RU2525117C1 - Способ активации молибден-цеолитного катализатора ароматизации метана - Google Patents

Способ активации молибден-цеолитного катализатора ароматизации метана Download PDF

Info

Publication number
RU2525117C1
RU2525117C1 RU2013113743/04A RU2013113743A RU2525117C1 RU 2525117 C1 RU2525117 C1 RU 2525117C1 RU 2013113743/04 A RU2013113743/04 A RU 2013113743/04A RU 2013113743 A RU2013113743 A RU 2013113743A RU 2525117 C1 RU2525117 C1 RU 2525117C1
Authority
RU
Russia
Prior art keywords
catalyst
temperature
methane
stream
hours
Prior art date
Application number
RU2013113743/04A
Other languages
English (en)
Inventor
Олег Николаевич Протасов
Николай Александрович Мамонов
Дмитрий Александрович Григорьев
Михаил Николаевич Михайлов
Original Assignee
Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Нефтяная компания "Роснефть" filed Critical Открытое акционерное общество "Нефтяная компания "Роснефть"
Priority to RU2013113743/04A priority Critical patent/RU2525117C1/ru
Application granted granted Critical
Publication of RU2525117C1 publication Critical patent/RU2525117C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к каталитическим процессам переработки метансодержащих газов, в частности к способам повышения каталитической активности молибден-цеолитного катализатора для получения ароматических углеводородов. Способ активации заключается в том, что на первом этапе катализатор нагревают в потоке водорода до температуры 675…725°С и выдерживают при этой температуре в течение 1…4 часов, на втором его охлаждают до температуры не выше 50°С и выдерживают при данной температуре в среде инертного газа в течение 0,5…3 ч, а на третьем этапе катализатор повторно нагревают в потоке водорода до температуры первого этапа и выдерживают при указанной температуре в течение 0,5…2 часов. Активация катализатора позволяет осуществлять процесс конверсии метана в ароматические углеводороды с высокой эффективностью и достигать большего выхода ароматических углеводородов. 2 ил., 5 пр.

Description

Изобретение относится к каталитическим процессам переработки метансодержащих газов, в частности к способам повышения каталитической активности молибден-цеолитного катализатора, и может быть использовано в нефтехимической промышленности для получения ароматических углеводородов.
Ароматические углеводороды, в частности бензол, толуол, этилбензол и ксилолы, являются важными химическими продуктами массового производства в нефтехимической промышленности. В настоящее время ароматические соединения наиболее часто получают разнообразными методами из исходных материалов на основе природной нефти, включая каталитический реформинг и каталитический крекинг.
Однако по мере того как мировые поставки исходных материалов на основе природной нефти уменьшаются, потребность в нахождении альтернативных источников ароматических углеводородов возрастает. Одним из возможных альтернативных источников ароматических углеводородов может служить метан, который является основным компонентом природного газа и биогаза. Мировые запасы природного газа постоянно пополняются, и в настоящее время месторождений природного газа открывается больше, чем нефтяных месторождений.
Из-за проблем, связанных с транспортировкой больших объемов природного газа, большую часть природного газа, добываемого вместе с нефтью, в частности в отдаленных местах, сжигают в факеле. Методом переработки природного газа является превращение содержащихся в нем алканов непосредственно в более высокомолекулярные углеводороды, такие как ароматические углеводороды, при условии, что могут быть преодолены сопутствующие этому технические трудности.
Значительная часть способов, предложенных в настоящее время для превращения метана в жидкие углеводороды, включает в себя вначале превращение, или конверсию, метана в синтез-газ (смесь Н2 и СО). Однако производство синтез-газа связано с большими капитальными затратами и является энергоемким процессом, вследствие чего предпочтительны пути, которые не требуют получения синтез-газа.
Ароматизация метана является привлекательным способом получения продуктов с высокой добавленной стоимостью напрямую из метансодержащих газов. Метод ароматизации метана на молибден-цеолитных катализаторах известен с 1993 года (Wang и др. Catal. Lett., 1993, 21, 35-41). Впоследствии было сделано большое количество предложений по улучшению показателей работы молибден-цеолитных катализаторов. В зависимости от метода приготовления состояние молибдена на поверхности цеолита различается по дисперсности, доступности для реагентов и способности к восстановлению. Наиболее простым и дешевым методом приготовления молибден-цеолитных катализаторов, обеспечивающим стабильность их структурных и каталитических свойств, является метод твердофазного синтеза. Важным вопросом является выбор подходящего способа активации катализатора.
Известен метод активации молибден-цеолитного катализатора в процессе взаимодействия катализатора с реакционной смесью (метансодержащим газом) при температуре реакции или в процессе разогрева до данной температуры (Патент США №6552243).
Существенным недостатком метода является то, что часть соединений молибдена не восстанавливается в условиях реакции с образованием активных центров или их прекурсоров, что снижает активность катализатора в реакции ароматизации метана.
Известен способ предварительной активации катализатора в водороде или смеси низших углеводородов с водородом при температурах 600-1000°С в течение до 100 ч (Патент США №7982080).
Недостатком этого способа является ухудшение каталитических свойств при длительном воздействии водорода на молибден-цеолитные катализаторы, приготовленные методом твердофазного синтеза.
Известен способ активации катализатора путем обработки в смеси метан/водород (4:1) при 700°С (Европейские патенты ЕР 2116301 и ЕР 2140939) с целью карбидирования поверхности молибден-цеолитного катализатора и образования прекурсоров активных центров ароматизации метана.
Недостатком метода является пониженное парциальное давление водорода, что может приводить к понижению эффективности восстановительной активации и быстрому падению активности катализатора.
Наиболее близким техническим решением к данному изобретению является способ восстановительной активации молибден-цеолитного катализатора (Заявка на патент США №2012/0123176), принятый за прототип. Способ заключается в активации катализатора в потоке водорода 5 л/ч при давлении 1 атм и ступенчатом подъеме температуры до 240°С со скоростью 0,5°С/мин и выдержкой при этой температуре в течение 4 ч, последующем нагреве до 480°С со скоростью 2°С/мин и выдержкой при 480°С в течение 2 ч, последующем нагреве до 700°С со скоростью 2°С/мин и восстановлении при 700°С в течение не менее 1,5 ч.
Недостатком способа является длительная обработка при пониженных температурах, не позволяющих формироваться прекурсорам активных центров на поверхности молибден-цеолитных катализаторов, приготовленных методом твердофазного синтеза, а также недостаточно высокий выход ароматических углеводородов в процессе ароматизации метана в присутствии молибден-цеолитных катализаторов, приготовленных методом твердофазного синтеза, после активации известным способом.
Целью данного изобретения является увеличение выхода ароматических углеводородов в процессе ароматизации метана в присутствии катализатора 6%MoO3+94%HZSM-5, полученного методом твердофазного синтеза.
Техническим результатом, обеспечивающим достижение поставленной цели, служит повышение каталитической активности катализатора за счет применения новой технологии активации катализатора.
Технический результат достигается тем, что восстановление катализатора осуществляют в три этапа, на первом из которых катализатор нагревают в потоке водорода до температуры 675…725°С и выдерживают при этой температуре в течение 1…4 часов, на втором его охлаждают до температуры не выше 50°С и выдерживают при данной температуре в среде инертного газа в течение 0,5…3 ч, а на третьем этапе катализатор повторно нагревают в потоке водорода до температуры первого этапа и выдерживают при указанной температуре в течение 0,5…2 часов.
Указанные отличительные признаки существенны.
Активация молибден-цеолитного катализатора с восстановлением описанным способом позволяет осуществлять процесс конверсии метана в ароматические углеводороды с большей эффективностью и получать больший выход ароматических углеводородов по сравнению с катализатором после его активации в токе сырьевого метансодержащего газа или в соответствии с другими известными способами активации в токе водорода.
Молибден-цеолитный катализатор, который активируют в соответствии с предлагаемым способом, приготовлен методом твердофазного синтеза из оксида молибдена МoО3 и цеолита HZSM-5 и имеет состав 6 масс.% МоО3+94 масс.% HZSM-5.
Оксид молибдена получают прокаливанием четырехводного гептамолибдата аммония при 500°С в течение 5 ч. Цеолит HZSM-5 получают прокаливанием аммонийной формы цеолита (NH4)ZSM-5 при 500°С в течение 5 часов. Навески порошков цеолита и оксида молибдена в соотношении 94 и 6% масс. перетирают в агатовой ступке в течение 0,5 ч. Затем механическую смесь МoО3 и HZSM-5 прокаливают при 500°С (скорость подъема температуры 1°С/мин) в течение 3 ч. Полученный порошок прессуют в таблетки, измельчают и просеивают с получением фракции O3 0,2-0,425 мм. 4 мл катализатора перемешивают с 4 мл измельченного кварцевого стекла той же фракции и помещают в реактор с неподвижным слоем катализатора и проводят предварительную активацию катализатора.
Конверсию метана в ароматические углеводороды осуществляют при 700°С, при объемной скорости подачи метана 1500 мл/(гкат·ч) и парциальном давлении метана 1 атм.
Для определения эффективности процесса ароматизации метана в присутствии катализатора 6%MoO3+HZSM-5 после его активации используют следующие показатели:
- конверсии метана, КCH4, %;
- селективности в отношении образования ароматических углеводородов SCx где х=6 (для бензола), 7 (для толуола) и 10 (для нафталина);
- суммарного выхода основных продуктов ароматизации (бензола, толуола, нафталина), выход БТН, %.
Расчет степени конверсии метана осуществляют по следующей формуле:
K C H 4 = F C H 4 в х F C H 4 в ы х F C H 4 в х 100 % ,
Figure 00000001
где
F C H 4 в х
Figure 00000002
- мольный поток метана на входе в реактор, моль/ч;
F C H 4 в ы х
Figure 00000003
- мольный поток метана на выходе из реактора, моль/ч.
Степень конверсии метана показывает суммарный расход метана с учетом всех побочных реакций.
Селективность по продуктам ароматизации метана рассчитывают по формуле:
S C x = F C x в ы х x F C H 4 в х F C H 4 в ы х 100 %
Figure 00000004
F C x в ы х
Figure 00000005
- мольный поток продукта Сх на выходе из реактора, моль/ч
х - число атомов углерода в молекуле соединения.
Селективность показывает, какая часть превращенного метана была израсходована на образование соединения Сх.
Выход ароматических углеводородов (выход БТН) рассчитывают как суммарный выход трех основных продуктов реакции - бензола, толуола и нафталина:
Выход БТН=(SC6+SC7+SC10)·К(СН4)/100%. Определение содержания исходных и образующихся веществ в отходящих из реактора ароматизации метана газах может быть осуществлено любым известным способом, например методом газо-жидкостной хроматографии.
Процесс активации согласно настоящему изобретению осуществляют следующим образом:
Свежеприготовленный катализатор фракции 0,2-0,425 мм в количестве 4 мл катализатора перемешивают с 4 мл измельченного кварцевого стекла фракции 0,2-0,425 мм и помещают в реактор с неподвижным слоем катализатора. Подают в реактор водород при объемной скорости 2000 ч-1 и атмосферном давлении. Затем катализатор нагревают до температуры 675-725°С и выдерживают при этой температуре в токе водорода в течение 1-4 ч.
После первого этапа активации заменяют поток водорода на поток инертного газа и охлаждают катализатор в токе инертного газа, который выбран из аргона, гелия или азота, до температуры не более 50°С и с целью пассивации поверхности катализатора выдерживают в атмосфере инертного газа в течение 0,5-3 ч. Затем поток инертного газа меняют на поток водорода и катализатор нагревают до температуры в интервале 675-725°С и выдерживают при этой температуре в течение 0,5-2 ч.
После завершения второго этапа активации катализатор в токе водорода термостатируют при температуре 700°С, заменяют поток водорода на поток метана или метансодержащего газа (объемная скорость метана 1500 мл/(гкат·ч)) и проводят синтез ароматических углеводородов из метана в его присутствии.
Эффективность работы катализатора оценивают по остаточному содержанию метана в составе отходящих газов и по суммарному выходу (в %) ароматических углеводородов - бензола, толуола и нафталина - в процессе конверсии метана (объемная скорость потока 1500 мл/(гкат·ч)) в ароматические углеводороды при 700°С и парциальном давлении метана в метансодеражащем газе 1 атм.
На фиг.1 представлен график зависимости конверсии метана от длительности процесса ароматизации метана для катализатора 6%MoO3+94%HZSM-5, активированного в соответствии с примерами 1-5. Пустыми символами обозначены примеры сравнения, а заполненными - примеры по изобретению.
На фиг.2 представлен график выхода БТН в зависимости от длительности процесса ароматизации метана для катализатора 6%MoO3+94%HZSM-5, активированного в соответствии с примерами 1-5. Пустыми символами обозначены примеры сравнения, а заполненными - примеры по изобретению.
Способ реализуют в соответствии со следующими примерами. Примеры 1 и 2 являются примерами сравнения и иллюстрируют активацию катализатора в реакционной смеси в процессе нагрева до начальной температуры процесса как наиболее часто предлагаемый способ предварительной активации молибден-цеолитных катализаторов ароматизации метана (например, Патент США №6552243) и реализацию способа в соответствии с прототипом (Заявка на патент США №2012/0123176).
Примеры 3-5 показывают реализацию способа по данному изобретению.
Пример 1
Катализатор 6%MoO3+94%HZSM-5 активируют в потоке метана в процессе разогрева до температуры 700°С (скорость нагрева 10°С/мин), после чего проводят конверсию метана в ароматические углеводороды.
Пример 2
Катализатор 6%MoO3+94%HZSM-5 активируют при ступенчатом подъеме температуры от комнатной температуры до 240°С (скорость нагрева 0,5°С/мин) и выдержкой при этой температуре в течение 4 ч, последующем нагреве до 480°С (скорость нагрева 2°С/мин) и выдержкой при 480°С в течение 2 ч, последующем нагреве до 700°С (скорость нагрева 2°С/мин) и восстановлении при 700°С в течение 3 часов. После этого заменяют поток водорода на поток метансодержащего газа и проводят конверсию метана в ароматические углеводороды.
Пример 3
Катализатор 6%MoO3+94%HZSM-5 нагревают в токе водорода до 675°С и выдерживают при этой температуре в течение 4 ч. Затем заменяют поток водорода на поток азота и катализатор охлаждают в токе азота до 30°С и выдерживают в атмосфере азота в течение 0,5 ч. После поток азота меняют на поток водорода и катализатор нагревают до температуры 675°С и выдерживают при этой температуре в течение 2 ч, нагревают катализатор в токе водорода до 700°С, заменяют поток водорода на поток метансодержащего газа и проводят конверсию метана в ароматические углеводороды.
Пример 4
Катализатор 6%MoO3+94%HZSM-5 нагревают в токе водорода до 700°С и выдерживают при этой температуре в течение 2 ч. Затем заменяют поток водорода на поток гелия и катализатор охлаждают в токе гелия до 40°С и выдерживают в атмосфере гелия в течение 2 ч. После поток гелия меняют на поток водорода и катализатор нагревают до температуры 700°С и выдерживают при этой температуре в течение 1 ч, заменяют поток водорода на поток метансодержащего газа и проводят конверсию метана в ароматические углеводороды.
Пример 5
Катализатор 6%MoO3+94%HZSM-5 нагревают в токе водорода до 725°С и выдерживают при этой температуре в течение 1 ч. Затем заменяют поток водорода на поток аргона и катализатор охлаждают в токе аргона до 50°С и выдерживают в атмосфере аргона в течение 3 ч. После поток аргона меняют на поток водорода и катализатор нагревают до температуры 725°С и выдерживают при этой температуре в течение 0,5 ч, охлаждают катализатор в токе водорода до 700°С, заменяют поток водорода на поток метансодержащего газа и проводят конверсию метана в ароматические углеводороды.
Сравнение конверсии метана и выхода ароматических углеводородов (БТН) при проведении ароматизации метана в присутствии катализатора 6%MoO3+94%HZSM-5 после его активации в соответствии со способами, представленными в примерах 1-5, приведено на фигурах 1 и 2 соответственно.
Фиг.1 демонстрирует, что катализатор 6%MoO3+94%HZSM-5, активированный в соответствии со способом по данному изобретению (Примеры 3-5), позволил достичь большей конверсии метана, чем катализатор 6%MoO3+94%HZSM-5, активированный по способам в примерах сравнения (Примеры 1 и 2).
Фиг.2 демонстрирует, что катализатор 6%MoO3+94%HZSM-5, активированный в соответствии со способом по данному изобретению (Примеры 3-5), позволил получить больший выход ароматических углеводородов, чем катализатор 6%MoO3+94%HZSM-5, активированный по способам в примерах сравнения (Примеры 1 и 2).
Катализатор 6%MoO3+94%HZSM-5 после активации по способу в соответствии с данным изобретением позволяет достигать большей конверсии метана и более высокого выхода ароматических углеводородов по сравнению с катализатором 6%MoO3+94%HZSM-5 после активации известными способами.

Claims (1)

  1. Способ активации молибден-цеолитного катализатора, включающий нагрев катализатора в потоке водорода и последующее его восстановление, отличающийся тем, что восстановление катализатора осуществляют в три этапа, на первом из которых катализатор нагревают в потоке водорода до температуры 675…725°С и выдерживают при этой температуре в течение 1…4 часов, на втором его охлаждают до температуры не выше 50°С и выдерживают при данной температуре в среде инертного газа в течение 0,5…3 ч, а на третьем этапе катализатор повторно нагревают в потоке водорода до температуры первого этапа и выдерживают при указанной температуре в течение 0,5…2 часов.
RU2013113743/04A 2013-03-28 2013-03-28 Способ активации молибден-цеолитного катализатора ароматизации метана RU2525117C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013113743/04A RU2525117C1 (ru) 2013-03-28 2013-03-28 Способ активации молибден-цеолитного катализатора ароматизации метана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013113743/04A RU2525117C1 (ru) 2013-03-28 2013-03-28 Способ активации молибден-цеолитного катализатора ароматизации метана

Publications (1)

Publication Number Publication Date
RU2525117C1 true RU2525117C1 (ru) 2014-08-10

Family

ID=51355227

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013113743/04A RU2525117C1 (ru) 2013-03-28 2013-03-28 Способ активации молибден-цеолитного катализатора ароматизации метана

Country Status (1)

Country Link
RU (1) RU2525117C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690947C1 (ru) * 2019-02-11 2019-06-07 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Способ восстановления активности цеолитсодержащего катализатора

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552243B2 (en) * 2000-07-27 2003-04-22 Conoco Phillips Company Catalyst and process for aromatic hydrocarbons production from methane
US7589246B2 (en) * 2007-04-04 2009-09-15 Exxonmobil Chemical Patents Inc. Production of aromatics from methane
US20100137666A1 (en) * 2007-06-29 2010-06-03 Meidensha Corporation Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
US20120123176A1 (en) * 2010-05-12 2012-05-17 Shell Oil Company Methane aromatization catalyst, method of making and method of using the catalyst
RU2454390C2 (ru) * 2006-04-21 2012-06-27 Эксонмобил Кемикэл Пейтентс Инк. Получение ароматических соединений из метана

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552243B2 (en) * 2000-07-27 2003-04-22 Conoco Phillips Company Catalyst and process for aromatic hydrocarbons production from methane
RU2454390C2 (ru) * 2006-04-21 2012-06-27 Эксонмобил Кемикэл Пейтентс Инк. Получение ароматических соединений из метана
US7589246B2 (en) * 2007-04-04 2009-09-15 Exxonmobil Chemical Patents Inc. Production of aromatics from methane
US20100137666A1 (en) * 2007-06-29 2010-06-03 Meidensha Corporation Catalyst for aromatization of lower hydrocarbons and process for production of aromatic compounds
US20120123176A1 (en) * 2010-05-12 2012-05-17 Shell Oil Company Methane aromatization catalyst, method of making and method of using the catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690947C1 (ru) * 2019-02-11 2019-06-07 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Способ восстановления активности цеолитсодержащего катализатора

Similar Documents

Publication Publication Date Title
CN104230615B (zh) 生物质衍生物γ-戊内酯催化转化制芳烃和环戊烯酮的方法
JP5371692B2 (ja) 共役ジオレフィンの製造方法
RU2478426C2 (ru) Катализатор и способ конвертации природного газа в высокоуглеродистые соединения
JP5025477B2 (ja) エチレン及びプロピレンの製造方法
JP4879574B2 (ja) エチレン及びプロピレンの製造方法
RU2732247C1 (ru) Катализатор для синтеза ароматических углеводородов и способ его получения
JP2003026613A (ja) 低級炭化水素から芳香族炭化水素と水素を製造する方法
US10815162B2 (en) Method for directly preparing aromatics from syngas
CN104192794A (zh) 将二氧化碳催化加氢成合成气混合物
JPS6245539A (ja) 炭化水素供給原料からの芳香族炭化水素の製造方法
CN101244971A (zh) 一种生物乙醇高效脱水制乙烯的合成方法
TW201016641A (en) Process for production of olefin, and production apparatus for same
MX2013005223A (es) Produccion de combustible multietapas de circuito sencillo.
CN105254462B (zh) 一种甲醇制烯烃并联产汽油和芳烃的工艺
JP2006116439A (ja) エチレン製造用触媒およびこの触媒を用いるエチレンの製造方法
Wang et al. Production of pure hydrogen and more valuable hydrocarbons from ethane on a novel highly active catalyst system with a Pd-based membrane reactor
CN102380414B (zh) 一种用于甲醇转化制备烯烃的催化剂及应用方法
JP2008106056A (ja) プロピレンの製造方法
Wang et al. The influence of zinc loadings on the selectivity control of bio-ethanol transformation over MgO-SiO2 catalysts
RU2525117C1 (ru) Способ активации молибден-цеолитного катализатора ароматизации метана
TWI342306B (ru)
Liu et al. Methane dehydroaromatization on Mo/HMCM-22 catalysts: effect of SiO 2/Al 2 O 3 ratio of HMCM-22 zeolite supports
Ramos-Yataco et al. Assessment of catalysts for oxidative coupling of methane and ethylene
CA3095560A1 (en) Light hydrocarbon partial oxidation catalyst and carbon monoxide production method using same
RU2375344C1 (ru) Способ получения полностью дейтерированных углеводородов c5+