CN102770391A - LiCoO2烧结体的制造方法及溅射靶材 - Google Patents

LiCoO2烧结体的制造方法及溅射靶材 Download PDF

Info

Publication number
CN102770391A
CN102770391A CN2010800615909A CN201080061590A CN102770391A CN 102770391 A CN102770391 A CN 102770391A CN 2010800615909 A CN2010800615909 A CN 2010800615909A CN 201080061590 A CN201080061590 A CN 201080061590A CN 102770391 A CN102770391 A CN 102770391A
Authority
CN
China
Prior art keywords
licoo
sintered compact
powder
pressure
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800615909A
Other languages
English (en)
Other versions
CN102770391B (zh
Inventor
金豊
邹弘纲
桥口正一
三岛隆则
荻沢隆俊
井手上涉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of CN102770391A publication Critical patent/CN102770391A/zh
Application granted granted Critical
Publication of CN102770391B publication Critical patent/CN102770391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种可以稳定地制造高密度烧结体的LiCoO2烧结体的制造方法及溅射靶材。本发明的实施方式涉及的LiCoO2烧结体的制造方法包括在模具中填充LiCoO2粉末的工序。对所述模具内进行减压,并在所述模具内在800℃以上880℃以下的温度下对所述LiCoO2粉末进行加压烧结。根据所述制造方法,可以稳定地制造具有95%以上的相对密度、10μm以上30μm以下的平均粒径的LiCoO2烧结体。

Description

LiCoO2烧结体的制造方法及溅射靶材
技术领域
本发明涉及一种例如用于制造薄膜锂二次电池正极的LiCoO2烧结体制造方法及溅射靶材。
背景技术
近年来,不断开发一种薄膜锂二次电池。薄膜锂二次电池具有以正极及负极夹持固体电解质的结构。例如,固体电解质使用LiPON(含氮磷酸锂)膜,正极使用LiCoO2(钴酸锂)膜,负极使用金属Li膜。
作为LiCoO2膜的形成方法,周知一种溅射含有LiCoO2的靶材,并在基板上形成LiCoO2膜的方法。下述专利文献1中记载了一种通过DC脉冲放电来溅射具有3~10kΩ·cm电阻率的LiCoO2靶材从而在基板上形成LiCoO2膜的方法,但没有记载LiCoO2靶材的详细的制造方法。
一般,溅射靶材的制造方法有以下2种,即将材料溶解并铸造的方法、以及对原料粉末成型体进行烧结的方法。另外,关于溅射靶材的质量要求列举以下四点:第一,控制纯度;第二,晶体组织微细且晶体粒径的分布狭窄;第三,组成分布均匀;第四,在将粉末作为原料的情况下烧结体的相对密度较高。这里,所谓相对密度是指多孔体的密度与其相同组分的材料在无气孔状态下的密度的比。
专利文献1:日本特开2008-45213号公报
在使用原料粉末烧结体构成溅射靶材的情况下,所述第一~第三材料组织上的主要条件通过调整原料粉末可以比较容易满足。但,对于第四个主要条件即高密度化而言,其现状为由于材料固有的物性(物理性质、化学性质)影响较大,因此无法容易地达到。特别是,存在LiCoO2晶体具有层状构造,层间易于剥离,因此在制造烧结体时及制造后容易破裂,从而无法稳定地制造高密度烧结体的问题。
发明内容
鉴于所述事实,本发明的目的在于提供一种可以稳定地制造高密度烧结体的LiCoO2烧结体的制造方法及溅射靶材。
为了实现所述目的,本发明的实施方式涉及的LiCoO2烧结体的制造方法包括在模具中填充LiCoO2粉末的工序。对所述模具内减压。在所述模具内在800℃以上880℃以下的温度下对所述LiCoO2粉末进行加压烧结。
本发明的实施方式涉及的溅射靶材由LiCoO2烧结体构成,具有95%以上的相对密度、10μm以上30μm以下的平均粒径。
附图说明
图1为简要地示出本发明的实施方式中说明的、LiCoO2粉末的差热分析结果的图;
图2为简要地示出本发明的实施方式中说明的、LiCoO2粉末的升温解吸气体分析结果的图;
图3为典型的真空热压装置的简要结构图;
图4为典型的热等静压装置的简要结构图;
图5为本发明的实施方式涉及的LiCoO2烧结体制造时的温度和负荷的曲线的图;
图6为表示所述烧结体样品的烧结温度与相对密度之间的关系图;
图7为表示利用图5的曲线处理的真空热压装置内的压力变化情况的图。
附图标记说明
DTA      差热分析
TG       热重分析
DTG      热重变化率
10        真空热压装置
20        热等静压装置
S         烧结体
具体实施方式
本发明的实施方式涉及的LiCoO2烧结体的制造方法包括在模具中填充LiCoO2粉末的工序。对所述模具内减压。在所述模具内在800℃以上880℃以下的温度下对所述LiCoO2粉末进行加压烧结。
根据所述制造方法,可以稳定地制造相对密度95%以上的高密度LiCoO2烧结体。
对所述LiCoO2粉末进行加压烧结的工序可以在所述模具内以200kg/cm2以上的压力对所述LiCoO2粉末进行加压。由此,可以稳定地制造相对密度95%以上的高密度LiCoO2烧结体。
对所述LiCoO2粉末进行加压烧结的工序可以采用真空热压法,也可以采用热等静压法。任何一种方法都可以稳定地制造相对密度95%以上的高密度LiCoO2烧结体。
本发明的实施方式涉及的溅射靶材由LiCoO2烧结体构成,具有95%以上的相对密度、10μm以上30μm以下的平均粒径。
由此,可以抑制颗粒的产生,从而能够基于直流电力与高频电力的重叠放电稳定地进行溅射。
以下,参照附图,对本发明的实施方式进行说明。
在本实施方式中,为了制造具有均匀的晶体组织、高相对密度的LiCoO2(钴酸锂)烧结体,采用真空热压法或热等静压法等加压烧结法。考虑到氧化物粉末的物性对烧结方法、烧结条件的影响较大,因此这里首先对LiCoO2粉末由加热引起的状态变化进行说明。
[初步研究1:由加热引起的状态变化]
图1为简要地示出在Ar气氛中对市售(日本化学工业株式会社制造的“CellSeed(注册商标)C-5”)(日本化学工業株式会社製「セルシ一ド(登録商標)C-5」))的LiCoO2粉末进行加热时的状态变化的实验结果。测量装置使用爱发科理工公司(アルバツク理工社)制造的差热分析装置“TGD-9600”。调查在Ar气流中以固定的升温速度(20℃/min.)加热时的样品的热重(Thermogravimetry,TG)变化,如图1所示,确认了直至1050℃左右仅有轻微的重量减少,当与此相比变成更高温度时,发生急剧的重量减少。认为直至1050℃的缓慢的重量减少是由于来自样品的气体放出,并且,确认了由于在1100℃左右表现出吸热反应,因此在该温度附近发生熔解。
[初步研究2:升温解吸特性]
另一方面,图2为简要地示出在真空气氛下对上述市售的LiCoO2粉末进行加热时的压力变化及放出气体的实验结果。测量装置使用爱发科理工公司制造的升温解吸气体分析装置“TDS-M202P”。如图2所示,在超过800℃的温度区域内总压开始上升,从900℃附近这种变化变得显著。总压变化与氧原子的离子强度有很强的对应关系,因此可判断LiCoO2发生分解后放出氧气。另外,虽然图示省略,但确认了在200℃、500℃、900℃附近排放出水分、甲烷和氨。
[初步研究结果]
以上调查了Ar气流中及真空气氛下的LiCoO2原材料粉末的状态变化,其结果表明从超过800℃的温度区域开始LiCoO2发生分解。由此,确认了与在Ar气流中、即压力上未减压的条件下显著不同的现象。认为这些结果是基于LiCoO2的特性,在其他不同的市售材料中也示出了同样的现象。
[制造方法的研究]
接着,针对烧结体的制造方法进行研究。作为粉末烧结方法,已知的是在对粉末压缩成型后进行常压烧制的方法和同时实施加压与加热的加压烧结法。前者称为Press&Sintering(加压-烧结)法,后者称为热压(Hot Press,HP)法或热等静压(Hot Isostatic Press,HIP)法。一般,认为加压烧结法适用于获得高熔点金属等具有微细均匀的晶体组织和高相对密度的烧结体的情况,而对像LiCoO2那样在氧化物中在较低温度下发生分解的粉末而言,烧结法则不适合。
本发明人对粉末物性的初步实验进行了仔细研究,其目的在于阐明在实现较高相对密度的目的下适用加压烧结法的情况的最佳条件范围。根据初步研究结果,判断出在担心分解的情况下温度上限为900℃。并且,考虑到结晶性的提高与烧结的进行,则推定最佳烧结温度在800℃~900℃范围内。根据本发明人的实验,在烧结温度840℃、烧结负荷300kg/cm2条件下对LiCoO2粉末进行烧结,可以得到具有96.1%相对密度的烧结体。该烧结体的平均晶体粒径为20μm左右。
上述烧结负荷的大小在HP法中并非是特别高的值,而是在HIP法中是相当小的值。因此,若以该烧结负荷试制烧结体,则充分满足HIP中的烧结负荷条件。此外,在减压下对粉末进行烧结的情况下,所述烧结温度范围内热压腔室内的压力开始上升,但由于放出该气体引起的压力上升与成型负荷相比为小得多的压力,因此通过烧结时的负荷可以充分抑制压力的上升。
基于以上研究结果,下面对本发明的实施方式涉及的LiCoO2烧结体的制造方法进行说明。
[基于真空热压(HP)法的烧结体的制造方法]
本实施方式涉及的LiCoO2烧结体的制造方法包括:在模具内填充LiCoO2粉末的工序;对所述模具内减压的工序;以及在模具内对LiCoO2粉末加压烧结的工序。
作为原料粉末,使用平均粒径(D50)例如为20μm以下的LiCoO2粉末。LiCoO2粉末也可以是市售的粉末,也可以由湿式法或干式法制造。作为市售的原料粉末举出日本化学工业株式会社制造的“CellSeed(注册商标)C-5”或“CellSeed(注册商标)C-5H”。
图3为真空热压装置的简要结构图。真空热压装置10包括腔室11、腔室11内设置的模具12、对模具12内填充的原料粉末进行压缩的冲头13、内置加热器并对冲头加压的撞锤14、对腔室11的内部进行排气的真空泵15。热压法是通过在碳(石墨)制或金属制的模具12中填充原料粉末并在规定温度下加压进行烧结而获得烧结体S的方法。真空热压法中,在使用真空泵15形成的减压气氛下进行烧结处理。
腔室11内的压力只要是低于大气压的压力即可,并无特别限定,例如设为0.13Pa~0.0013Pa(1×10-3托~1×10-5托),在本实施方式中,设为0.013Pa(1×10-4托)左右。撞锤14的加压压力也无特别限定,例如设为200kg/cm2以上,在本实施方式中设为300kg/cm2。另外,加压压力的上限根据使用的压力机的性能来定,例如设为1000kg/cm2
烧结体S的烧结温度设为800℃以上880℃以下。由此,可以稳定地获得具有95%以上的相对密度的LiCoO2烧结体。当烧结温度不到800℃时以及烧结温度超过880℃时,无法稳定地制造具有95%以上的相对密度的LiCoO2烧结体。并且,当烧结温度超过880℃时,由于担心原料粉末分解引起组分变动以及晶粒的粗大化,因此不优选。
烧结温度下的保持时间例如为1小时~4小时,在本实施方式中为1小时。当然,可以从室温连续升温至规定的烧结温度,但为了促进来自原料粉末的气体放出、或模具12内的残留气体的除去,也可以在低于烧结温度的任意温度保持规定时间。升温速度也无特别限定,例如为2℃/min~10℃/min。
烧结工序中的加压压力在规定的烧结温度下负载。也可以在原料粉末达到烧结温度的时刻开始加压,也可以在原料粉末达到烧结温度开始经过规定时间后开始加压。并且,也可以以放出模具12内的气体为目的,在达到烧结温度之前,以规定的压力对原料粉末进行至少一次预加压。预加压温度及预加压压力无特别限定,例如可以将预加压温度设为450℃~500℃,将预加压压力设为150kg/cm2
根据所述制造方法,可以稳定地制造具有95%以上相对密度的LiCoO2烧结体。由此,提高了烧结体的强度,改善了操作性,因此可以稳定地机械加工成靶状。并且,由于在施加高功率时也可得到耐久性,因此还可以充分响应溅射速率提高的要求。
另一方面,烧结体的平均粒径与烧结体的相对密度及机械强度具有较强的关联性。为了提高烧结体的相对密度,优选在LiCoO2晶体容易生长的温度下进行烧结。随着烧结进行而平均粒径变大,相对密度增加,机械强度也提高,另一方面,“硬而脆”的特性变得显著,耐冲击性下降。本发明的实施方式涉及的LiCoO2烧结体的平均粒径优选为10μm以上30μm以下。
所得的烧结体通过机械加工成规定形状,作为溅射靶材提供。烧结体的机械加工包括使用车床的外围加工及表面加工。不仅用作溅射靶材,还需要将烧结体接合于背板。对于该接合,可以将熔融In(铟)涂布于烧结体的接合面,也可以在烧结体的接合面上预先形成Cu(铜)薄膜,在其上涂布熔融In。接合后,在干燥的环境下清洗靶材及背板。
[基于热等静压(HIP)法的烧结体的制造方法]
本实施方式涉及的LiCoO2烧结体制造方法还包括在模具内填充的LiCoO2粉末的工序、对所述模具内减压的工序、在模具内对LiCoO2粉末加压烧结的工序。
图4为热等静压装置的简要结构图。热等静压装置20包括腔室21、腔室21内设置的封罐(使用金属薄板、箔的容器)22。在热等静压法中,将原料粉末填充在封罐22中,脱气后密封封罐22。然后,经气体导入口23以规定的压力将规定温度下加热的气体(氩等)导入腔室21的内部。由此,得到原料粉末的加压烧结体S。
基于热等静压法的LiCoO2烧结体的制造方法使用与上述基于真空热压法的LiCoO2烧结体的制造方法相同的压力、温度条件来制造烧结体S。即,烧结时腔室11内的压力例如设为规定的200kg/cm2~2000kg/cm2,在本实施方式中设为300kg/cm2。并且,烧结体S的烧结温度设为800℃以上880℃以下。由此,可以稳定地得到具有95%以上的相对密度的LiCoO2烧结体。
实施例
以下,针对本发明的实施例进行说明,但本发明不限于此。
(实施例1)
将平均粒径(即D50,以下相同)5~6μm的规定量的LiCoO2原料粉末(日本化学工业株式会社制造的“CellSeed(注册商标)C-5”均匀地填充在模具内,并连同模具一起设置在真空热压装置的腔室内。然后,将腔室内部减压至0.013Pa(1×10-4托)。在达到作为目的的真空度后,以图5所示的温度-负荷曲线开始加热原料粉末。即,在从室温以6℃/min的升温速度加热至450℃后,在该温度下保持10分钟。然后以3℃/min的升温速度加热至设定烧结温度(80)0)℃)。此时,在到达温度500℃的时刻以150kg/cm2的压力对原料粉末加压10分钟。将原料粉末在800℃下保持1小时,并在其保持时间内的后半小时内,以300kg/cm2的压力对原料粉末进行加压,从而制造烧结体。然后,在腔室内将烧结体冷却至室温。
测量所得的烧结体的相对密度、平均粒径后,相对密度为95.4%,平均粒径为10μm左右。
另外,相对密度是通过计算烧结体的表观密度与理论密度(5.16g/cm3)的比来求出。对所得的烧结体进行机械加工并使用游标尺、测微计或三维测量仪测量外周及厚度尺寸求出体积,然后使用电子称测量重量,并根据(重量/体积)的公式来求出表观密度。
平均粒径的测量使用烧结体的截面SEM照片,并基于“美国材料与试验协会(American Society for Testing and Materials,ASTM)E112”(日本工业标准(Japanese Industrial Standards,JIS)G0551)的粒度表进行目视判断。
(实施例2)
除了将设定烧结温度设为820℃以外,在与所述实施例1相同的条件下制造烧结体。测量所得的烧结体的相对密度、平均粒径后,相对密度为95.9%,平均粒径为15μm左右。
(实施例3)
除了将设定烧结温度设为840℃以外,在与所述实施例1相同的条件下制造烧结体。测量所得的烧结体的相对密度、平均粒径,相对密度为97%,平均粒径为20μm左右。
(实施例4)
除了将设定烧结温度设为860℃以外,在与所述实施例1相同的条件下制造烧结体。测量所得的烧结体的相对密度、平均粒径,相对密度为96.1%,平均粒径为30μm以下。
(实施例5)
除了将设定烧结温度设为880℃以外,在与所述实施例1相同的条件下制造烧结体。测量所得的烧结体的相对密度、平均粒径,相对密度为95.3%,平均粒径为30μm以下。
(比较例1)
除了将设定烧结温度设为780℃以外,在与所述实施例1相同的条件下制造烧结体。测量所得的烧结体的相对密度、平均粒径,相对密度为93.8%,平均粒径为10μm以下。
(比较例2)
除了将设定烧结温度设为900℃以外,在与所述实施例1相同的条件下制造烧结体。测量所得的烧结体的相对密度、平均粒径,相对密度为94.4%,平均粒径超出30μm。
(比较例3)
除了将设定烧结温度设为980℃以外,在与所述实施例1相同的条件下制造烧结体。测量所得的烧结体的相对密度、平均粒径,相对密度为90.1%,平均粒径超出30μm。
表1汇总地示出了实施例1~4及比较例1~3的结果。
表1
图6为表示设定的加压烧结温度与所得的烧结体的相对密度之间的关系图。如表1及图6所示,确认了烧结温度在800℃以上880℃以下范围内(实施例1~4)可以获得具有95%以上的高相对密度的LiCoO2烧结体。特别是在烧结温度为840℃时,确认了可以获得超过96%的非常高的相对密度。并且,确认了烧结温度在800℃以上880℃以下范围内,可以获得具有10μm以上30μm以下的平均粒径的LiCoO2烧结体。
另一方面,烧结温度在所述温度范围之外的比较例1~3中的烧结体的相对密度均在95%以下。在比较例1中,由于温度较低,因此平均粒径也较小,相反,不会因烧结而进行致密化。另一方面,在比较例2、3中,由于温度过高而发生晶体生长,但发生分解并不进行致密化。
图7为表示实施例1、实施例3、实施例4及比较例3的各烧结体样品的制造时的加热时间与腔室内的压力之间的关系图。了解到自加热开始(压力0.013Pa)压力随着时间而变化情况。该压力变化主要源于来自原料粉末的放出气体。在实施例1、3、4的条件下,真空度在温度上升的同时逐渐变差,结果,保持温度(烧结温度)越高,最高压力就越高,但最高值为0.25Pa。另一方面,在比较例3的条件中,真空度劣化显著,最高值达到20Pa。该结果与调查粉末升温解吸的结果(图2)完全一致。
以上,对本发明的实施方式进行了说明,但本发明并不限于此,基于本发明的技术思想可以进行多种变形。
例如在以上实施方式中,将加压烧结时的压力设为300kg/cm2,但并不限于此,也可以赋予更高压力。并且,升温速度、加压烧结温度的保持时间等也同样,考虑到烧结体的大小或生产率等可以适当地变更。关于升温速度,在所述实施例1中将直至设定烧结温度的升温速度设为3℃/min,但确认了在升温速度2℃/min 4℃/min的条件下可以取得与实施例1相同的效果。
另外,在本发明所示加压烧结条件下,在原材料粉末的平均粒径为1~3μm左右或其以下时,加压烧结后的平均粒径变为比用5~6μm的原材料得到的“10μm以上30μm以下”这一结果小,例如“3μm以上10μm以下”。

Claims (5)

1.一种LiCoO2烧结体的制造方法,包括:
在模具内填充LiCoO2粉末,
对所述模具内进行减压,
在所述模具内在800℃以上880℃以下的温度下对所述LiCoO2粉末进行加压烧结。
2.根据权利要求1所述的LiCoO2烧结体的制造方法,其中对所述LiCoO2粉末进行加压烧结的工序包括在所述模具内以200kg/cm2以上的压力对所述LiCoO2粉末加压。
3.根据权利要求2所述的LiCoO2烧结体的制造方法,其中所述LiCoO2粉末用真空热压法加压烧结。
4.根据权利要求2所述的LiCoO2烧结体的制造方法,其中所述LiCoO2粉末用热等静压法加压烧结。
5.一种溅射靶材,所述溅射靶材由LiCoO2烧结体构成,具有95%以上的相对密度、10μm以上30μm以下的平均粒径。
CN201080061590.9A 2010-01-15 2010-12-24 LiCoO2烧结体的制造方法及溅射靶材 Active CN102770391B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010006765 2010-01-15
JP2010-006765 2010-01-15
PCT/JP2010/007509 WO2011086649A1 (ja) 2010-01-15 2010-12-24 LiCoO2焼結体の製造方法及びスパッタリングターゲット

Publications (2)

Publication Number Publication Date
CN102770391A true CN102770391A (zh) 2012-11-07
CN102770391B CN102770391B (zh) 2016-04-06

Family

ID=44303955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080061590.9A Active CN102770391B (zh) 2010-01-15 2010-12-24 LiCoO2烧结体的制造方法及溅射靶材

Country Status (7)

Country Link
US (1) US20120305391A1 (zh)
EP (1) EP2524904A4 (zh)
JP (1) JP5629695B2 (zh)
KR (1) KR101364414B1 (zh)
CN (1) CN102770391B (zh)
TW (1) TWI487176B (zh)
WO (1) WO2011086649A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532286A (zh) * 2015-03-18 2018-01-02 尤米科尔公司 含锂过渡金属氧化物靶
CN107808952A (zh) * 2017-10-13 2018-03-16 深圳力合厚浦科技有限公司 一种高振实密度高容量复合镍钴锰氧化物三元锂离子电池正极材料的制备方法
CN108346777A (zh) * 2017-01-25 2018-07-31 丰田自动车株式会社 正极的制造方法和氧化物固体电池的制造方法
US11139468B2 (en) 2017-09-29 2021-10-05 Toyota Jidosha Kabushiki Kaisha Cathode active material, cathode mixture, method for producing cathode active material, method for producing cathode, and method for producing oxide solid-state battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704571B2 (ja) * 2010-01-15 2015-04-22 株式会社アルバック LiCoO2焼結体の製造方法
JP5926256B2 (ja) * 2010-07-30 2016-05-25 エルジー イノテック カンパニー リミテッド 熱間加圧焼結装置及びこれに使用する加圧部材
JP5969786B2 (ja) * 2012-03-21 2016-08-17 株式会社コベルコ科研 LiCoO2焼結体およびスパッタリングターゲット、並びにその製造方法
KR101726117B1 (ko) * 2013-03-13 2017-04-11 가부시키가이샤 코베루코 카겐 LiCoO2 함유 소결체 및 스퍼터링 타깃, 및 LiCoO2 함유 소결체의 제조 방법
JP2014194868A (ja) * 2013-03-28 2014-10-09 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
US20150248997A1 (en) * 2014-02-28 2015-09-03 Chi-Fung Lo Modified lithium cobalt oxide sputtering targets
KR102142258B1 (ko) 2014-03-26 2020-08-07 제이엑스금속주식회사 LiCoO2 스퍼터링 타깃 및 그 제조 방법, 그리고 정극재 박막
JP2017075377A (ja) * 2015-10-15 2017-04-20 株式会社コベルコ科研 LiCoO2含有焼結体およびLiCoO2含有スパッタリングターゲット、並びにLiCoO2含有焼結体の製造方法
CN105731549A (zh) * 2016-01-25 2016-07-06 山东玉皇新能源科技有限公司 一种高纯度钴酸锂正极材料的制备方法及其应用
JP6307121B2 (ja) * 2016-07-27 2018-04-04 株式会社コベルコ科研 LiCoO2を含有する焼結体および円筒形スパッタリングターゲット
JP6686945B2 (ja) 2017-03-21 2020-04-22 トヨタ自動車株式会社 焼結電極体の製造方法
CN114057233B (zh) * 2021-11-17 2023-09-26 鄂尔多斯市紫荆创新研究院 用于制备薄膜锂电池的钴酸锂正极靶材及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338354A (ja) * 2001-05-18 2002-11-27 Kyocera Corp 酸化ニオブ焼結体とその製造方法及びこれを用いたスパッタリングターゲット
JP2008053217A (ja) * 2006-07-24 2008-03-06 Matsushita Electric Ind Co Ltd リチウム二次電池用電極の製造方法
US20090045053A1 (en) * 2007-08-17 2009-02-19 Poong Kim Method of producing a lithium phosphate sintered body and sputtering target

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864425B2 (ja) * 1994-03-22 2006-12-27 東ソー株式会社 アルミニウムドープ酸化亜鉛焼結体およびその製造方法並びにその用途
US6077496A (en) * 1996-09-12 2000-06-20 Dowa Mining Co., Ltd. Positive electrode active material for nonaqueous secondary cells and a process for producing said active material
CN101495666B (zh) * 2006-07-27 2012-09-26 Jx日矿日石金属株式会社 含锂过渡金属氧化物靶及其制造方法以及锂离子薄膜二次电池
JP5129530B2 (ja) 2007-08-24 2013-01-30 インフィニット パワー ソリューションズ, インコーポレイテッド LiCoO2の堆積
JP5704571B2 (ja) * 2010-01-15 2015-04-22 株式会社アルバック LiCoO2焼結体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338354A (ja) * 2001-05-18 2002-11-27 Kyocera Corp 酸化ニオブ焼結体とその製造方法及びこれを用いたスパッタリングターゲット
JP2008053217A (ja) * 2006-07-24 2008-03-06 Matsushita Electric Ind Co Ltd リチウム二次電池用電極の製造方法
US20090045053A1 (en) * 2007-08-17 2009-02-19 Poong Kim Method of producing a lithium phosphate sintered body and sputtering target

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532286A (zh) * 2015-03-18 2018-01-02 尤米科尔公司 含锂过渡金属氧化物靶
US10822690B2 (en) 2015-03-18 2020-11-03 Umicore Lithium-containing transition metal oxide target
CN108346777A (zh) * 2017-01-25 2018-07-31 丰田自动车株式会社 正极的制造方法和氧化物固体电池的制造方法
CN108346777B (zh) * 2017-01-25 2021-01-05 丰田自动车株式会社 正极的制造方法和氧化物固体电池的制造方法
US10950862B2 (en) 2017-01-25 2021-03-16 Toyota Jidosha Kabushiki Kaisha Method for producing cathode, and method for producing oxide solid-state battery
US11139468B2 (en) 2017-09-29 2021-10-05 Toyota Jidosha Kabushiki Kaisha Cathode active material, cathode mixture, method for producing cathode active material, method for producing cathode, and method for producing oxide solid-state battery
CN107808952A (zh) * 2017-10-13 2018-03-16 深圳力合厚浦科技有限公司 一种高振实密度高容量复合镍钴锰氧化物三元锂离子电池正极材料的制备方法

Also Published As

Publication number Publication date
JPWO2011086649A1 (ja) 2013-05-16
KR20120101501A (ko) 2012-09-13
WO2011086649A1 (ja) 2011-07-21
EP2524904A4 (en) 2014-07-02
US20120305391A1 (en) 2012-12-06
EP2524904A1 (en) 2012-11-21
JP5629695B2 (ja) 2014-11-26
TW201131869A (en) 2011-09-16
TWI487176B (zh) 2015-06-01
CN102770391B (zh) 2016-04-06
KR101364414B1 (ko) 2014-02-18

Similar Documents

Publication Publication Date Title
CN102770391A (zh) LiCoO2烧结体的制造方法及溅射靶材
TWI504582B (zh) LiCoO2燒結體的製造方法及濺鍍靶
EP2039665A2 (en) Method of producing a lithium phosphate sintered body and sputtering target
TW200526539A (en) Sintered bodies based on niobium suboxide
CN104204283A (zh) 氧化物烧结体及溅射靶、以及其制造方法
EP3219690B1 (en) Lithium cobalt sintered body and sputtering target produced by using the sintered body, production method of lithium cobalt oxide sintered body, and thin film formed from lithium cobalt oxide
Jiang et al. Ultrafast sintering of Na3Zr2Si2PO12 solid electrolyte for long lifespan solid-state sodium ion batteries
CN112723891B (zh) 一种镧钙复合六硼化物多晶阴极材料及其制备方法
US10153142B2 (en) LiCoO2 sputtering target, production method therefor, and positive electrode material thin film
CN1449316A (zh) 用于电解电容器的钽烧结体的制造方法
Stockham et al. Evaluation of Ga 0.2 Li 6.4 Nd 3 Zr 2 O 12 garnets: exploiting dopant instability to create a mixed conductive interface to reduce interfacial resistance for all solid state batteries
CN104245623A (zh) 含Li磷酸化合物烧结体和溅射靶,及其制造方法
CN113652656A (zh) 一种钽-二氧化硅溅射靶材的制备方法
KR20220122603A (ko) 리튬 이온 전도성 산화물 소결체 및 그의 용도
CN104831352A (zh) 一种高纯高致密(LaxSm1-x)B6多晶阴极材料及其制备方法
CN107032765B (zh) 一种快速高温固相烧结氧化铝陶瓷的方法
US20210346951A1 (en) Rapid-Induction Sinter Forge for Roll-to-Roll Continuous Manufacturing of Thin Films
JP2017075377A (ja) LiCoO2含有焼結体およびLiCoO2含有スパッタリングターゲット、並びにLiCoO2含有焼結体の製造方法
CN114464833A (zh) 一种陶瓷燃料电池双极板及制造方法
CN107686903B (zh) 一种球磨法制备的镁基储氢合金
CN114014655A (zh) 磷化锰靶材的生产工艺
CN1835137B (zh) 固体电解电容器中的电容器元件及其制造方法
CN116855901A (zh) 一种薄膜太阳能电池用合金靶材及其制备方法
CN118145981A (zh) 一种耐腐蚀匣钵及制备方法
CN117344167A (zh) 一种钼钨合金的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant