US20150274610A1 - Methane aromatization catalyst, method of making and method of using the catalyst - Google Patents

Methane aromatization catalyst, method of making and method of using the catalyst Download PDF

Info

Publication number
US20150274610A1
US20150274610A1 US14/735,447 US201514735447A US2015274610A1 US 20150274610 A1 US20150274610 A1 US 20150274610A1 US 201514735447 A US201514735447 A US 201514735447A US 2015274610 A1 US2015274610 A1 US 2015274610A1
Authority
US
United States
Prior art keywords
temperature
catalyst
support
methane
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/735,447
Inventor
Peter Tanev Tanev
Armin Lange De Oliveira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Priority to US14/735,447 priority Critical patent/US20150274610A1/en
Publication of US20150274610A1 publication Critical patent/US20150274610A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • B01J35/40
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • C07C2523/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/50Silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • This invention relates to a catalyst useful in converting methane to aromatic hydrocarbons, a method of making the catalyst and a method of using the catalyst to convert methane to aromatic hydrocarbons.
  • aromatic hydrocarbons are the main high-octane bearing components of the gasoline pool and important petrochemicals used as building blocks to produce high value chemicals and a variety of consumer products, for example, styrene, phenol, polymers, plastics, medicines, and others.
  • Aromatics are primarily produced from oil-derived refinery feedstocks in such processes as catalytic reforming and cracking of heavy naphthas.
  • the recent severe oil shortages and price spikes resulted in severe aromatics shortages and price spikes. Therefore, there is a need to develop new commercial routes to produce high value aromatics from highly abundant and cheap hydrocarbon feedstocks, for example, methane or stranded natural gas (typically containing about 80-90% methane).
  • the invention provides a methane aromatization catalyst comprising an active metal or a compound thereof, and an inorganic oxide support wherein the active metal is added to the support as a metal oxalate.
  • the catalyst comprises molybdenum as the active metal and a zeolite as the inorganic support.
  • the invention further provides a process for preparing a methane aromatization catalyst comprising: contacting an active metal oxalate with an inorganic oxide support to form a mixture, and calcining the mixture.
  • the invention still further provides a process for producing aromatic hydrocarbons comprising contacting a gas stream comprising methane with a catalyst comprising molybdenum where the catalyst was prepared by contacting a molybdenum oxalate with a zeolite-containing support.
  • FIG. 1 shows the methane (CH 4 ) conversion versus time on stream data obtained for the catalysts described in the Examples.
  • FIG. 2 shows the benzene selectivity versus methane (CH 4 )conversion data obtained for the catalysts described in the Examples.
  • FIG. 3 shows the methane (CH 4 ) conversion versus time on stream data obtained for the catalysts described in the Examples after they have been spent and regenerated.
  • FIG. 4 shows the benzene selectivity versus methane (CH 4 ) conversion data obtained for the catalysts described in the Examples after they have been spent and regenerated.
  • the methane aromatization catalyst described here comprises an active metal and an inorganic oxide support.
  • the active metal may be any metal that exhibits catalytic activity when contacted with a stream comprising methane under methane aromatization conditions.
  • the active metal may be selected from the group consisting of: vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, niobium, molybdenum, ruthenium, rhodium, silver, tantalum, tungsten, rhenium, platinum and lead and mixtures thereof.
  • the active metal is preferably molybdenum.
  • the inorganic oxide support can be any support that, when combined with the active metal contributes to the overall catalyst performance exhibited in the methane aromatization reaction.
  • the support has to be suitable for treating or impregnating with the active metal or compound thereof.
  • the inorganic support preferably has a well developed porous structure with sufficiently high surface area and pore volume and suitable surface acidity.
  • the inorganic oxide support may be selected from the group consisting of: zeolites, non-zeolitic molecular sieves, silica, alumina, zirconia, titania, yttria, ceria, rare earth metal oxides and mixtures thereof.
  • the inorganic oxide support contains zeolite as the primary component.
  • the zeolite may be of a ZSM-5, ZSM-22, ZSM-8, ZSM-11, ZSM-12 or ZSM-35 zeolite structure type.
  • the support of this invention comprises ZSM-5 zeolite.
  • the ZSM-5 zeolite further may have a SiO 2 /Al 2 O 3 ratio of 10 to 100.
  • the SiO 2 /Al 2 O 3 ratio of the ZSM-5 zeolite of this invention is in the range of 20-50. Even more preferably, the SiO 2 /Al 2 O 3 ratio is from 20 to 40 and most preferably about 30.
  • the zeolite support could further contain about 10-30% wt of inorganic oxide binder that allows for shaping of the catalyst in the desired form and for achieving the high mechanical strength and abrasion resistance desired for commercial operation.
  • the binder may be selected from the group of silica, alumina, zirconia, titania, yttria, ceria, rare earth oxides or mixtures thereof.
  • the active metal or compound thereof is added to the support from a metal oxalate precursor. If the metal oxalate is not commercially available, the active metal or compound thereof is reacted with oxalic acid to form the desired metal oxalate precursor.
  • the metal oxalate precursor can be formed by adding the necessary amount of metal oxide powder to a solution of oxalic acid. Preferably, the metal oxide powder is Mo(VI)O 3 . The mixture may be stirred and/or heated as necessary to obtain a clear solution of the metal oxalate.
  • the inorganic oxide support can be mixed with the metal oxalate to afford a solid state mixture that can then be subjected to calcination in an oven under dry air flow atmosphere to evaporate and deposit the active metal in the pores of the zeolite.
  • This technique is known to those skilled in the art as solid state ion-exchange.
  • the inorganic support is impregnated with metal oxalate by adding a metal oxalate precursor solution to a vessel containing the necessary amount of inorganic oxide support. The support is left in contact with the solution for a sufficient time to allow the metal oxalate to penetrate the pores of the support and react with the active centers of the zeolite.
  • promoters can be added to the support in various precursor forms and impregnation order to improve various aspects of the finished catalyst physical or mechanical properties or catalytic performance.
  • a promoter precursor could be added to the support in a mixing or impregnation step before, after or simultaneously with the active metal oxalate.
  • the support now impregnated with metal oxalate, is dried and calcined to form the finished methane aromatization catalyst of this invention.
  • the drying and calcination steps typically include flowing dry air or nitrogen in a volume of from 1 to 60 liters per hour over the catalyst precursor, preferably from 20 to 50 liters per hour.
  • the impregnated support may be subjected to a series of specific heating rates and temperature ramps to complete the cross-linking of the structure and to form the finished active metal oxide/zeolite comprising methane aromatization catalyst of the invention.
  • the impregnated support is preferably dried and calcined by heating it at a temperature of from 80° C. to 120° C. for a period of time of at least 20 minutes, preferably of from 60 minutes to 180 minutes.
  • the temperature is then increased to from 275° C. to 325° C. at a rate of from 1° C. to 10° C. per minute, preferably from 2 to 4° C. per minute. That temperature is then maintained for a period of time of at least 20 minutes, preferably from 60 minutes to 180 minutes.
  • the temperature is again increased, this time to from 475° C. to 525° C. at a rate of 1° C. to 10° C. per minute, preferably from 2 to 4° C. per minute.
  • This temperature is then maintained for at least 20 minutes, preferably from 20 minutes to 240 minutes, and even more preferably of from 120 minutes to 240 minutes.
  • the catalyst formed by the above steps is then preferably cooled to a temperature in the range of from 80° C. to 120° C.
  • the methane aromatization catalyst is useful in the reaction of methane or methane-rich gases, for example, natural gas, to form aromatic hydrocarbons.
  • Natural gas is defined as a mixture of saturated hydrocarbons having a carbon number of from 1 to 5, preferably of from 1 to 4.
  • the conversion of methane-containing gas to aromatic hydrocarbons is typically carried out in a reactor comprising a catalyst which is active in the conversion of methane to aromatics.
  • the methane containing gas that is fed to the reactor contains more than 50% vol. methane, preferably more than 75% vol. methane and even more preferably of from 75% vol. to 100% vol. methane.
  • the conversion of methane-containing gas is carried out at a space velocity of from 100 to 10000 h ⁇ 1 , a pressure of from 0.5 to 10 bar and a temperature or from 500 to 850° C. More preferably, the conversion is carried out at space velocity of from 300 to 3000 h ⁇ 1 , a pressure of from 0.5 to 5 bar and a temperature of from 600 to 800° C. Even more preferably, the conversion is carried out at space velocity of from 500 to 1500 h ⁇ 1 , a pressure of from 0.5 to 1 bar and a temperature of from 650 to 750° C.
  • Various co-feeds such as CO, CO 2 or H 2 that react with the coke precursors or subdue or prevent their formation during the methane aromatization reaction could be added at levels of ⁇ 10% vol. to the methane-containing feed to improve the stability performance or regenerability of the catalyst.
  • the methane aromatization reaction is then carried out until methane conversion falls to values that are lower than those that are economically acceptable.
  • the catalyst is regenerated to restore its methane aromatization activity. Following the regeneration, the catalyst is again contacted with a methane-containing feed in a subsequent process cycle.
  • the catalyst regeneration can be performed by different techniques known to those skilled in the art that are effective in removing the carbonaceous deposits and restoring the catalyst activity.
  • the spent catalysts were regenerated by first cooling them from methane aromatization reaction temperature to 480° C. and then subjecting them to purging with argon at 1000 h ⁇ 1 , atmospheric pressure and 480° C. for one hour.
  • the catalysts were subjected to 2000 h ⁇ 1 of 0.5 to 2.0% vol. O 2 /N 2 gas flow at atmospheric pressure and 480° C. for 22 hrs to slowly burn off the coke from their surface and restore their methane aromatization activity.
  • All catalysts described in the examples were prepared using the same H-ZSM-5 zeolite support.
  • the support was prepared by calcining a batch of commercially available Zeolyst International Company, CBV-3024E, NH 4 + /ZSM-5 zeolite powder with SiO 2 /Al 2 O 3 ratio of 30 under dry air at 500° C. for a sufficient period of time to convert it from NH 4 + into H + form.
  • the performance tests of all catalysts were conducted in the same manner. Prior to testing, the catalysts were loaded into the reactors as 2.5 cc charges and pretreated in situ by: (i) establishing a 5 L/hr flow of pure H 2 , at 1 bar pressure and heating from ambient temperature to 240° C. at 0.5° C./min and holding at 240° C. for 4 hrs; (ii) heating under the same flow and pressure to 480° C. at 2° C./min and holding at 480° C. for 2 hrs and (iii) finally, heating under the same conditions to 700° C. at 2° C./min and holding at 700° C. for at least 1.5 hours to complete the reduction.
  • the catalysts were purged with 2.5 L/hr of pure argon for 20 min and then contacted with a methane-containing feed comprising 90% vol. methane and 10% vol. argon at 1000 hr ⁇ 1 GHSV, 1 bar pressure and 700° C.
  • the argon was used as an internal standard for the GC analysis.
  • FIG. 1 The methane conversion versus time on stream performance data obtained for all catalysts (see Examples 1-20) is shown in FIG. 1 .
  • the figure shows that the catalysts prepared from molybdenum oxalate precursor (Examples 1-3), provide higher methane conversion than catalysts prepared with other (non-oxalate) molybdenum precursors (Examples 4-20).
  • the figure also shows that the molybdenum oxalate-derived catalysts maintain their methane conversion better (exhibit better stability) than the catalysts derived from non-oxalate precursors.
  • FIG. 2 shows the corresponding benzene selectivity versus methane conversion obtained in these tests.
  • the data show, that the catalysts prepared from a molybdenum oxalate precursor (Examples 1-3), provide higher benzene selectivity at higher methane conversion than the catalysts prepared from non-oxalate precursors (Examples 4-20). It should also be noted that, at the same molybdenum loading level, the molybdenum oxalate-derived catalysts exhibit higher methane conversion and higher benzene selectivity and better stability relative to catalysts prepared using non-oxalate precursors. This performance benefit was observed for catalysts with very broad 4-15% wt of molybdenum loading.
  • the spent catalysts were subjected to regeneration.
  • the regeneration was carried out in situ by first cooling the catalysts to 480° C. and then purging them with argon at 1000 h ⁇ 1 , 1 bar and 480° C. for 1 hr.
  • the catalysts were subjected to 2000 h ⁇ 1 of 0.5 to 2.0% vol. O 2 /N 2 gas flow at atmospheric pressure and 480° C. for 22 hrs to slowly burn off the coke from the surface of the catalysts and restore their activity.
  • the regenerated catalysts were then subjected to performance testing.
  • FIGS. 3 and 4 show the methane conversion versus time on stream and benzene selectivity versus methane conversion test data, respectively, for the regenerated catalysts. Again, the data show that the regenerated catalysts prepared from molybdenum oxalate precursors exhibit higher methane conversion and benzene selectivity and higher stability relative to the regenerated catalysts which were prepared from other molybdenum presursors.
  • a molybdenum oxalate solution was prepared by dissolving 144.07 g of MoO 3 and 144.07 g of oxalic acid dihydrate (to give a molar ratio of molybdenum to oxalic acid of 1:1.14) in a 1000 mL beaker filled with deionized water in such a way as to prepare a total of 500 mL of 2 mol/L molybdenum oxalate solution. The solution is then heated to 80° C. and stirred for 4 hrs or until complete dissolution of the molybdenum oxide and formation of molybdenum oxalate.
  • a sufficient quantity of NH4 + -ZSM-5 zeolite powder was shaped by compacting it in a compactor at 250 bar and then sieved to obtain a support particles fraction of from about 315-500 microns.
  • the shaped NH4 + form zeolite support particles were then placed in an oven and calcined at a temperature of 500° C. for 4 hours to convert them to an H + form.
  • the impregnated sample was then aged for 30 minutes; air dried and then calcined in a programmable oven by subjecting it to a 10 L/min flow of dry air and heating it to 300° C. at a rate of 1° C. per minute. The temperature was maintained for 18 hours. Then, the temperature was raised to 550° C. at a rate of 1° C. per minute and held for 2 hours. The calcined catalyst sample was then sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6.0% wt.
  • the catalyst of this example was prepared in the same manner as the one in Example 1 except that 4.54 g (instead of 2.95 g) of deionized water were added to the 2.66 mL solution of molybdenum oxalate.
  • the first step of the calcination of the impregnated catalyst at 300° C. was carried out for 2 hrs instead of 18 hrs.
  • the finished catalyst contained 6.0% wt of molybdenum.
  • the catalyst of this Example was prepared in the same manner as the catalyst of Example 1. The only difference in this preparation was the molybdenum loading. Specifically, 3.63 mL of the molybdenum oxalate solution and 1.97 mL of deionized water we used to prepare the impregnation solution and to achieve 8.0% w molybdenum loading. The finished catalyst had a molybdenum content of 8.0% wt.
  • ammoniumheptamolybdate solution was prepared by dissolving 3.247 g of ammoniumheptamolybdate in 10 mL of deionized water.
  • the zeolite support was prepared for impregnation following the same steps as described Example 1. Ten grams of the zeolite support, were impregnated with the aid of a pipette with 10 mL of the ammoniumheptamolybdate solution. The impregnation was carried out in a porcelain dish. Following the impregnation, the wet zeolite support was manually mixed with a spatula, aged for 0.5 hrs under shaking and then transferred to an oven for drying and calcination. The drying was carried out by heating under air flow of 1 L/min at a rate of 1° C. per minute to 120° C. and holding at 120° C. 10 hours. Then, the temperature was raised to 500° C. at a rate of 1° C.
  • the finished catalyst sample was sieved to remove fines and to obtain the desired 315-500 microns fraction.
  • the finished catalyst had a molybdenum content of 15.0% wt. It should be noted that this sample was tested twice.
  • the catalyst of this example was prepared in the same manner as described in Example 4 except that the impregnating solution was prepared by mixing 4.63 g of ammoniumheptamolybdate with 25 mL of deionized water. Then, 5.07 mL of the above impregnation solution was mixed with 2.13 g of deionized water and this final solution was used to impregnate 8 g of zeolite support. Finally, a somewhat different drying and calcining procedure was employed as described below. The impregnated support was placed in a programmable oven and dried and calcined in a 1 L/min flow of dry air by ramping the temperature at a rate of 1° C./min to 300° C.
  • the finished catalyst sample was sieved to remove fines and to obtain the desired 315-500 microns fraction and then tested as described above.
  • the catalyst was found to have a molybdenum content of 6.0% wt.
  • the catalyst of this example was prepared in a similar manner as described in Example 5.
  • an ammoniumheptamolybdate solution was prepared by dissolving 4.63 g of ammoniumheptamolybdate in 20 mL of water and adjusting the volume to 25 mL to provide a solution with a molybdenum concentration of 0.15 mol/L.
  • 11.03 mL of the above impregnating solution was used to impregnate 10 g of the zeolite support.
  • the impregnated support was then placed in an oven and dried with air (1 L/min) by heating to 70° C. at a rate of 1° C. per minute and holding for 10 hours. Then, the temperature was increased to 120° C.
  • the finished catalyst sample was sieved to remove fines and to obtain the desired 315-500 microns fraction and then tested as described above.
  • the catalyst was found to have a molybdenum content of 10.0% wt.
  • This example describes a methane aromatization catalyst prepared by physical mixing or the so-called “solid state ion-exchange” method.
  • the zeolite support was prepared following the same steps as described in the preceding examples. Then, 6.383 g of MoO 3 powder were mixed with 100 g of the zeolite support. The mixing was carried out by first dividing the 106.4 g mix into ten separate 10.64 g portions. Next, the portions were mixed in a grinder one portion at a time. The physical mixture was then compacted in a Powtec compactor at a pressure force of 250 bar with 3 repetitions. The catalyst precursor was placed in a Microwave furnace CEM and heated with nitrogen (1 L/min) at a temperature of 25° C. for 4 hours.
  • the temperature was increased to 500° C. at a rate of 25° C. per minute and held for 2 more hours.
  • the finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction.
  • the catalyst was found to have a molybdenum content of 4.081% wt (equivalent to 6% wt of MoO 3 ).
  • An impregnation solution was prepared by adding 28.08 g MoO 3 to 200 mL of deionized water and dissolving the oxide via careful addition of NH 4 OH (25 wt %)until the pH of the solution reached 9. The volume of the solution was then adjusted to a total of 250 mL by addition of more deionized water.
  • the zeolite support was prepared for impregnation as described in the previous examples.
  • the impregnation was accomplished as described in Example 1.
  • the impregnated zeolite support was then placed in a programmable oven and dried and calcined under flow of dry air (1 L/min) by first increasing the temperature to 300° C. at a rate of 1° C. per minute and holding for 1 hour. Next, the temperature was increased to 550° C. at a rate of 1° C. per minute and held for 2 hours.
  • the finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction.
  • the catalyst was found to have a molybdenum content of 6.0% wt.
  • the catalyst of this example was prepared as described in Example 7 except that 8.695 g MoO 3 (8.0% wt.) were mixed with 100 g of the zeolite support.
  • the support was calcined using a conventional programmable oven rather than a microwave oven. Specifically, the impregnated support was dried by placing it in the oven and heating it at a rate of 1° C./min in dry air (1 L/min) to 300° C. and holding for 2 hours. Then the temperature was increased to 550° C. at a rate of 1° C. per minute and held for 2 hours.
  • the finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction.
  • the catalyst had a molybdenum content of 5.478% wt (equivalent to 8 wt % MoO 3 ).
  • the catalyst of this Example was prepared in a similar manner as described in Example 6.
  • An ammoniumheptamolybdate solution was prepared by dissolving 4.63 g of ammoniumheptamolybdate in 20 mL of deionized water and adjusting the volume to 25 mL to provide a solution with a molybdenum concentration of 0.15 mol/L.
  • the zeolite was subjected to impregnation as a powder without shaping.
  • the zeolite, 10 g was impregnated with a solution comprising 6.4 mL of the ammoniumheptamolybdate solution and 2.7 mL of deionized water.
  • the zeolite powder and the solution were manually mixed with a spatula.
  • the impregnated support was dried and calcined by placing it in an oven and heating it with dry air (1 L/min) at a rate of 1° C./min to 70° C. and holding for 10 hours. Then the temperature was increased to 120° C. at a rate of 1° C. per minute and held for 10 hours. Finally, the temperature was increased to 500° C. at a rate of 1° C. per minute and held for 5 hours.
  • the finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction.
  • the catalyst had a molybdenum content of 6.0% wt.
  • the catalyst of this example was prepared as described in Example 5 except that the impregnation solution was prepared by dissolving 3.09 g of ammoniumheptamolybdate in 25 mL of deionized water. Also, 10 g of the zeolite support was impregnated with 9.5 mL of the above impregnating solution without further dilution. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6.0% wt.
  • the catalyst was prepared as described in Example 5 but the drying and calcination procedure followed was the one described in Example 6. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6.0% wt.
  • An impregnating solution of molybdenum acetylacetonate was prepared by adding 13.89 g of molybdenum acetylacetonate to 57.6 mL of HNO 3 (30% wt).
  • the zeolite support was prepared for impregnation as described in Example 1.
  • the entire amount of impregnating solution was then used to impregnate 64 g of the zeolite support in a dish and then the impregnate was manually mixed with a spatula as described in Example 4.
  • the impregnated zeolite was then dried and calcined under dry air flow of 1 L/min by increasing the temperature at a rate of 1° C./min to 300° C. and holding for 2 hours.
  • the temperature was increased to 500° C. at a rate of 1° C. per minute and held for 2 hours.
  • the finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction.
  • the catalyst had a molybdenum content of 6% wt.
  • the catalyst of this Example was prepared in the same way as described in Example 13 except that the final calcination temperature was 550° C. instead of 500° C.
  • the zeolite was used as a powder without shaping.
  • the zeolite was calcined at 500° C. for 4 hours to convert it to H + form.
  • 5.746 g MoO 3 in solid form
  • the molybdenum oxide/zeolite mixture was then placed in a programmable oven and calcined under dry air flow of 1 L/min by increasing the temperature to 300° C. at a rate of 1° C. per minute. The temperature was maintained for 2 hours. Then, the temperature was increased to 550° C. at a rate of 1° C. per minute and held for 2 hours.
  • the finished catalyst sample was sieved to remove fines and to obtain the desired 315-500 microns fraction.
  • the catalyst had a molybdenum content of 4.081% wt (equivalent to 6% wt of MoO 3 ).
  • the catalyst of this Example was prepared in a similar manner as the one of Example 5.
  • ammoniumheptamolybdate solution was prepared by dissolving 4.63 g of ammoniumheptamolybdate in 20 mL of deionized water and adjusting the volume to 25 mL to provide a solution having a molybdenum concentration of 0.15 mol/L.
  • the zeolite support was shaped and calcined as described in Example 5. Then, 6.64 mL of the ammoniumheptamolybdate solution was mixed with 2.66 g of deionized water to form the final impregnation solution. The solution was used to impregnate 10 g of the zeolite support. The freshly impregnated zeolite was manually mixed with a spatula and aged for 0.5 hrs. The impregnated zeolite was then dried and calcined using exactly the same procedure as described in Example 6. The finished catalyst was sieved to remove the fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6% wt.
  • the catalyst of this Example was prepared by the physical mixing method.
  • the zeolite powder was calcined at a temperature of 500° C. for 4 hours to convert it to H + form.
  • 0.8739 g MoO 3 was mixed in a grinder with 10 g of the zeolite powder.
  • the mixture was then placed in a microwave furnace and kept under nitrogen (1 L/min) at a temperature of 25° C. for 4 hours. Then, the temperature was ramped at 25° C./min to 500° C. and held for 2 hours.
  • the catalyst was cooled, mixed with 3% wt graphite and shaped into pellets with a 40 mm diameter and 5 mm height. The pellets were crushed, sieved to remove fines and obtain the desired 315-500 microns fraction for testing.
  • the catalyst had a molybdenum content of 5.504% wt.
  • An ammoniumheptamolybdate solution was prepared by dissolving 4.63 g of ammoniumheptamolybdate in 20 mL of deionized water. The volume of the solutions was then adjusted to 25 mL with deionized water to provide an impregnating solution with a molybdenum concentration of 0.15 mol/L.
  • the zeolite powder was shaped by compacting it at 250 bar. The obtained zeolite support was calcined at a temperature of 500° C. for 4 hours.
  • an impregnation solution comprising 6.34 mL of the above ammoniumheptamolybdate solution and 2.66 g of deionized water was prepared and used to impregnate 10 g of the zeolite support in a porcelain dish.
  • the freshly impregnated support was manually mixed with a spatula and then aged for 0.5 hrs.
  • the impregnate was placed in a programmable oven and dried under dry air (1 L/min) by increasing the temperature from ambient to 70° C. at a rate of 1° C. per minute and by holding at temperature for 10 hours. Then, the temperature was increased using the same rate to 120° C. and held for another 10 hours. Finally, using the same rate, the temperature was increased to 500° C. and held for 5 hours.
  • the finished catalyst was sieved to remove the fines and to obtain the desired 315-500 microns fraction.
  • the catalyst had a molybdenum content of 6% wt.
  • the catalyst of this Example was prepared by the physical mixture method.
  • the zeolite powder was calcined at a temperature of 500° C. for 4 hours to convert it to H + form.
  • 0.6383 g MoO 3 was mixed with 10 g of the zeolite powder in a grinder.
  • the obtained mixture was then placed in a microwave furnace and heated under nitrogen (1 L/min) at a temperature of 25° C. for 4 hours. Then, the temperature was increased at a rate of 25° C. per minute to 500° C. and held for 2 hours.
  • the catalyst was cooled, mixed with 3% wt graphite and shaped into pellets with a 40 mm diameter and 5 mm height.
  • the catalyst was then crushed, sieved to remove fines and to obtain the desired 315-500 microns fraction for testing.
  • the catalyst had a molybdenum content of 4.081% wt (equivalent to 6% wt of MoO 3 ).
  • ammoniumheptamolybdate solution was prepared by dissolving 3.247 g of ammoniumheptamolybdate in 10 mL of deionized water. Then, 10.0 mL of the ammoniumheptamolybdate solution was used to impregnate 10 g of the zeolite powder. The impregnation was done in a porcelain dish. Following the addition of the solution, the mixture was mixed manually with the aid of a spatula and the mix was aged for 0.5 hrs. The impregnated zeolite was then placed in a programmable oven and dried and calcined under dry air (1 L/min) by increasing temperature from ambient to 120° C. using a heating rate of 1° C.
  • the catalyst had a molybdenum content of 15% wt.

Abstract

A catalyst for converting methane to aromatic hydrocarbons is described herein. The catalyst comprises an active metal or a compound thereof, and an inorganic oxide support wherein the active metal is added to the support in the form of metal oxalate. The metal oxalate-derived catalyst exhibits superior performance in the conversion of methane-rich feed to aromatics products relative to catalysts prepared from non-oxalate metal precursors. A method of making the catalyst and a method of using the catalyst are also described.

Description

  • This application is a divisional of U.S. Non-Provisional application Ser. No. 13/105,499, filed May 11, 2011 which claims the benefit of U.S. Provisional Application Ser. No. 61/333,995, filed on May 12, 2010, the entire disclosure of which is herein incorporated by reference.
  • FIELD
  • This invention relates to a catalyst useful in converting methane to aromatic hydrocarbons, a method of making the catalyst and a method of using the catalyst to convert methane to aromatic hydrocarbons.
  • BACKGROUND
  • The aromatic hydrocarbons (specifically benzene, toluene and xylenes), are the main high-octane bearing components of the gasoline pool and important petrochemicals used as building blocks to produce high value chemicals and a variety of consumer products, for example, styrene, phenol, polymers, plastics, medicines, and others. Aromatics are primarily produced from oil-derived refinery feedstocks in such processes as catalytic reforming and cracking of heavy naphthas. However, the recent severe oil shortages and price spikes resulted in severe aromatics shortages and price spikes. Therefore, there is a need to develop new commercial routes to produce high value aromatics from highly abundant and cheap hydrocarbon feedstocks, for example, methane or stranded natural gas (typically containing about 80-90% methane).
  • There are enormous proven stranded natural gas reserves around the world. According to some estimates, the natural gas reserves are at least equal to those of oil. However, unlike the oil reserves which are primarily concentrated in a few oil-rich countries and are properly and extensively exploited, upgraded and monetized, the natural gas reserves are much more broadly distributed around the world and significantly underutilized. Many developing countries that have significant natural gas reserves lack the proper infrastructure to exploit them and convert them to higher value products. Quite often, in such situations, natural gas is flared to the atmosphere and wasted. Because of the above reasons, there is enormous economic incentive to develop new technologies that can efficiently convert methane or natural gas to higher value chemical products, specifically aromatics.
  • In 1993, Wang et al., (Catal. Lett. 1993, 21, 35-41), discovered that methane can be partially converted to benzene at atmospheric pressure and a temperature of 700° C. over a catalyst containing 2.0 wt % molybdenum deposited on H-ZSM-5 zeolite support. Significantly, low methane conversion of less than 10% but very high benzene selectivity of 100% were observed in these experiments. Subsequently, other researchers repeated the above work and found that Wang et al. did not quite identify all of the reaction products (naphthalene and others) and that when all of the products are identified the benzene selectivity falls in the range of 60-70%. These other researchers also pointed out that, the catalyst cokes up and deactivates very rapidly—as manifested by complete loss of activity after about 4-5 hrs on stream. Since Wang's discovery, many academic and industrial research groups have contributed to further developing various aspects of the methane to benzene catalyst and process technology. Many catalyst formulations have been prepared and tested and various reactor and process conditions and schemes have been explored.
  • Despite these efforts, there is still no commercial methane aromatization or methane to benzene catalyst and process. The vast majority of researchers agree that the main obstacles to developing and commercializing an efficient, direct methane to benzene process are the low methane conversion (still remaining at around 7-10%) and rapid coke formation and catalyst deactivation.
  • Therefore, there is a need to develop new methane aromatization catalysts that provide higher methane conversion at equal or higher selectivity to benzene relative to the prior art. Also, there is a need to develop catalysts that exhibit lower coking and deactivation rates, i.e. better sustain their methane conversion and benzene selectivity performance over the course of time (exhibit better stability) relative to the catalysts of the prior art.
  • SUMMARY OF THE INVENTION
  • The invention provides a methane aromatization catalyst comprising an active metal or a compound thereof, and an inorganic oxide support wherein the active metal is added to the support as a metal oxalate. Preferably, the catalyst comprises molybdenum as the active metal and a zeolite as the inorganic support.
  • The invention further provides a process for preparing a methane aromatization catalyst comprising: contacting an active metal oxalate with an inorganic oxide support to form a mixture, and calcining the mixture.
  • The invention still further provides a process for producing aromatic hydrocarbons comprising contacting a gas stream comprising methane with a catalyst comprising molybdenum where the catalyst was prepared by contacting a molybdenum oxalate with a zeolite-containing support.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows the methane (CH4) conversion versus time on stream data obtained for the catalysts described in the Examples.
  • FIG. 2 shows the benzene selectivity versus methane (CH4)conversion data obtained for the catalysts described in the Examples.
  • FIG. 3 shows the methane (CH4) conversion versus time on stream data obtained for the catalysts described in the Examples after they have been spent and regenerated.
  • FIG. 4 shows the benzene selectivity versus methane (CH4) conversion data obtained for the catalysts described in the Examples after they have been spent and regenerated.
  • DETAILED DESCRIPTION
  • The methane aromatization catalyst described here comprises an active metal and an inorganic oxide support. The active metal may be any metal that exhibits catalytic activity when contacted with a stream comprising methane under methane aromatization conditions. The active metal may be selected from the group consisting of: vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, niobium, molybdenum, ruthenium, rhodium, silver, tantalum, tungsten, rhenium, platinum and lead and mixtures thereof. The active metal is preferably molybdenum.
  • The inorganic oxide support can be any support that, when combined with the active metal contributes to the overall catalyst performance exhibited in the methane aromatization reaction. The support has to be suitable for treating or impregnating with the active metal or compound thereof. The inorganic support preferably has a well developed porous structure with sufficiently high surface area and pore volume and suitable surface acidity. The inorganic oxide support may be selected from the group consisting of: zeolites, non-zeolitic molecular sieves, silica, alumina, zirconia, titania, yttria, ceria, rare earth metal oxides and mixtures thereof. The inorganic oxide support contains zeolite as the primary component. The zeolite may be of a ZSM-5, ZSM-22, ZSM-8, ZSM-11, ZSM-12 or ZSM-35 zeolite structure type. Preferably, the support of this invention comprises ZSM-5 zeolite. The ZSM-5 zeolite further may have a SiO2/Al2O3 ratio of 10 to 100. Preferably, the SiO2/Al2O3 ratio of the ZSM-5 zeolite of this invention is in the range of 20-50. Even more preferably, the SiO2/Al2O3 ratio is from 20 to 40 and most preferably about 30. The zeolite support could further contain about 10-30% wt of inorganic oxide binder that allows for shaping of the catalyst in the desired form and for achieving the high mechanical strength and abrasion resistance desired for commercial operation. The binder may be selected from the group of silica, alumina, zirconia, titania, yttria, ceria, rare earth oxides or mixtures thereof.
  • The active metal or compound thereof is added to the support from a metal oxalate precursor. If the metal oxalate is not commercially available, the active metal or compound thereof is reacted with oxalic acid to form the desired metal oxalate precursor. The metal oxalate precursor can be formed by adding the necessary amount of metal oxide powder to a solution of oxalic acid. Preferably, the metal oxide powder is Mo(VI)O3. The mixture may be stirred and/or heated as necessary to obtain a clear solution of the metal oxalate.
  • The inorganic oxide support can be mixed with the metal oxalate to afford a solid state mixture that can then be subjected to calcination in an oven under dry air flow atmosphere to evaporate and deposit the active metal in the pores of the zeolite. This technique is known to those skilled in the art as solid state ion-exchange. In a more preferred embodiment, the inorganic support is impregnated with metal oxalate by adding a metal oxalate precursor solution to a vessel containing the necessary amount of inorganic oxide support. The support is left in contact with the solution for a sufficient time to allow the metal oxalate to penetrate the pores of the support and react with the active centers of the zeolite.
  • Other components or promoters can be added to the support in various precursor forms and impregnation order to improve various aspects of the finished catalyst physical or mechanical properties or catalytic performance. For example, a promoter precursor could be added to the support in a mixing or impregnation step before, after or simultaneously with the active metal oxalate.
  • The support, now impregnated with metal oxalate, is dried and calcined to form the finished methane aromatization catalyst of this invention. The drying and calcination steps typically include flowing dry air or nitrogen in a volume of from 1 to 60 liters per hour over the catalyst precursor, preferably from 20 to 50 liters per hour. The impregnated support may be subjected to a series of specific heating rates and temperature ramps to complete the cross-linking of the structure and to form the finished active metal oxide/zeolite comprising methane aromatization catalyst of the invention.
  • The impregnated support is preferably dried and calcined by heating it at a temperature of from 80° C. to 120° C. for a period of time of at least 20 minutes, preferably of from 60 minutes to 180 minutes. The temperature is then increased to from 275° C. to 325° C. at a rate of from 1° C. to 10° C. per minute, preferably from 2 to 4° C. per minute. That temperature is then maintained for a period of time of at least 20 minutes, preferably from 60 minutes to 180 minutes. Then, the temperature is again increased, this time to from 475° C. to 525° C. at a rate of 1° C. to 10° C. per minute, preferably from 2 to 4° C. per minute. This temperature is then maintained for at least 20 minutes, preferably from 20 minutes to 240 minutes, and even more preferably of from 120 minutes to 240 minutes.
  • The catalyst formed by the above steps is then preferably cooled to a temperature in the range of from 80° C. to 120° C.
  • The methane aromatization catalyst is useful in the reaction of methane or methane-rich gases, for example, natural gas, to form aromatic hydrocarbons. Natural gas is defined as a mixture of saturated hydrocarbons having a carbon number of from 1 to 5, preferably of from 1 to 4.
  • The conversion of methane-containing gas to aromatic hydrocarbons is typically carried out in a reactor comprising a catalyst which is active in the conversion of methane to aromatics. The methane containing gas that is fed to the reactor contains more than 50% vol. methane, preferably more than 75% vol. methane and even more preferably of from 75% vol. to 100% vol. methane.
  • The conversion of methane-containing gas is carried out at a space velocity of from 100 to 10000 h−1, a pressure of from 0.5 to 10 bar and a temperature or from 500 to 850° C. More preferably, the conversion is carried out at space velocity of from 300 to 3000 h−1, a pressure of from 0.5 to 5 bar and a temperature of from 600 to 800° C. Even more preferably, the conversion is carried out at space velocity of from 500 to 1500 h−1, a pressure of from 0.5 to 1 bar and a temperature of from 650 to 750° C. Various co-feeds such as CO, CO2 or H2 that react with the coke precursors or subdue or prevent their formation during the methane aromatization reaction could be added at levels of <10% vol. to the methane-containing feed to improve the stability performance or regenerability of the catalyst. The methane aromatization reaction is then carried out until methane conversion falls to values that are lower than those that are economically acceptable. At this point, the catalyst is regenerated to restore its methane aromatization activity. Following the regeneration, the catalyst is again contacted with a methane-containing feed in a subsequent process cycle.
  • The catalyst regeneration can be performed by different techniques known to those skilled in the art that are effective in removing the carbonaceous deposits and restoring the catalyst activity. For this particular invention, the spent catalysts were regenerated by first cooling them from methane aromatization reaction temperature to 480° C. and then subjecting them to purging with argon at 1000 h−1, atmospheric pressure and 480° C. for one hour. Next, the catalysts were subjected to 2000 h−1 of 0.5 to 2.0% vol. O2/N2 gas flow at atmospheric pressure and 480° C. for 22 hrs to slowly burn off the coke from their surface and restore their methane aromatization activity.
  • EXAMPLES
  • The following Examples were carried out to compare the catalytic performance of the methane aromatization catalyst of this invention, prepared from molybdenum oxalate, with the catalysts described in the prior art prepared from other (non-oxalate containing) molybdenum precursors. The molybdenum precursor and concentration level as well as the catalyst preparation method were varied in these examples.
  • To remove any performance differences caused by the inorganic oxide support, all catalysts described in the examples were prepared using the same H-ZSM-5 zeolite support. The support was prepared by calcining a batch of commercially available Zeolyst International Company, CBV-3024E, NH4 +/ZSM-5 zeolite powder with SiO2/Al2O3 ratio of 30 under dry air at 500° C. for a sufficient period of time to convert it from NH4 + into H+ form.
  • The performance tests of all catalysts were conducted in the same manner. Prior to testing, the catalysts were loaded into the reactors as 2.5 cc charges and pretreated in situ by: (i) establishing a 5 L/hr flow of pure H2, at 1 bar pressure and heating from ambient temperature to 240° C. at 0.5° C./min and holding at 240° C. for 4 hrs; (ii) heating under the same flow and pressure to 480° C. at 2° C./min and holding at 480° C. for 2 hrs and (iii) finally, heating under the same conditions to 700° C. at 2° C./min and holding at 700° C. for at least 1.5 hours to complete the reduction. The catalysts were purged with 2.5 L/hr of pure argon for 20 min and then contacted with a methane-containing feed comprising 90% vol. methane and 10% vol. argon at 1000 hr−1 GHSV, 1 bar pressure and 700° C. The argon was used as an internal standard for the GC analysis.
  • During the tests, full product samples were automatically withdrawn from the reactor zone located directly under the catalyst bed every 20 minutes and analyzed with a GC analyzer. The methane conversion versus time on stream performance data obtained for all catalysts (see Examples 1-20) is shown in FIG. 1. The figure shows that the catalysts prepared from molybdenum oxalate precursor (Examples 1-3), provide higher methane conversion than catalysts prepared with other (non-oxalate) molybdenum precursors (Examples 4-20). The figure also shows that the molybdenum oxalate-derived catalysts maintain their methane conversion better (exhibit better stability) than the catalysts derived from non-oxalate precursors.
  • FIG. 2 shows the corresponding benzene selectivity versus methane conversion obtained in these tests. The data show, that the catalysts prepared from a molybdenum oxalate precursor (Examples 1-3), provide higher benzene selectivity at higher methane conversion than the catalysts prepared from non-oxalate precursors (Examples 4-20). It should also be noted that, at the same molybdenum loading level, the molybdenum oxalate-derived catalysts exhibit higher methane conversion and higher benzene selectivity and better stability relative to catalysts prepared using non-oxalate precursors. This performance benefit was observed for catalysts with very broad 4-15% wt of molybdenum loading. In addition, among these catalysts, the 6-10% wt molybdenum containing catalysts prepared from molybdenum oxalate precursors exhibited the best combination of higher methane conversion, benzene selectivity and performance stability relative to all other catalysts.
  • Following the above tests, the spent catalysts were subjected to regeneration. The regeneration was carried out in situ by first cooling the catalysts to 480° C. and then purging them with argon at 1000 h−1, 1 bar and 480° C. for 1 hr. Next, the catalysts were subjected to 2000 h−1 of 0.5 to 2.0% vol. O2/N2 gas flow at atmospheric pressure and 480° C. for 22 hrs to slowly burn off the coke from the surface of the catalysts and restore their activity. The regenerated catalysts were then subjected to performance testing.
  • FIGS. 3 and 4 show the methane conversion versus time on stream and benzene selectivity versus methane conversion test data, respectively, for the regenerated catalysts. Again, the data show that the regenerated catalysts prepared from molybdenum oxalate precursors exhibit higher methane conversion and benzene selectivity and higher stability relative to the regenerated catalysts which were prepared from other molybdenum presursors.
  • The aforementioned catalysts were prepared as described in the following Examples.
  • Example 1
  • A molybdenum oxalate solution was prepared by dissolving 144.07 g of MoO3 and 144.07 g of oxalic acid dihydrate (to give a molar ratio of molybdenum to oxalic acid of 1:1.14) in a 1000 mL beaker filled with deionized water in such a way as to prepare a total of 500 mL of 2 mol/L molybdenum oxalate solution. The solution is then heated to 80° C. and stirred for 4 hrs or until complete dissolution of the molybdenum oxide and formation of molybdenum oxalate.
  • Simultaneously, a sufficient quantity of NH4+-ZSM-5 zeolite powder was shaped by compacting it in a compactor at 250 bar and then sieved to obtain a support particles fraction of from about 315-500 microns. The shaped NH4+ form zeolite support particles were then placed in an oven and calcined at a temperature of 500° C. for 4 hours to convert them to an H+ form.
  • Eight grams of the H+-ZSM-5 zeolite support particles were then impregnated with the molybdenum oxalate solution as follows. The impregnation was carried out in a Perkin Elmer MultiProbe II ex robotic pipetor that allows for automated simultaneous impregnation of several support samples. First, the impregnated support was weighed into a shallow bed dish and spread evenly to maximize impregnation surface. The dish was then placed in the Perkin Elmer Multiprobe in preparation for impregnation. Next, a 2.66 mL quantity of the above described molybdenum oxalate impregnation solution was mixed with 2.94 g of deionized water and loaded in the pipetor. Then, the impregnation program was started and the robotic head gradually impregnated the support in the dish in reproducible manner.
  • The impregnated sample was then aged for 30 minutes; air dried and then calcined in a programmable oven by subjecting it to a 10 L/min flow of dry air and heating it to 300° C. at a rate of 1° C. per minute. The temperature was maintained for 18 hours. Then, the temperature was raised to 550° C. at a rate of 1° C. per minute and held for 2 hours. The calcined catalyst sample was then sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6.0% wt.
  • Example 2
  • The catalyst of this example was prepared in the same manner as the one in Example 1 except that 4.54 g (instead of 2.95 g) of deionized water were added to the 2.66 mL solution of molybdenum oxalate. In addition, the first step of the calcination of the impregnated catalyst at 300° C. was carried out for 2 hrs instead of 18 hrs. The finished catalyst contained 6.0% wt of molybdenum.
  • Example 3
  • The catalyst of this Example was prepared in the same manner as the catalyst of Example 1. The only difference in this preparation was the molybdenum loading. Specifically, 3.63 mL of the molybdenum oxalate solution and 1.97 mL of deionized water we used to prepare the impregnation solution and to achieve 8.0% w molybdenum loading. The finished catalyst had a molybdenum content of 8.0% wt.
  • Comparative Examples 4-20 Example 4
  • An ammoniumheptamolybdate solution was prepared by dissolving 3.247 g of ammoniumheptamolybdate in 10 mL of deionized water.
  • The zeolite support was prepared for impregnation following the same steps as described Example 1. Ten grams of the zeolite support, were impregnated with the aid of a pipette with 10 mL of the ammoniumheptamolybdate solution. The impregnation was carried out in a porcelain dish. Following the impregnation, the wet zeolite support was manually mixed with a spatula, aged for 0.5 hrs under shaking and then transferred to an oven for drying and calcination. The drying was carried out by heating under air flow of 1 L/min at a rate of 1° C. per minute to 120° C. and holding at 120° C. 10 hours. Then, the temperature was raised to 500° C. at a rate of 1° C. per minute and held for 6 hours. The finished catalyst sample was sieved to remove fines and to obtain the desired 315-500 microns fraction. The finished catalyst had a molybdenum content of 15.0% wt. It should be noted that this sample was tested twice.
  • Example 5
  • The catalyst of this example was prepared in the same manner as described in Example 4 except that the impregnating solution was prepared by mixing 4.63 g of ammoniumheptamolybdate with 25 mL of deionized water. Then, 5.07 mL of the above impregnation solution was mixed with 2.13 g of deionized water and this final solution was used to impregnate 8 g of zeolite support. Finally, a somewhat different drying and calcining procedure was employed as described below. The impregnated support was placed in a programmable oven and dried and calcined in a 1 L/min flow of dry air by ramping the temperature at a rate of 1° C./min to 300° C. and holding for 2 hrs and then ramping the temperature at the same rate to 550° C. and holding for 2 hrs. The finished catalyst sample was sieved to remove fines and to obtain the desired 315-500 microns fraction and then tested as described above. The catalyst was found to have a molybdenum content of 6.0% wt.
  • Example 6
  • The catalyst of this example was prepared in a similar manner as described in Example 5. In this case, an ammoniumheptamolybdate solution was prepared by dissolving 4.63 g of ammoniumheptamolybdate in 20 mL of water and adjusting the volume to 25 mL to provide a solution with a molybdenum concentration of 0.15 mol/L. Then, 11.03 mL of the above impregnating solution was used to impregnate 10 g of the zeolite support. The impregnated support was then placed in an oven and dried with air (1 L/min) by heating to 70° C. at a rate of 1° C. per minute and holding for 10 hours. Then, the temperature was increased to 120° C. at a rate of 1° C. per minute and held for another 10 hours. Finally, the temperature was increased to 500° C. at a rate of 1° C. per minute and held for 5 hours. The finished catalyst sample was sieved to remove fines and to obtain the desired 315-500 microns fraction and then tested as described above. The catalyst was found to have a molybdenum content of 10.0% wt.
  • It should be noted that this particular catalyst was tested twice.
  • Example 7
  • This example describes a methane aromatization catalyst prepared by physical mixing or the so-called “solid state ion-exchange” method. The zeolite support was prepared following the same steps as described in the preceding examples. Then, 6.383 g of MoO3 powder were mixed with 100 g of the zeolite support. The mixing was carried out by first dividing the 106.4 g mix into ten separate 10.64 g portions. Next, the portions were mixed in a grinder one portion at a time. The physical mixture was then compacted in a Powtec compactor at a pressure force of 250 bar with 3 repetitions. The catalyst precursor was placed in a Microwave furnace CEM and heated with nitrogen (1 L/min) at a temperature of 25° C. for 4 hours. Then, the temperature was increased to 500° C. at a rate of 25° C. per minute and held for 2 more hours. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst was found to have a molybdenum content of 4.081% wt (equivalent to 6% wt of MoO3).
  • Example 8
  • An impregnation solution was prepared by adding 28.08 g MoO3 to 200 mL of deionized water and dissolving the oxide via careful addition of NH4OH (25 wt %)until the pH of the solution reached 9. The volume of the solution was then adjusted to a total of 250 mL by addition of more deionized water. The zeolite support was prepared for impregnation as described in the previous examples. A final impregnation solution was prepared by mixing 9.0 mL of the above molybdenum solution (having pH=9) with 0.5 mL of deionized water. The solution was then used to impregnate 10.5 g of the zeolite support particles in the Perkin Elmer Multiprobe II ex apparatus. The impregnation was accomplished as described in Example 1. The impregnated zeolite support was then placed in a programmable oven and dried and calcined under flow of dry air (1 L/min) by first increasing the temperature to 300° C. at a rate of 1° C. per minute and holding for 1 hour. Next, the temperature was increased to 550° C. at a rate of 1° C. per minute and held for 2 hours. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst was found to have a molybdenum content of 6.0% wt.
  • Example 9
  • The catalyst of this example was prepared as described in Example 7 except that 8.695 g MoO3 (8.0% wt.) were mixed with 100 g of the zeolite support. The support was calcined using a conventional programmable oven rather than a microwave oven. Specifically, the impregnated support was dried by placing it in the oven and heating it at a rate of 1° C./min in dry air (1 L/min) to 300° C. and holding for 2 hours. Then the temperature was increased to 550° C. at a rate of 1° C. per minute and held for 2 hours. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 5.478% wt (equivalent to 8 wt % MoO3).
  • Example 10
  • The catalyst of this Example was prepared in a similar manner as described in Example 6. An ammoniumheptamolybdate solution was prepared by dissolving 4.63 g of ammoniumheptamolybdate in 20 mL of deionized water and adjusting the volume to 25 mL to provide a solution with a molybdenum concentration of 0.15 mol/L. The zeolite was subjected to impregnation as a powder without shaping. The zeolite, 10 g, was impregnated with a solution comprising 6.4 mL of the ammoniumheptamolybdate solution and 2.7 mL of deionized water. The zeolite powder and the solution were manually mixed with a spatula. The impregnated support was dried and calcined by placing it in an oven and heating it with dry air (1 L/min) at a rate of 1° C./min to 70° C. and holding for 10 hours. Then the temperature was increased to 120° C. at a rate of 1° C. per minute and held for 10 hours. Finally, the temperature was increased to 500° C. at a rate of 1° C. per minute and held for 5 hours. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6.0% wt.
  • Example 11
  • The catalyst of this example was prepared as described in Example 5 except that the impregnation solution was prepared by dissolving 3.09 g of ammoniumheptamolybdate in 25 mL of deionized water. Also, 10 g of the zeolite support was impregnated with 9.5 mL of the above impregnating solution without further dilution. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6.0% wt.
  • Example 12
  • The catalyst was prepared as described in Example 5 but the drying and calcination procedure followed was the one described in Example 6. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6.0% wt.
  • Example 13
  • An impregnating solution of molybdenum acetylacetonate was prepared by adding 13.89 g of molybdenum acetylacetonate to 57.6 mL of HNO3 (30% wt). The zeolite support was prepared for impregnation as described in Example 1. The entire amount of impregnating solution was then used to impregnate 64 g of the zeolite support in a dish and then the impregnate was manually mixed with a spatula as described in Example 4. The impregnated zeolite was then dried and calcined under dry air flow of 1 L/min by increasing the temperature at a rate of 1° C./min to 300° C. and holding for 2 hours. Then the temperature was increased to 500° C. at a rate of 1° C. per minute and held for 2 hours. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6% wt.
  • Example 14
  • The catalyst of this Example was prepared in the same way as described in Example 13 except that the final calcination temperature was 550° C. instead of 500° C.
  • Example 15
  • The zeolite was used as a powder without shaping. The zeolite was calcined at 500° C. for 4 hours to convert it to H+ form. Next, 5.746 g MoO3 (in solid form) was mixed with 60 g of the zeolite powder in a mortar grinder. The molybdenum oxide/zeolite mixture was then placed in a programmable oven and calcined under dry air flow of 1 L/min by increasing the temperature to 300° C. at a rate of 1° C. per minute. The temperature was maintained for 2 hours. Then, the temperature was increased to 550° C. at a rate of 1° C. per minute and held for 2 hours. The finished catalyst sample was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 4.081% wt (equivalent to 6% wt of MoO3).
  • Example 16
  • The catalyst of this Example was prepared in a similar manner as the one of Example 5.
  • An ammoniumheptamolybdate solution was prepared by dissolving 4.63 g of ammoniumheptamolybdate in 20 mL of deionized water and adjusting the volume to 25 mL to provide a solution having a molybdenum concentration of 0.15 mol/L.
  • The zeolite support was shaped and calcined as described in Example 5. Then, 6.64 mL of the ammoniumheptamolybdate solution was mixed with 2.66 g of deionized water to form the final impregnation solution. The solution was used to impregnate 10 g of the zeolite support. The freshly impregnated zeolite was manually mixed with a spatula and aged for 0.5 hrs. The impregnated zeolite was then dried and calcined using exactly the same procedure as described in Example 6. The finished catalyst was sieved to remove the fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6% wt.
  • Example 17
  • The catalyst of this Example was prepared by the physical mixing method. The zeolite powder was calcined at a temperature of 500° C. for 4 hours to convert it to H+ form. Then, 0.8739 g MoO3 was mixed in a grinder with 10 g of the zeolite powder. The mixture was then placed in a microwave furnace and kept under nitrogen (1 L/min) at a temperature of 25° C. for 4 hours. Then, the temperature was ramped at 25° C./min to 500° C. and held for 2 hours. Next, the catalyst was cooled, mixed with 3% wt graphite and shaped into pellets with a 40 mm diameter and 5 mm height. The pellets were crushed, sieved to remove fines and obtain the desired 315-500 microns fraction for testing. The catalyst had a molybdenum content of 5.504% wt.
  • Example 18
  • An ammoniumheptamolybdate solution was prepared by dissolving 4.63 g of ammoniumheptamolybdate in 20 mL of deionized water. The volume of the solutions was then adjusted to 25 mL with deionized water to provide an impregnating solution with a molybdenum concentration of 0.15 mol/L. The zeolite powder was shaped by compacting it at 250 bar. The obtained zeolite support was calcined at a temperature of 500° C. for 4 hours. Then, an impregnation solution comprising 6.34 mL of the above ammoniumheptamolybdate solution and 2.66 g of deionized water was prepared and used to impregnate 10 g of the zeolite support in a porcelain dish. The freshly impregnated support was manually mixed with a spatula and then aged for 0.5 hrs. Then, the impregnate was placed in a programmable oven and dried under dry air (1 L/min) by increasing the temperature from ambient to 70° C. at a rate of 1° C. per minute and by holding at temperature for 10 hours. Then, the temperature was increased using the same rate to 120° C. and held for another 10 hours. Finally, using the same rate, the temperature was increased to 500° C. and held for 5 hours. The finished catalyst was sieved to remove the fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 6% wt.
  • Example 19
  • The catalyst of this Example was prepared by the physical mixture method. The zeolite powder was calcined at a temperature of 500° C. for 4 hours to convert it to H+ form. Then, 0.6383 g MoO3 was mixed with 10 g of the zeolite powder in a grinder. The obtained mixture was then placed in a microwave furnace and heated under nitrogen (1 L/min) at a temperature of 25° C. for 4 hours. Then, the temperature was increased at a rate of 25° C. per minute to 500° C. and held for 2 hours. The catalyst was cooled, mixed with 3% wt graphite and shaped into pellets with a 40 mm diameter and 5 mm height. The catalyst was then crushed, sieved to remove fines and to obtain the desired 315-500 microns fraction for testing. The catalyst had a molybdenum content of 4.081% wt (equivalent to 6% wt of MoO3).
  • Example 20
  • An ammoniumheptamolybdate solution was prepared by dissolving 3.247 g of ammoniumheptamolybdate in 10 mL of deionized water. Then, 10.0 mL of the ammoniumheptamolybdate solution was used to impregnate 10 g of the zeolite powder. The impregnation was done in a porcelain dish. Following the addition of the solution, the mixture was mixed manually with the aid of a spatula and the mix was aged for 0.5 hrs. The impregnated zeolite was then placed in a programmable oven and dried and calcined under dry air (1 L/min) by increasing temperature from ambient to 120° C. using a heating rate of 1° C. per minute and holding at temperature for 10 hours. Then, using the same heating rate, the temperature was increased to 500° C. and held for 6 hours. The finished catalyst was sieved to remove fines and to obtain the desired 315-500 microns fraction. The catalyst had a molybdenum content of 15% wt.

Claims (16)

What is claimed is:
1. A process for preparing a methane aromatization catalyst comprising: contacting an active metal oxalate with an inorganic oxide support to form a mixture, and calcining the mixture.
2. A process as claimed in claim 1 wherein the active metal oxalate is in the form of a solution that is used to impregnate the inorganic support.
3. A process as claimed in claim 1 wherein the active metal compound comprises molybdenum.
4. A process as claimed in claim 1 wherein the inorganic oxide support is a zeolite or zeolite-containing support.
5. A process as claimed in claim 1 wherein the support comprises ZSM-5 type zeolite
6. A process as claimed in claim 1 wherein the support contains zeolite and a binder
7. A process as claimed in claim 1 wherein contacting the metal oxalate with the inorganic oxide support is carried out at a temperature in the range of from 0° C. to 100° C.
8. A process as claimed in claim 1 wherein contacting the metal oxalate with the inorganic oxide support is carried out at a temperature in the range of from 15° C. to 40° C.
9. A process as claimed in claim 1 further comprising a drying step before the calcining.
10. A process as claimed in claim 9 wherein the drying and calcining comprises:
a. subjecting the impregnated support to a temperature of from 70° C. to 120° C. for at least 20 minutes;
b. increasing the temperature at a rate of from 1° C. to 10° C. per minute to a temperature of from 275° C. to 325° C.;
c. maintaining the temperature achieved in step (b) for at least 20 min;
d. increasing the temperature at a rate of from 1° C. to 30° C. per minute to a temperature of from 475° C. to 650° C.; and
e. maintaining the temperature achieved in step (d) for at least 20 min.
11. A process as claimed in claim 16 wherein the drying and calcining comprises:
a. subjecting the impregnated support to a temperature of from 70° C. to 120° C. for from 20 minutes to 240 minutes;
b. increasing the temperature at a rate of from 1° C. to 10° C. per minute to a temperature of from 275° C. to 325° C.;
c. maintaining the temperature achieved in step (b) for from 20 minutes to 240 minutes;
d. increasing the temperature at a rate of from 1° C. to 30° C. per minute to a temperature of from 475° C. to 550° C.; and
e. maintaining the temperature achieved in step (d) for from 20 minutes to 240 minutes.
12. A process as claimed in claim 8 further comprising cooling the impregnated support after calcination.
13. A process for producing aromatic hydrocarbons comprising contacting a gas stream comprising methane with a catalyst comprising molybdenum where the catalyst was prepared by contacting a molybdenum oxalate with a zeolite-containing support.
14. A process as claimed in claim 13 wherein the gas stream comprising methane has a methane concentration of from 75 to 100 volume percent.
15. A process as claimed in claim 13 wherein the gas stream comprising methane is derived from biogas.
16. A process as claimed in claim 13 wherein the gas stream containing methane is natural gas.
US14/735,447 2010-05-12 2015-06-10 Methane aromatization catalyst, method of making and method of using the catalyst Abandoned US20150274610A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/735,447 US20150274610A1 (en) 2010-05-12 2015-06-10 Methane aromatization catalyst, method of making and method of using the catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US33399510P 2010-05-12 2010-05-12
US13/105,499 US9079169B2 (en) 2010-05-12 2011-05-11 Methane aromatization catalyst, method of making and method of using the catalyst
US14/735,447 US20150274610A1 (en) 2010-05-12 2015-06-10 Methane aromatization catalyst, method of making and method of using the catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/105,499 Division US9079169B2 (en) 2010-05-12 2011-05-11 Methane aromatization catalyst, method of making and method of using the catalyst

Publications (1)

Publication Number Publication Date
US20150274610A1 true US20150274610A1 (en) 2015-10-01

Family

ID=44914954

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/105,499 Active 2032-11-18 US9079169B2 (en) 2010-05-12 2011-05-11 Methane aromatization catalyst, method of making and method of using the catalyst
US14/735,447 Abandoned US20150274610A1 (en) 2010-05-12 2015-06-10 Methane aromatization catalyst, method of making and method of using the catalyst

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/105,499 Active 2032-11-18 US9079169B2 (en) 2010-05-12 2011-05-11 Methane aromatization catalyst, method of making and method of using the catalyst

Country Status (6)

Country Link
US (2) US9079169B2 (en)
CN (1) CN102883811B (en)
BR (1) BR112012028770A2 (en)
EA (1) EA201291227A1 (en)
SG (1) SG185117A1 (en)
WO (1) WO2011143303A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9339802B2 (en) 2011-01-26 2016-05-17 Shell Oil Company Zinc containing methane aromatization catalyst, method of making a method of using the catalyst
CN102921453B (en) * 2012-10-25 2014-10-29 浙江工业大学 Method for preparing methane non-oxidative aromatization catalyst at low temperature
CN103934016B (en) * 2013-01-23 2016-08-17 中国石油化工股份有限公司 Mo/ molecular sieve carried type method for preparing catalyst
RU2525117C1 (en) * 2013-03-28 2014-08-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Method of activating methane aromatisation molybdenum-zeolite catalyst
CN103736517B (en) * 2013-12-27 2016-03-23 陕西延长石油(集团)有限责任公司碳氢高效利用技术研究中心 The activation method of a kind of methane arenes catalytic agent
CN103736518B (en) * 2013-12-27 2016-07-13 西北大学 A kind of methane arenes catalytic agent activation method in ciculation fluidized response system
KR101985861B1 (en) 2017-08-21 2019-06-04 서울대학교산학협력단 Preparation of Metal Oxide Catalyst Supported on Mesoporous HZSM-11 for Direct Dehydroaromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst
US11104623B2 (en) 2018-04-30 2021-08-31 Sabic Global Technologies B.V. Process for activating an aromatization catalyst
CN115672387B (en) * 2022-10-26 2024-03-19 中国石油大学(北京) Methane anaerobic aromatization catalyst and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009105447A1 (en) * 2008-02-20 2009-08-27 Shell Oil Company Process for the conversion of ethane to aromatic hydrocarbons

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2889287A (en) 1954-10-04 1959-06-02 California Research Corp Catalyst and method of catalyst preparation
US3042628A (en) 1957-11-04 1962-07-03 Engelhard Ind Inc Production of alumina and catalyst containing same
US3763256A (en) 1972-06-07 1973-10-02 Universal Oil Prod Co Dimerization of styrene compounds
US3997431A (en) 1972-08-09 1976-12-14 Gulf Research & Development Company Hydrodesulfurization process employing a titanium promoted catalyst
US3912660A (en) * 1973-12-26 1975-10-14 Amax Inc Method for making high surface area molybdenum metal
US4374045A (en) * 1980-05-27 1983-02-15 Mobil Oil Corporation Group IB metal modified zeolite catalysts
GB8726925D0 (en) 1987-11-18 1987-12-23 Shell Int Research Catalyst systems
FR2666249B1 (en) * 1990-09-03 1994-07-22 Inst Francais Du Petrole CATALYST AND METHOD FOR AROMATIZING HYDROCARBONS CONTAINING 2 TO 4 CARBON ATOMS PER MOLECULE.
CN1223403C (en) * 2000-07-19 2005-10-19 中国石油天然气股份有限公司兰州炼化分公司 Heavy metal-resistant matrix-type cracking catalyst and its preparing process
US20050113614A1 (en) 2003-11-24 2005-05-26 Lowe David M. Catalyst and process for selective hydrogenation
US7186871B2 (en) 2003-12-30 2007-03-06 Saudi Basic Industries Corporation Process for alkane aromatization using platinum-zeolite catalyst
DE102004005997A1 (en) * 2004-02-06 2005-09-01 Hte Ag The High Throughput Experimentation Company Iron oxide stabilized noble metal catalyst for the removal of pollutants from exhaust gases from lean-burn engines
WO2005102513A1 (en) * 2004-04-26 2005-11-03 Hte Aktiengesellschaft The High Throughput Experimentation Company Catalysts for the simultaneous removal of carbon monoxide and hydrocarbons from oxygen-rich exhaust gases and processes for the manufacture thereof
US7235507B2 (en) * 2004-08-14 2007-06-26 Sud-Chemie Inc. Catalyst for purifying diesel engine exhaust emissions
WO2006068800A2 (en) 2004-12-22 2006-06-29 Exxonmobil Chemical Patents Inc. Production of alkylated aromatic hydrocarbons from methane
US7683227B2 (en) 2004-12-22 2010-03-23 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
WO2006068814A2 (en) 2004-12-22 2006-06-29 Exxonmobil Chemical Patents, Inc. Production of aromatic hydrocarbons from methane
WO2007123523A1 (en) 2006-04-21 2007-11-01 Exxonmobil Chemical Patents Inc. Production of aromatic hydrocarbons from methane
JP3835765B2 (en) * 2005-02-10 2006-10-18 勝 市川 Process for producing aromatic hydrocarbons
EP1879833A4 (en) 2005-05-02 2009-09-30 Symyx Technologies Inc High surface area metal and metal oxide materials and methods of making same
JP5179882B2 (en) * 2006-01-31 2013-04-10 旭化成ケミカルズ株式会社 Catalyst for the production of aromatic hydrocarbon compounds
RU2454390C2 (en) 2006-04-21 2012-06-27 Эксонмобил Кемикэл Пейтентс Инк. Synthesis of aromatic compounds from methane
AU2007240813B2 (en) 2006-04-21 2011-03-17 Exxonmobil Chemical Patents Inc. Production of aromatics from methane
US7893308B2 (en) 2006-08-25 2011-02-22 Exxonmobil Chemical Patents Inc. Production of aromatics from methane
CN101652182B (en) 2007-04-04 2013-11-06 埃克森美孚化学专利公司 Production of aromatics from methane
WO2009014867A1 (en) 2007-07-24 2009-01-29 Exxonmobil Chemical Patents Inc. Production of aromatics from aliphatics
WO2009020045A1 (en) 2007-08-03 2009-02-12 Mitsui Chemicals, Inc. Process for production of aromatic hydrocarbons
WO2009076005A1 (en) 2007-12-05 2009-06-18 Dow Global Technologies Inc. Continuous process for oxygen-free conversion of methane
JP5236013B2 (en) * 2008-01-16 2013-07-17 エイジェンシー フォー サイエンス,テクノロジー アンド リサーチ Catalyst preparation and methods of using such catalysts
WO2009106474A2 (en) 2008-02-25 2009-09-03 Olaf Timpe Phase-enriched movtenb mixed oxide catalyst and methods for the preparation thereof
EP2276566A1 (en) * 2008-04-08 2011-01-26 Basf Se Catalyst for the dehydroaromatisation of methane and mixtures containing methane
US20110160508A1 (en) * 2008-05-21 2011-06-30 Ding Ma Production of aromatics from methane
JP5564769B2 (en) * 2008-08-12 2014-08-06 株式会社明電舎 Lower hydrocarbon aromatization catalyst and method for producing aromatic compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009105447A1 (en) * 2008-02-20 2009-08-27 Shell Oil Company Process for the conversion of ethane to aromatic hydrocarbons

Also Published As

Publication number Publication date
WO2011143303A3 (en) 2012-04-12
EA201291227A1 (en) 2013-05-30
CN102883811A (en) 2013-01-16
US9079169B2 (en) 2015-07-14
WO2011143303A2 (en) 2011-11-17
SG185117A1 (en) 2012-12-28
CN102883811B (en) 2016-05-04
BR112012028770A2 (en) 2017-07-11
US20120123176A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
US9079169B2 (en) Methane aromatization catalyst, method of making and method of using the catalyst
US9339802B2 (en) Zinc containing methane aromatization catalyst, method of making a method of using the catalyst
US9144790B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
US8946107B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
EP2073930B1 (en) Bimetallic alkylation catalysts
US8871990B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
US8809608B2 (en) Process for the conversion of lower alkanes to aromatic hydrocarbons
WO1996013331A1 (en) Hydrocarbon conversion catalyst and method of catalytic conversion therewith
KR20110082600A (en) Stable shape-selective catalyst for aromatic alkylation and methods of using and preparing
WO2011053746A1 (en) Process for the conversion of lower alkanes to aromatic hydrocarbons
CN108311176B (en) In-situ activation method of catalyst
WO2011056917A1 (en) Process for the regeneration of hydrocarbon conversion catalysts
US7060644B2 (en) Aromatic alkylation catalyst and method
WO2011143306A2 (en) Process for the conversion of lower alkanes to aromatic hydrocarbons
US9861967B2 (en) Dehydroaromatization catalyst, method of making and use thereof
US20160368836A1 (en) Process for the aromatization of a methane-containing gas stream using zirconium hydrogen acceptor particles
GB2474822A (en) Catalyst for aromatization of lower hydrocarbon, and process for production of aromatic compound
CN114425408B (en) Aromatization catalyst and preparation method thereof
US20200078775A1 (en) Regeneration of dehydroaromatization of catalyst with constant conversion
US20160368835A1 (en) Process for the aromatization of a methane-containing gas stream using titanium hydrogen acceptor particles
CN112892585A (en) Modified silicon-aluminum zeolite, catalyst, preparation method and application thereof, and method for preparing aromatic hydrocarbon by light hydrocarbon dehydrogenation and aromatization

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION