.5至1巴以及温度为650至750℃条件下进行。在甲烷芳构化反应中,与焦前体反应或抑制或阻止它们形成的各种辅料(co-feed)如CO、CO2或氢气可以以小于10vol%的水平添加到含甲烷进料中以提高催化剂的稳定性能和再生性。然后进行甲烷芳构化反应直到甲烷转化率降至比经济可接受值更低的值。此时,催化剂再生以恢复其甲烷芳构化活性。再生后,该催化剂在随后的工艺循环中再次和含甲烷进料接触。
催化剂再生可采用本领域技术人员已知的有效除去炭沉积物并恢复催化剂活性的不同技术进行。对于本发明,使用过的催化剂再生首先是将它们从甲烷芳构化反应温度冷却至480℃然后使它们在大气压和480℃下经受1000每小时的氩气吹扫一个小时。随后,在大气压和480℃下,催化剂经受2000每小时的0.5至2.0vol%的O2/N2气流作用22个小时以缓慢的将焦从其表面烧掉并恢复它们的甲烷芳构化活性。
实施例
进行下面的实施例以比较本发明由草酸钼制备的甲烷芳构化催化剂和现有技术描述的由其它钼前体(不含草酸)制备的催化剂的催化性能。钼前体和浓度水平以及催化剂制备的方法在这些实施例中是可变的。
为了消除由无机氧化物载体引起的性能的任何差异,实施例中所描述的所有催化剂都是用相同的H-ZSM-5沸石载体制备的。载体是通过在干燥的空气和在500℃下煅烧一批可从Zeolyst International Company市售得到的CBV-3024E,SiO2/Al2O3之比为30的NH4 +/ZSM-5沸石粉末足够长的时间以将它从NH4 +转化为H+形式来制备。
所有催化剂的性能测试都是以相同的方式进行的。测试前,催化剂以2.5cc载荷装载至反应器中,并通过下列步骤进行原位预处理:(i)设定5L/hr的纯氢气流,压力为1巴并以0.5℃/分钟从室温加热到240℃并在240℃保持4小时;(ii)在同样的流和压力下以2℃/分钟加热到480℃并在480℃保持2小时;(iii)最后,在同样条件下以2℃/分钟加热到700℃并在700℃保持至少1.5小时以完成还原。催化剂用2.5L/hr纯氩气吹扫20分钟然后在1000hr-1GHSV,1巴压力和700℃下与包含90vol%的甲烷及10vol%氩气的含甲烷进料进行接触。氩气用作GC分析的内标。
在测试中,所有的产品样品每20分钟从直接位于催化剂床下的反应器区自动取样并用GC分析器分析。获得的所有催化剂(实施例1-20)的甲烷转化率相对于反应时间的性能数据都显示在图1中。该图表明用草酸钼前体制备的催化剂(实施例1-3)比用其它(非草酸盐)钼前体制备的催化剂(实施例4-20)提供更高的甲烷转化率。该图还表明得自草酸钼的催化剂比得自非草酸前体的催化剂更好保持它们的甲烷转化率(表现出更好的稳定性)。
图2显示了在这些测试中获得的相应的苯选择性相对于甲烷转化率。数据表明用草酸钼前体制备的催化剂(实施例1-3)比用非草酸盐前体制备的催化剂(实施例4-20)在更高的甲烷转化率时能提供更高的苯选择性。还应该指出的是,在同样的钼负载水平下,相对于用非草酸盐前体制备的催化剂,得自草酸钼的催化剂表现出更高的甲烷转化率和更高的苯选择性及更好的稳定性。催化剂的这种性能优点在非常宽的4-15%wt钼的载荷下观察到。另外,在这些催化剂中,相对于其它所有的催化剂,由草酸钼前体制备的含6-10%wt钼的催化剂表现出更高甲烷转化率、苯的选择性和性能稳定性的最好的组合。
上述测试后,使用过的催化剂进行再生。再生通过原位进行:首先将催化剂冷却至480℃然后以1000h-1、1巴及480℃下用氩气吹扫1小时。随后在大气压力和480℃下,催化剂经受2000h-1的0.5至2.0vol%的O2/N2的气流作用22小时以缓慢将催化剂表面的焦燃烧掉并恢复它们活性。再生催化剂然后进行性能测试。
图3和4分别显示了再生催化剂的甲烷转化率相对于反应时间和苯的选择性相对于甲烷转化率的测试数据。所述数据再次表明相对于由其它钼前体制备的再生催化剂,由草酸钼前体制备的再生催化剂表现出更高的甲烷转化率和苯的选择性和更高的稳定性。
前面提及的催化剂按下面实施例中描述制备。
实施例1
草酸钼溶液按如下制备:将144.07g MoO3和144.07g二水合草酸(以产生钼和草酸的摩尔比例为1∶1.4)溶解在1000mL装有去离子水的烧杯中,用这样的方式以制备总共500mL的2mol/L草酸钼溶液。溶液随后加热至80℃并搅拌4小时或直到钼氧化物全部溶解形成草酸钼。
同时,足量的NH4 +-ZSM-5沸石粉末通过压缩机在250巴下压缩成形然后过筛以获得粒级为约310-500微米的载体颗粒。成形的NH4 +型沸石载体颗粒然后置于炉中并在500℃的温度下煅烧4小时从而将它们转化为H+型。
8g H+-ZSM-5沸石载体颗粒然后按如下浸渍在草酸钼溶液中。浸渍在具有自动移液管的Perkin Elmer Multiprobe II中进行以允许自动同时浸渍几个载体样品。首先,浸渍的载体称量放入浅床盘中并分散均匀以使浸渍表面积最大化。所述盘然后放置于Perkin Elmer Multiprobe中准备浸渍。随后,2.66mL量的上述的草酸钼浸渍溶液和2.94g去离子水混合并装载在移液管内。然后,浸渍程序启动,自动头部以可重复的方式逐渐将载体浸渍在盘中。
然后将浸渍的样品老化30分钟;然后在可程序化炉中通过使其经受10L/min的干燥空气流作用并以每分钟1℃的速率将其加热至300℃进行空气干燥及然后煅烧。温度保持18个小时。然后,温度以每分钟1℃的速率升高至550℃并保持2个小时。煅烧的催化剂样品然后过筛以除去细粉(fines)并获得所需的315-500微米部分。催化剂的钼含量为6.0wt%。
实施例2
本实施例的催化剂与实施例1的相同方式制备,除了4.54g(不是2.95g)去离子水加入到2.66mL草酸钼溶液中。另外,在300℃下煅烧浸渍的催化剂的第一步进行2小时而不是18小时。最终的催化剂含6.0wt%的钼。
实施例3
本实施例的催化剂与实施例1催化剂相同的方式制备。本制备方法中唯一的不同是钼负载。具体地,3.63mL草酸钼溶液和1.97mL去离子水用于制备浸渍溶液并达到8.0wt%的钼负载。最终的催化剂具有钼含量为8.0wt%。
比较实施例4-20
实施例4
将3.247g七钼酸铵溶解在10mL去离子水中制备七钼酸铵溶液。
按实施例1描述的相同步骤制备沸石载体以用于浸渍。借助于移液管用10mL七钼酸铵溶液浸渍10g沸石载体。浸渍在瓷盘中进行。浸渍之后,湿的沸石载体用铲子手动混和,并在摇动下老化0.5小时然后转移至炉中干燥并煅烧。干燥通过在1L/min的空气流下以每分钟1℃速率加热至120℃然后在120℃保持10个小时来进行。随后,温度以每分钟1℃的速率升高至500℃并保持6小时。最终的催化剂样品过筛除去细粉以获得所需的310-500微米级分。最终催化剂含具有的钼含量为15.0wt%。应该指出的是该样品测试了两次。
实施例5
本实施例的催化剂与实施例4描述的同样方式制备,除浸渍溶液通过混合4.63g七钼酸铵和25mL去离子水制备外。然后5.07mL上述浸渍溶液和2.13g去离子水混合且该最终溶液用来浸渍8g沸石载体。最后,如下述使用稍微不同的干燥和煅烧程序。浸渍的样品置于可程序化炉中并按下述进行干燥和煅烧:以1L/min的干燥空气流通过以每分钟1℃的速率升温至300℃并保持2个小时,然后以同样速率升温至550℃并保持2个小时。最终的催化剂样品过筛以除去细粉并获得所需的315-500微米级分,然后按上述方法测试。发现催化剂具有的钼含量为6.0wt%。
实施例6
本实施例的催化剂与实施例5描述的类似的方式制备。本案例中,通过溶解4.63g七钼酸铵在20mL水中并调节体积至25mL以提供钼浓度为0.15mol/L的溶液来制备七钼酸铵溶液。然后,11.03mL上述浸渍溶液用来浸渍10g沸石载体。浸渍的载体然后置于炉中并用空气(1L/min)通过每分钟1℃的速率加热至70℃并保持10小时来干燥。然后,以每分钟1℃的速率将温度升高至120℃并再保持10个小时。最后,温度以每分钟1℃的升温速率升高至500℃并保持5小时。最终的催化剂样品然后过筛以除去细粉并获得所需的315-500微米级分,然后按上述方法测试。发现催化剂具有的钼含量为10.0wt%。
应该指出的是该特定样品测试了两次。
实施例7
本实施例描述了通过物理混合或所谓的“固态离子交换”法制备的甲烷芳构化催化剂。沸石载体按前面实施例所述的相同步骤制备。然后,将6.383g MoO3粉末和100g沸石载体混和。混和通过首先将106.4g混合物分成10个单独的10.64g部分来进行。然后,所述部分按每次一份在研磨器中混和。物理混合物然后在Powtec压缩机里在250个巴压力下压缩并重复3次。催化剂前体然后置于微波炉CEM中并在氮气(1L/min)和25℃的温度下加热4小时。然后温度以每分钟25℃的速率升高至500℃并再保持2小时。最终的催化剂过筛以除去细粉并获得所需的315-500微米级分。发现催化剂具有的钼含量为4.081wt%(相当于6wt%的MoO3)。
实施例8
通过将28.08g MoO3加入至200mL去离子水中,然后通过小心加入NH4OH(25wt%)直到溶液pH值达到9以溶解氧化物来制备浸渍溶液。通过加入更多的去离子水,溶液的体积然后调整到总共250mL。用于浸渍的沸石载体按前面实施例所描述的来制备。最终的浸渍溶液通过混合9.0mL上述钼溶液(具有pH=9)和0.5mL去离子水来制备。溶液然后用来在Perkin Emler Multiprobe II ex设备中浸渍10.5g沸石载体颗粒。浸渍如实施例1的描述来完成。浸渍的沸石载体然后置于可程序化炉中并在干燥空气流(1L/min)下通过首先以每分钟1℃的速率升高温度至300℃并保持1小时进行干燥和煅烧。然后,以每分钟1℃的速率将温度升高至550℃并保持2个小时。最终的催化剂过筛以除去细粉并获得所需的315-500微米级分。发现催化剂具有的钼含量为6.0wt%。
实施例9
本实施例的催化剂按实施例7描述的制备,不同之处在于将8.695g
MoO3(8.0wt%)和100g沸石载体混和。载体采用传统的可程序化炉而不是微波炉煅烧。具体地,浸渍的载体将其置于炉中并通过在干燥空气(1L/min)中按1℃/min的速率加热至300℃并保持2小时来干燥。温度然后以每分钟1℃的速率升至550℃并保持2小时。最终的催化剂过筛以除去细粉并获得所需的315-500微米级分。催化剂具有的钼含量为5.478wt%(相当于8wt%的MoO3)。
实施例10
本实施例的催化剂与实施例6描述的类似方式制备。通过将4.63g七钼酸铵溶解在20mL去离子水中并调节体积至25mL以提供具有钼浓度为0.15mol/L的溶液来制备七钼酸铵溶液。沸石以未成形的粉末形式进行浸渍。用包含6.4mL七钼酸铵溶液及2.7mL去离子水的溶液来浸渍10g沸石。沸石粉末和溶液用铲子手动混和。浸渍的载体通过将其置于炉中并用干燥空气(1L/min)以1℃每分钟的速率将其加热至70℃温度并保持10个小时来干燥和煅烧。然后,温度以每分钟1℃的速率升高至120℃并保持10个小时。最后,温度以每分钟1℃的速率升高至500℃并保持5小时。最终的催化剂过筛以除去细粉并获得所需的315-500微米级分。催化剂具有的钼含量为6.0wt%。
实施例11
本实施例的催化剂按实施例5描述的制备,除浸渍溶液通过溶解3.09g七钼酸铵在25mL去离子水中制备外。此外,用9.5mL上面的没有进一步稀释的浸渍溶液浸渍10g沸石载体。最终的催化剂过筛以除去细粉并获得所需的315-500微米级分。催化剂具有的钼含量为6.0wt%。
实施例12
该催化剂按实施例5所述制备,但是干燥和煅烧遵守的程序是实施例6描述的程序。最终的催化剂过筛以除去细粉并获得所需的315-500微米级分。催化剂具有的钼含量为6.0wt%。
实施例13
乙酰丙酮钼的浸渍溶液是通过将13.89g的乙酰丙酮钼加入57.6mLHNO3(30wt%)中制备的。浸渍用沸石载体如实施例1描述的制备。全部量的浸渍溶液然后用来在盘中浸渍64g的沸石载体并然后浸渍液如实施例4中描述用铲子进行手动混和。浸渍的沸石然后在1L/min的干燥空气下通过以1℃每分钟的速率将温度升高至300℃并保持2个小时来进行干燥和煅烧。然后,温度以每分钟1℃的速率升高至500℃并保持2个小时。最终的催化剂过筛以除去细粉并获得所需的315-500微米级分。催化剂具有的钼含量为6wt%。
实施例14
本实施例的催化剂与实施例13中描述的同样方法制备,除最终煅烧温度为550℃而不是500℃外。
实施例15
沸石以未成形的粉末被使用。沸石在500℃煅烧4个小时以将其转化成H+型。然后,5.746g MoO3(以固体形式)和60g沸石粉末在研钵研磨器里混和。钼氧化物/沸石混合物然后置于可程序化的炉中并在1L/min干燥空气流下通过以每分钟1℃的速率将温度升高至300℃进行煅烧。温度保持2个小时。然后,温度以每分钟1℃的速率升高至550℃并保持2个小时。最终的催化剂样品然后过筛以除去细粉并获得所需的315-500微米级分。催化剂具有的钼含量为4.081wt%(相当于6wt%的MoO3)。
实施例16
本实施例的催化剂如实施例5的催化剂以类似方式制备。
通过将4.63g七钼酸铵溶解在20mL去离子水中并调节体积至25mL以提供钼浓度为0.15mol/L的溶液来制备七钼酸铵溶液。沸石载体如实施例5描述进行成型和煅烧。然后,6.64mL的七钼酸铵溶液和2.66g去离子水混合以形成最终浸渍溶液。该溶液用来浸渍10g沸石载体。新浸渍的沸石用铲子进行手动混和并老化0.5小时。浸渍的沸石然后用实施例6描述的完全相同的程序干燥和煅烧。最终的催化剂过筛以除去细粉并获得所需的315-500微米级分。催化剂具有的钼含量为6wt%。
实施例17
本实施例中催化剂采用物理混合方法制备。沸石粉末在500℃的温度下煅烧4小时以将其转化为H+型。然后,0.8739g MoO3和10g沸石粉末在研磨器中混和。随后混合物被置于微波炉中并在氮气(1L/min)下在25℃的温度下保持4个小时。然后,温度以25℃/min升温至500℃并保持2小时。然后,催化剂被冷却,和3wt%的石墨混和并成形为具有40mm直径和5mm高的小球。小球被压碎、过筛以除去细粉并获得所需的315-500微米级分用于测试。催化剂具有的钼含量为5.504wt%。
实施例18
通过将4.63g七钼酸铵溶解在20mL去离子水中制备七钼酸铵溶液。溶液体积然后用去离子水调节至25mL以提供钼浓度为0.15mol/L的浸渍溶液。沸石粉末通过将其在250巴下压缩成形。所获得的沸石载体在500℃下的温度下煅烧4小时。然后,制备包含6.34mL上述七钼酸铵溶液和2.66g去离子水的浸渍溶液并用于在瓷盘中浸渍10g沸石载体。新浸渍的载体用铲子手动混和并然后老化0.5小时。然后浸渍物置于可程序化炉中并在干燥空气(1L/min)下通过每分钟1℃的速率将温度从室温升高至70℃并在该温度下保持10个小时进行干燥。然后,温度用同样的速率升高至120℃并保持另外10小时。最后,温度采用同样的速率升高至500℃并保持5小时。最终催化剂过筛以除去细粉并获得所需的315-500微米级分。催化剂具有的钼含量为6wt%。
实施例19
本实施例的催化剂采用物理混和方法制备。沸石粉末在500℃的温度下煅烧4小时以将其转化为H+型。然后,0.6383g MoO3和10g沸石粉末在研磨器中混和。所获得的混合物被置于微波炉中并在氮气(1L/min)下在25℃的温度下加热4个小时。然后,温度以25℃每分钟的速率升高至500℃并保持2小时。催化剂被冷却,和3wt%的石墨混和并成形为具有40mm直径和5mm高的小球。催化剂然后被压碎,过筛以除去细粉以获得所需的315-500微米级分进行测试。催化剂具有的钼含量为4.081wt%(相当于6wt%的MoO3)。
实施列20
通过将3.247g七钼酸铵溶解在20mL去离子水中制备七钼酸铵溶液。然后,10.0mL的七钼酸铵溶液用来浸渍10g沸石粉末。浸渍在瓷盘中进行。添加完溶液后,混合物在铲子辅助下手动混和且该混合物老化0.5小时。浸渍的沸石然后置于可程序化炉中并在干燥空气(1L/min)下通过每分钟1℃的加热速率将温度从室温升高至120℃并在该温度下保持10个小时进行干燥和煅烧。然后用同样的加热速率,温度升高至500℃并保持6小时。最终催化剂过筛以除去细粉并获得所需的315-500微米级分。催化剂具有的钼含量为15wt%。

Claims (23)

1.一种甲烷芳构化催化剂,其包含活性金属或其化合物以及无机氧化物载体,其中所述活性金属作为金属草酸盐加入所述载体。
2.权利要求1所述的催化剂,其中所述活性金属包含钼。
3.权利要求1所述的催化剂,其中将助催化剂化合物加入所述载体。
4.权利要求1所述的催化剂,其中所述无机氧化物载体是沸石或含沸石载体。
5.权利要求4所述的催化剂,其中所述沸石是ZSM-5型沸石。
6.权利要求2所述的催化剂,其中所述催化剂的钼浓度的范围为4-15wt%。
7.权利要求2所述的催化剂,其中所述催化剂的钼浓度的范围为6-10wt%。
8.一种用于制备甲烷芳构化催化剂的方法,其包括:将活性金属草酸盐和无机氧化物载体接触以形成混合物,并煅烧所述混合物。
9.权利要求8所述的方法,其中所述活性金属草酸盐以溶液的形式用于浸渍无机载体。
10.权利要求8所述的方法,其中所述活性金属化合物包含钼。
11.权利要求8所述的方法,其中所述无机氧化物载体是沸石或含沸石载体。
12.权利要求8所述的方法,其中所述载体包含ZSM-5型沸石。
13.权利要求8所述的方法,其中所述载体包含沸石和粘结剂。
14.权利要求8所述的方法,其中所述金属草酸盐和无机氧化物载体的接触是在0℃至100℃范围内的温度下进行的。
15.权利要求8所述的方法,其中所述金属草酸盐和无机氧化物载体的接触是在15℃至40℃范围内的温度下进行的。
16.权利要求8所述的方法,其还包括煅烧前的干燥步骤。
17.权利要求16所述的方法,其中所述干燥和煅烧包括:
a.使浸渍载体经受70℃至120℃的温度作用至少20分钟;
b.以每分钟1℃至10℃的速率将温度升高至275℃至325℃的温度;
c.保持步骤(b)中达到的温度至少20分钟;
d.以每分钟1℃至30℃的速率将温度升高至475℃至650℃的温度;和
e.保持步骤(d)中达到的温度至少20分钟。
18.权利要求16所述的方法,其中所述干燥和煅烧包括:
a.使浸渍载体经受70℃至120℃的温度作用20分钟至240分钟;
b.以每分钟1℃至10℃的速率将温度升高至275℃至325℃的温度;
c.保持步骤(b)中达到的温度20分钟至240分钟;
d.以每分钟1℃至30℃的速率将温度升高至475℃至550℃的温度;和
e.保持步骤(d)中达到的温度20分钟至240分钟。
19.权利要求8所述的方法,其还包括煅烧后冷却浸渍的载体。
20.一种用于生产芳香烃的方法,其包括将含甲烷的气体流与含钼的催化剂接触,其中所述催化剂通过将草酸钼与含沸石载体接触来制备。
21.权利要求20所述的方法,其中所述含甲烷的气体流具有75至100体积百分比的甲烷浓度。
22.权利要求20所述的方法,其中所述含甲烷的气体流来自生物气。
23.权利要求20所述的方法,其中所述含甲烷的气体流是天然气。
CN201180023495.4A 2010-05-12 2011-05-11 甲烷芳构化催化剂、制备方法和使用该催化剂的方法 Active CN102883811B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33399510P 2010-05-12 2010-05-12
US61/333,995 2010-05-12
PCT/US2011/036053 WO2011143303A2 (en) 2010-05-12 2011-05-11 Methane aromatization catalyst, method of making and method of using the catalyst

Publications (2)

Publication Number Publication Date
CN102883811A true CN102883811A (zh) 2013-01-16
CN102883811B CN102883811B (zh) 2016-05-04

Family

ID=44914954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180023495.4A Active CN102883811B (zh) 2010-05-12 2011-05-11 甲烷芳构化催化剂、制备方法和使用该催化剂的方法

Country Status (6)

Country Link
US (2) US9079169B2 (zh)
CN (1) CN102883811B (zh)
BR (1) BR112012028770A2 (zh)
EA (1) EA201291227A1 (zh)
SG (1) SG185117A1 (zh)
WO (1) WO2011143303A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736517A (zh) * 2013-12-27 2014-04-23 陕西延长石油(集团)有限责任公司碳氢高效利用技术研究中心 一种甲烷制芳烃催化剂的活化方法
CN103736518A (zh) * 2013-12-27 2014-04-23 陕西延长石油(集团)有限责任公司碳氢高效利用技术研究中心 一种甲烷制芳烃催化剂在循环流化反应系统中的活化方法
CN103934016A (zh) * 2013-01-23 2014-07-23 中国石油化工股份有限公司 Mo/分子筛负载型催化剂制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338860A (zh) * 2011-01-26 2013-10-02 国际壳牌研究有限公司 含锌的甲烷芳构化催化剂、其制备方法和使用该催化剂的方法
CN102921453B (zh) * 2012-10-25 2014-10-29 浙江工业大学 一种低温制备甲烷无氧芳构化催化剂的方法
RU2525117C1 (ru) * 2013-03-28 2014-08-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Способ активации молибден-цеолитного катализатора ароматизации метана
KR101985861B1 (ko) 2017-08-21 2019-06-04 서울대학교산학협력단 메탄 및 프로판 공동 반응물의 직접 탈수소방향족화 반응을 위한 중형기공성 hzsm-11에 담지된 금속 산화물 촉매의 제조 방법 및 상기 촉매를 이용한 btx 제조 방법
WO2019211727A1 (en) * 2018-04-30 2019-11-07 Sabic Global Technologies B.V. Process for activating an aromatizaton catalyst
CN115672387B (zh) * 2022-10-26 2024-03-19 中国石油大学(北京) 一种甲烷无氧芳构化催化剂及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912660A (en) * 1973-12-26 1975-10-14 Amax Inc Method for making high surface area molybdenum metal
CN1334315A (zh) * 2000-07-19 2002-02-06 中国石油天然气股份有限公司兰州炼化分公司 一种新基质型抗重金属裂化催化剂及其制备方法
US20050143610A1 (en) * 2003-12-30 2005-06-30 Saudi Basic Industries Corporation Process for alkane aromatization using platinum-zeolite catalyst
EP1980319A1 (en) * 2006-01-31 2008-10-15 Asahi Kasei Chemicals Corporation Catalyst for production of aromatic hydrocarbon compound
CN101460432A (zh) * 2006-04-21 2009-06-17 埃克森美孚化学专利公司 由甲烷制备芳烃
WO2009091336A1 (en) * 2008-01-16 2009-07-23 Agency For Science, Technology And Research Catalyst preparation and methods of using such catalysts
WO2009124960A1 (de) * 2008-04-08 2009-10-15 Basf Se Katalysator zur dehydroaromatisierung von methan und methanhaltigen gemischen
WO2009140790A1 (en) * 2008-05-21 2009-11-26 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Production of aromatics from methane
JP2010042348A (ja) * 2008-08-12 2010-02-25 Meidensha Corp 低級炭化水素芳香族化触媒及び芳香族化合物の製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889287A (en) 1954-10-04 1959-06-02 California Research Corp Catalyst and method of catalyst preparation
US3042628A (en) 1957-11-04 1962-07-03 Engelhard Ind Inc Production of alumina and catalyst containing same
US3763256A (en) 1972-06-07 1973-10-02 Universal Oil Prod Co Dimerization of styrene compounds
US3997431A (en) 1972-08-09 1976-12-14 Gulf Research & Development Company Hydrodesulfurization process employing a titanium promoted catalyst
US4374045A (en) * 1980-05-27 1983-02-15 Mobil Oil Corporation Group IB metal modified zeolite catalysts
GB8726925D0 (en) 1987-11-18 1987-12-23 Shell Int Research Catalyst systems
FR2666249B1 (fr) * 1990-09-03 1994-07-22 Inst Francais Du Petrole Catalyseur et procede d'aromatisation des hydrocarbures contenant 2 a 4 atomes de carbone par molecule.
US20050113614A1 (en) 2003-11-24 2005-05-26 Lowe David M. Catalyst and process for selective hydrogenation
DE102004005997A1 (de) * 2004-02-06 2005-09-01 Hte Ag The High Throughput Experimentation Company Mit Eisenoxid stabilisierter Edelmetall-Katalysator zur Entfernung von Schadstoffen aus Abgasen von Mager-Motoren
US20070238605A1 (en) * 2004-04-26 2007-10-11 Wolfgang Strehlau Catalysts for the Simultaneous Removal of Carbon Monoxide and Hydrocarbons from Oxygen-Rich Exhaust Gases and Processes for the Manufacture Thereof
US7235507B2 (en) * 2004-08-14 2007-06-26 Sud-Chemie Inc. Catalyst for purifying diesel engine exhaust emissions
BRPI0518997A2 (pt) 2004-12-22 2008-12-23 Exxonmobil Chemical Patentes produÇço de hidrocarbonetos aromÁticos alquilados a partir de metano
WO2007123523A1 (en) 2006-04-21 2007-11-01 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
US7683227B2 (en) 2004-12-22 2010-03-23 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
WO2006068814A2 (en) 2004-12-22 2006-06-29 Exxonmobil Chemical Patents, Inc. Production of aromatic hydrocarbons from methane
JP3835765B2 (ja) * 2005-02-10 2006-10-18 勝 市川 芳香族炭化水素を製造する方法
WO2006119311A2 (en) 2005-05-02 2006-11-09 Symyx Technologies, Inc. High surface area metal and metal oxide materials and methods of making same
AU2007240813B2 (en) 2006-04-21 2011-03-17 Exxonmobil Chemical Patents Inc. Production of aromatics from methane
US7893308B2 (en) 2006-08-25 2011-02-22 Exxonmobil Chemical Patents Inc. Production of aromatics from methane
US7589246B2 (en) 2007-04-04 2009-09-15 Exxonmobil Chemical Patents Inc. Production of aromatics from methane
AU2008279489B2 (en) 2007-07-24 2013-10-24 Exxonmobil Chemical Patents Inc. Production of aromatics from aliphatics
EP2184269B1 (en) 2007-08-03 2014-10-01 Mitsui Chemicals, Inc. Process for production of aromatic hydrocarbons
WO2009076005A1 (en) 2007-12-05 2009-06-18 Dow Global Technologies Inc. Continuous process for oxygen-free conversion of methane
EA201070974A1 (ru) * 2008-02-20 2011-02-28 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ конверсии этана в ароматические углеводороды
DE112009000404T5 (de) 2008-02-25 2010-12-30 Sakthivel, Ayyamperumal, Dr., Vadodara Phasen-angereicherter MoVTeNb-Mischoxidkatalysator und Verfahren zu seiner Herstellung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912660A (en) * 1973-12-26 1975-10-14 Amax Inc Method for making high surface area molybdenum metal
CN1334315A (zh) * 2000-07-19 2002-02-06 中国石油天然气股份有限公司兰州炼化分公司 一种新基质型抗重金属裂化催化剂及其制备方法
US20050143610A1 (en) * 2003-12-30 2005-06-30 Saudi Basic Industries Corporation Process for alkane aromatization using platinum-zeolite catalyst
EP1980319A1 (en) * 2006-01-31 2008-10-15 Asahi Kasei Chemicals Corporation Catalyst for production of aromatic hydrocarbon compound
CN101460432A (zh) * 2006-04-21 2009-06-17 埃克森美孚化学专利公司 由甲烷制备芳烃
WO2009091336A1 (en) * 2008-01-16 2009-07-23 Agency For Science, Technology And Research Catalyst preparation and methods of using such catalysts
WO2009124960A1 (de) * 2008-04-08 2009-10-15 Basf Se Katalysator zur dehydroaromatisierung von methan und methanhaltigen gemischen
WO2009140790A1 (en) * 2008-05-21 2009-11-26 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Production of aromatics from methane
JP2010042348A (ja) * 2008-08-12 2010-02-25 Meidensha Corp 低級炭化水素芳香族化触媒及び芳香族化合物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AHMED K.ABOUL-GHEIT等: "Effect of Pd or Ir on the catalytic performance of Mo/H-ZSM-5 during the non-oxidative conversion of natural gas to petrochemicals", 《JOURNAL OF NATURAL GAS CHEMISTRY》 *
QUN DONG等: "Studies on Mo/HZSM-5 Complex Catalyst for Methane Aromatization", 《JOURNAL OF NATURAL GAS CHEMISTRY》 *
李爽等: "甲烷在过渡金属离子交换分子筛催化剂上的无氧芳构化", 《催化学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934016A (zh) * 2013-01-23 2014-07-23 中国石油化工股份有限公司 Mo/分子筛负载型催化剂制备方法
CN103934016B (zh) * 2013-01-23 2016-08-17 中国石油化工股份有限公司 Mo/分子筛负载型催化剂制备方法
CN103736517A (zh) * 2013-12-27 2014-04-23 陕西延长石油(集团)有限责任公司碳氢高效利用技术研究中心 一种甲烷制芳烃催化剂的活化方法
CN103736518A (zh) * 2013-12-27 2014-04-23 陕西延长石油(集团)有限责任公司碳氢高效利用技术研究中心 一种甲烷制芳烃催化剂在循环流化反应系统中的活化方法
CN103736517B (zh) * 2013-12-27 2016-03-23 陕西延长石油(集团)有限责任公司碳氢高效利用技术研究中心 一种甲烷制芳烃催化剂的活化方法
CN103736518B (zh) * 2013-12-27 2016-07-13 西北大学 一种甲烷制芳烃催化剂在循环流化反应系统中的活化方法

Also Published As

Publication number Publication date
WO2011143303A2 (en) 2011-11-17
US20120123176A1 (en) 2012-05-17
SG185117A1 (en) 2012-12-28
CN102883811B (zh) 2016-05-04
EA201291227A1 (ru) 2013-05-30
BR112012028770A2 (pt) 2017-07-11
US20150274610A1 (en) 2015-10-01
US9079169B2 (en) 2015-07-14
WO2011143303A3 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
CN102883811B (zh) 甲烷芳构化催化剂、制备方法和使用该催化剂的方法
JP4432019B2 (ja) 炭化水素原料から芳香族炭化水素化合物及び液化石油ガスを製造する方法
CN102648169B (zh) 混合低级烷烃转化成芳香烃的方法
CN103338860A (zh) 含锌的甲烷芳构化催化剂、其制备方法和使用该催化剂的方法
JP5110316B2 (ja) 炭化水素混合物から芳香族炭化水素および液化石油ガスを製造する方法
CN103121895B (zh) 稠环芳烃制取单环芳烃方法
EP3356035B1 (en) Process for producing aromatics from a heavy hydrocarbon feed
CN105102407B (zh) 链烷烃转化成烯烃的方法和其中使用的催化剂
CN103121906B (zh) 稠环芳烃制取单环芳烃的方法
US9266100B2 (en) Pre-carburized molybdenum-modified zeolite catalyst and use thereof for the aromatization of lower alkanes
EP3356037B1 (en) Process for producing aromatics from a heavy hydrocarbon feed
CN104399520B (zh) 一种由重芳烃生产高辛烷值汽油组分的催化剂及制法
CN101263095A (zh) 乙烯和丙烯的制造方法
JP2012509952A (ja) 軽質オレフィンを最大化するための、炭化水素流の接触分解法
CN102056666A (zh) 通过再生不含贵金属的相应催化剂使含甲烷的混合物脱氢芳构化的方法
CN106866328A (zh) 一种甲醇高选择性制芳烃的方法
CN104588075A (zh) 一种烷基化催化剂的制备方法
CN1352231A (zh) 临氢降凝催化剂及其制备方法
WO2010069582A1 (en) Process for the conversion of methane, contained in gas flows, into hydrogenated liquid hydrocarbons
Yang et al. Improvement of activity and stability of CuGa promoted sulfated zirconia catalyst for n-butane isomerization
CN103120947B (zh) 稠环芳烃制取单环芳烃的催化剂
CN104557393A (zh) 一种提高催化剂稳定性和寿命的烷基化方法
CN104353486B (zh) 一种c10+重芳烃临氢烷基转移催化剂及制备方法
CN114426447B (zh) 一种以富含碳四碳五的烷烃为原料生产芳烃的工艺
CN108314602A (zh) 一种含氧化合物的转化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant