CN102753137B - 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物 - Google Patents

连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物 Download PDF

Info

Publication number
CN102753137B
CN102753137B CN201180009175.3A CN201180009175A CN102753137B CN 102753137 B CN102753137 B CN 102753137B CN 201180009175 A CN201180009175 A CN 201180009175A CN 102753137 B CN102753137 B CN 102753137B
Authority
CN
China
Prior art keywords
dioxide granule
silica
silica dioxide
granule
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180009175.3A
Other languages
English (en)
Other versions
CN102753137A (zh
Inventor
威廉姆·J·夏甲
卡尔·W·加里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
JM Huber Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44209705&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102753137(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JM Huber Corp filed Critical JM Huber Corp
Priority to CN201410591716.3A priority Critical patent/CN104402008B/zh
Priority to CN201410592567.2A priority patent/CN104473776B/zh
Publication of CN102753137A publication Critical patent/CN102753137A/zh
Application granted granted Critical
Publication of CN102753137B publication Critical patent/CN102753137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • C01B33/128Preparation of silica of undetermined type by acidic treatment of aqueous silicate solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

本文公开了用于制备二氧化硅产物的连续工艺,该连续工艺包括:(a)将酸化剂和碱金属硅酸盐连续供入包含液体介质流的回路反应区;其中至少一部分的所述酸化剂和所述碱金属硅酸盐在所述回路反应区的液体介质中反应以生成二氧化硅产物;(b)使所述液体介质连续再循环穿过所述回路反应区;和(c)从所述回路反应区连续排出包含所述二氧化硅产物的一部分的液体介质。还公开了二氧化硅产物和包含所述二氧化硅产物的洁齿剂组合物。还公开了连续回路反应器。

Description

连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物
相关申请的交叉引用
本申请要求2010年2月24日提交的美国专利申请号12/711,321的权益,其公开内容在此通过引用整体并入。
技术领域
本文公开了用于制备二氧化硅产物的连续工艺,该连续工艺包括:(a)将酸化剂和碱金属硅酸盐连续供入包含液体介质流的回路反应区;其中至少一部分的所述酸化剂和所述碱金属硅酸盐在所述回路反应区的液体介质中反应以生成二氧化硅产物;(b)使所述液体介质连续再循环穿过所述回路反应区;和(c)从所述回路反应区连续排出包含所述二氧化硅产物的一部分的液体介质。还公开了二氧化硅产物和包含所述二氧化硅产物的洁齿剂组合物。还公开了连续回路反应器。
背景
通过向碱金属硅酸盐添加酸化剂以沉淀无定形二氧化硅,可以制备沉淀二氧化硅。通常从反应介质滤出得到的沉淀,随后洗涤并干燥。然后,通常机械粉碎干燥的二氧化硅,以提供适合的粒度和尺寸分布。在工业规模,可以通过合并了前述步骤的分步分批工艺来制备二氧化硅。这种工艺所需要的设备可能是资本密集型的,并且经常导致工艺效率低,特别是当反应物没有耗尽时存在空转时间的时候。虽然存在各种其他的二氧化硅生产工艺,但这些工艺中很多是难以控制和放大规模的,并且很多工艺在已经制备二氧化硅之后依然需要大量的处理步骤。
因此,存在对解决传统二氧化硅生产工艺中上述缺点的、改良的二氧化硅生产工艺的需求。本发明满足了这种需求和其他需求。
概述
本文公开了用于制备二氧化硅产物的连续工艺,该连续工艺包括:(a)将酸化剂和碱金属硅酸盐连续供入包含液体介质流的回路反应区;其中至少一部分的所述酸化剂和所述碱金属硅酸盐在所述回路反应区的液体介质中反应以生成二氧化硅产物;(b)使所述液体介质连续再循环穿过所述回路反应区;和(c)从所述回路反应区连续排出包含所述二氧化硅产物的一部分的液体介质。
还公开了吸油值达100cc/100g的二氧化硅颗粒;其中至少80%的所述二氧化硅颗粒是圆形(rounded)至滚圆形(well-rounded)的;并且其中所述二氧化硅颗粒具有大于0.9的球形度(S80)系数和小于8.0mg损失/100,000转的黄铜Einlehner磨损值(Brass Einlehner Abrasion value)。
还公开了具有3至15μm的粒度、大于100cc/100g的吸油值和在20%二氧化硅载量时至少85的表膜清洁比(Pellicle Cleaning Ratio)(PCR)值的二氧化硅颗粒。
还公开了包含以组合物重量的5%至50%的量的二氧化硅颗粒的洁齿剂组合物;其中所述二氧化硅颗粒具有达100cc/100g的吸油值、大于0.9的球形度(S80)系数和小于8.0mg损失/100,000转的黄铜Einlehner磨损值;其中至少80%的所述二氧化硅颗粒是圆形至滚圆形的。
还公开了包含以组合物重量的5%至50%的量的二氧化硅颗粒的洁齿剂组合物;其中所述二氧化硅颗粒具有3至15μm的粒度、大于100cc/100g的吸油值和在20%二氧化硅载量时至少85的表膜清洁比(PCR)值。
本发明的优点将在随后的说明书中部分列出,并且部分地根据说明书而明显,或者可以通过实施以下描述的方面而得知。借助所附权利要求书中具体指出的要素和组合,将实现并取得以下描述的优点。要理解,前面的概述和后面的详述都只是示例性和解释性而不是限制性的。
附图简述
图1是示例性连续回路反应器的图解。
图2是显示以浆体的(圆形)、喷雾干燥的(菱形)和锤磨的(三角形)实施例2E的Horiba粒度扫描的曲线图。显示ZEODENT103二氧化硅用于对比(正方形)。
图3A和3B是通过本公开工艺制备的实施例2D的扫描电子显微照片(SEM)。
图4A和4B是通过本公开工艺制备的实施例2R的SEM图像。
图5A和5B是通过本公开工艺制备的实施例2E的SEM图像。
图6A和6B是ZEODENT113和ZEODENT165的SEM图像。
图7是通过本公开工艺制备的实施例2F的SEM图像。
图8是颗粒圆度的图示。
图9是圆度计算指数的图示。
详述
在公开和描述本化合物、组合物、复合材料、物品、装置和/或方法之前,要理解,以下描述的方面不限于具体化合物、组合物、复合材料、物品、装置、方法或用途,因为这些当然可以改变。还要理解,本文使用的术语仅出于描述特定方面的目的,而不意图限制。
在本说明书和随后的权利要求书中,将提及许多术语,这些术语将被定义为具有以下含义:
在本说明书中,除非上下文另外要求,词语″包含(comprise)″或变化形式例如″包含(comprises)″或″包含(comprising)″将被理解为暗指包括所述整数或步骤或整数或步骤的组,但不排除任何其他整数或步骤或整数或步骤的组。
必须注意,如在说明书和所附权利要求书中使用的,除非上下文明确另外规定,单数形式″一个(a)″、″一种(an)″和″该(the)″包括复数指示对象。因此,例如,对″一种酸化剂″的提及包括两种或多种此类剂的混合物,诸如此类。
″任选的″或″任选地″表示随后描述的事件或环境可以发生或不发生,并且该描述包括其中事件或环境发生的情况及它不发生的情况。
本文可以将范围表达为从″约″一个特定值和/或至″约″另一个特定值。当表达这样一个范围时,另一方面包括从一个特定值和/或至另一个特定值。类似地,当通过使用前置″约″将值表达为近似值时,将理解该特定值形成另一方面。还要理解,每个范围的端点在相对于另一个端点和独立于另一个端点方面都是有效的。
公开了可用于本公开方法和组合物的产物、可与本公开方法和组合物的产物结合使用、可用于制备本公开方法和组合物的产物、或者是本公开方法和组合物的产物的化合物、组合物和组分。本文公开了这些和其他材料,并要理解,当公开这些材料的组合、子集、相互作用、组等时,虽然可能没有明确公开这些化合物的每个不同的个体和集体组合和改变的具体参考,但每一个在本文被明确涵盖和描述。例如,如果公开和讨论了许多不同的酸化剂和碱金属硅酸盐,除非明确指明相反,则酸化剂和金属硅酸盐的每个和每一个组合和改变被明确涵盖。因此,如果公开了一类物质A、B和C以及一类物质D、E和F,并且公开了物质A-D的组合实例,那么即使没有明确列举每一个,也在个体上和集体上涵盖每一个。因此,在该例中,组合A-E、A-F、B-D、B-E、B-F、C-D、C-E和C-F的每一个被明确涵盖并且应被认为由以下的公开而公开:A、B和C;D、E和F;和A-D的示例组合。同样,这些的任何子集或组合也被明确涵盖和公开。因此,例如,A-E、B-F和C-E的亚组被明确涵盖并且应被认为由以下的公开而公开:A、B和C;D、E和F;和A-D的示例组合。这一概念适用于本公开的所有方面,包括但不限于制备和使用本公开组合物的方法中的步骤。因此,如果有许多可以进行的附加步骤,要理解,这些附加步骤的每一个可与所公开方法的任何具体实施方案或实施方案的组合一起进行,并且每个这种组合被明确涵盖并且应被认为是公开的。
制备二氧化硅产物的工艺
一方面,本发明工艺是连续工艺,其中将酸化剂和碱金属硅酸盐连续供入包含液体介质流的回路反应区;其中至少一部分的酸化剂和碱金属硅酸盐在所述回路反应区的液体介质中反应以生成二氧化硅产物。随着酸化剂和碱金属硅酸盐被连续供入回路反应区,回路反应区的内容物(即,液体介质)被连续再循环。通过排出包含二氧化硅产物的一部分的液体介质来收集二氧化硅产物,一方面,排出的那部分液体介质等于添加入回路反应区的原材料的体积。
如本文使用的,″回路反应区″指反应器内形成含有再循环液体介质的连续回路的区域,酸化剂和碱金属硅酸盐在其中反应以生成二氧化硅产物。如将在下文讨论的,一方面,回路反应区由一个或多个回路反应管的连续回路的壁界定。一般而言,回路反应区中液体介质的组成将根据工艺阶段而变化。在将酸化剂和碱金属硅酸盐加入液体介质之前,介质可仅含有水或适当的水溶液或分散液(浆体)。一方面,在将酸化剂和碱金属硅酸盐供入反应区之前,液体介质可含有二氧化硅晶种,二氧化硅晶种可用于减少回路反应区中的胶凝并且帮助形成二氧化硅产物。在一个特定方面,在添加酸化剂和碱金属硅酸盐之前,可以首先向回路反应区添加沉淀二氧化硅、硫酸钠、硅酸钠和水并根据需要再循环,之后可以添加酸化剂和碱金属硅酸盐。当酸化剂和碱金属硅酸盐被供入回路反应区时,在液体反应介质中生成二氧化硅产物。二氧化硅产物一般会是沉淀产物,因此在液体反应介质中会是分散相。一方面,在收集所需二氧化硅产物之前,可以从回路反应区清除晶种二氧化硅产物。
工艺温度和压力也可以有很大变化并可取决于需要什么类型的二氧化硅产物。在工艺的一个方面,在液体介质中维持约室温至约130℃的温度。同样,可以使用多种压力。压力范围可以从大气压至更高压力。例如,当工艺使用连续回路反应器时,反应器可以配备有回压阀以控制反应器内宽范围的压力。
可以不同的速率将碱金属硅酸盐和酸化剂供入反应区。碱金属硅酸盐的添加速率一般使反应区内维持所需的硅酸盐浓度,而酸化剂的添加速率使回路反应区内维持所需的pH。一方面,以至少0.5L/min的速率向回路反应区供入碱金属硅酸盐。碱金属硅酸盐的最大添加速率将根据回路反应区的体积和二氧化硅生产工艺的规模而有很大变化。例如,在其中使用大体积反应物的超大规模工艺中,可能需要高的硅酸盐添加速率。在一个具体实例中,碱金属硅酸盐以0.5至5L/min或0.5至3L/min的速率供给。
酸化剂一般以足以维持液体介质中2.5至10.5的pH的速率供入回路反应区。在其他方面,酸化剂以足以维持液体介质中7.0至10、或液体介质中7.0至8.5的pH的速率供入回路反应区。例如,在一个特定方面,在液体介质中维持约7.5的pH。可以通过任何常规的pH敏感电极监测液体介质的pH。在一些实例中,可以通过直接测量液体介质(浆体)的pH来评估液体介质的pH。在这些实例中,液体反应介质的pH一般范围从2.5至10.5、从6至10、或从7至8.5。
液体介质可以各种速率再循环,取决于回路反应区中存在的条件,例如反应区中存在的混合或剪切程度,还取决于生产工艺的规模。一般而言,液体介质以至少15L/min的速率再循环穿过回路反应区。在一个特定实例中,液体介质可以15至100L/min、30至80L/min、或70至80L/min的速率再循环穿过回路反应区。
可以使用许多酸化剂,包括能够与碱金属硅酸盐反应以生成二氧化硅产物的各种酸和其他物质。酸或酸化剂可以是路易斯酸或布朗斯台德酸,例如强无机酸,例如硫酸、盐酸、硝酸、磷酸等。此类酸可以作为稀溶液添加入反应区。作为具体实例,可以向回路反应区供入6%至35%重量和更优选10%至17%重量的硫酸溶液作为酸化剂。在其他方面,可以使用气体例如CO2作为酸化剂。二氧化碳产生弱酸(碳酸),因此,在使用此类弱酸时对液体介质来说保持大于约8.5的pH目标可能是所需要的。
在其他方面,可以根据所需要的二氧化硅产物的类型来选择酸化剂。例如,可以使用硫酸铝的酸性溶液作为酸化剂,因此,得到的二氧化硅产物将是硅酸铝碱金属盐(alkali aluminosilicate)。作为具体实例,可以向硫酸添加硫酸铝,并且可以使用该混合物作为酸化剂。
本发明工艺可以使用任何适合的碱金属硅酸盐,包括金属硅酸盐、二硅酸盐等。水溶性硅酸钾和硅酸钠是特别优选的。一般而言,可以使用具有各种碱金属∶硅酸盐摩尔比的硅酸盐制成本发明可接受的二氧化硅产物。例如,对于硅酸钠而言,摩尔比Na2O∶SiO2一般是约1∶1至1∶3.5和优选约1∶2.4至约1∶3.4。供入回路反应区的碱金属硅酸盐优选作为水溶液供给,类似于酸化剂。基于供入回路反应区的碱金属硅酸盐溶液的总重量,供入回路反应区的碱金属硅酸盐溶液一般可以含有约8%至35%和更优选约8%至20%重量的碱金属硅酸盐。
需要时,并且为了降低源溶液的碱金属硅酸盐或酸化剂浓度,可以在源溶液供入回路反应区之前向源溶液添加稀释水,和/或可以单独向回路反应区添加稀释水并随后与碱金属硅酸盐和/或酸化剂和任何其他液体介质内容物混合。
当向回路反应区添加所需量的酸化剂和碱金属硅酸盐时,液体介质一般平均最少三次再循环通过再循环区。液体介质再循环穿过回路反应区的平均次数在本文称为″平均通过次数″,这根据以下方程式计算。通过反应系统体积除以原材料添加速率(碱金属硅酸盐添加速率+酸化剂添加速率)来计算二氧化硅产物在排出之前在再循环回路中的停留时间。然后可通过将再循环速率除以总系统体积来计算通过次数/分钟。然后,可以将停留时间乘以通过次数/分钟以获得平均通过次数。
可以再循环二氧化硅产物,使得平均通过次数是3至200或10至200。一般,平均通过次数越高,二氧化硅产物变得越加球形和圆形。因此,再循环通过次数(平均通过次数)可以根据所需的二氧化硅产物类型来选择。
可以通过各种机制从回路反应排出二氧化硅产物。在一个方面,如下讨论的,工艺中使用连续回路反应器,其可以包含用于从回路反应区释放二氧化硅产物的阀。然而优选地,通过向反应区添加额外液体使得含有二氧化硅产物的一部分的液体介质从反应区排出(即,反应区溢出),而从回路反应区替代二氧化硅产物。一方面,这可以通过向回路反应区连续添加酸化剂和/或碱金属硅酸盐来实现,因为一部分的液体介质在体积上被添加的酸化剂和/或碱金属硅酸盐的体积所替代。
在工艺的一些方面,在液体反应介质被再循环和二氧化硅产物被排出的同时,连续添加酸化剂和碱金属硅酸盐。因此,在一个方面,工艺的每一步骤连续且同时发生。在另一方面,酸化剂和碱金属硅酸盐各自同时供入回路反应区。酸化剂和碱金属硅酸盐优选在回路反应区的不同点加入回路反应。例如,可以在回路中相对于酸化剂的上游添加碱金属硅酸盐,使得在酸化剂供入反应区时,碱金属硅酸盐已经存在。
通过对温度、离子强度、添加速率和能量输入的调整,可以实现对二氧化硅产物结构的调整。一般,温度、再循环速率和酸化剂/碱金属硅酸盐添加速率的变化导致二氧化硅产物物理性质的最大变化。一般,液体介质再循环越多,二氧化硅产物在再循环回路中的停留时间越长(添加速率越慢);并且温度越高,得到的二氧化硅产物的结构越低(如吸油量所确定的)。当使用低于约9.0的pH时发现对液体介质中pH的操控使得回路反应区内二氧化硅沉积(积垢)最少。
二氧化硅产物从回路反应区排出之后可以被收集在适合容器中并按需要加工。在一些方面,二氧化硅产物不需要额外加工(除了洗涤以去除盐等),并且可以作为湿饼运输或可以按需要干燥。在一个方面,例如,得到的二氧化硅产物可以根据本领域已知的方法喷雾干燥。或者,可以获得二氧化硅产物的湿饼并可以再次浆化并以浆体形式处理和供应,或者作为滤饼直接供应。一般,可以通过用于干燥二氧化硅的任何常规设备来实现本文描述的二氧化硅产物的干燥,例如喷雾干燥、喷嘴干燥(例如塔或喷泉)、急骤干燥、转轮干燥或烘箱/流化床干燥。干燥的二氧化硅产物一般应该具有1wt%至15wt%的水含量。已知二氧化硅反应产物和干燥工艺的性质都影响堆密度和载液能力。
在其他方面,可以根据所需二氧化硅产物的性质而使二氧化硅产物接受各种处理。例如,在收集二氧化硅产物之后,可以调节、例如使用酸例如硫酸降低二氧化硅浆体的pH,随后过滤并洗涤。在该实例中,可以将二氧化硅产物洗涤至所需的电导率,例如1500μS至2000μS,随后如上所述干燥。
为了进一步减小干燥二氧化硅产物的尺寸,如果需要,可以使用常规磨铣设备。可以一次或多次使用锤式或摆式磨机来粉碎,并可以通过流体能量或喷气磨机进行精细研磨。可以通过常规分离技术将研磨成所需尺寸的产物与其他尺寸产物分开,所述分离技术例如旋流器、分类器或适当网格尺寸的振动筛等。
在二氧化硅产物分离之前和/或合成期间也有多种方式减小得到的二氧化硅产物的粒度,这影响干燥产物或浆体形式产物的尺寸。这些包括但不限于介质研磨、使用高剪切设备(例如,高剪切泵或转子-定子混合器)或超声设备,其在某些方面可以在生产工艺本身期间使用,例如在再循环回路中使用。可以在干燥前任何时间对湿润二氧化硅产物进行粒度减小。
二氧化硅产物
可以使用本公开的工艺制备多种类型的二氧化硅产物,取决于起始材料和工艺条件。一方面,本发明的二氧化硅产物是具有达100cc/100g的吸油值的二氧化硅颗粒。在该方面,至少80%的二氧化硅颗粒是圆形至滚圆形的。这些二氧化硅颗粒还具有大于0.9的球形度(S80)系数和小于8.0mg损失/100,000转的黄铜Einlehner磨损值。
如本文使用的,″圆形″颗粒是具有缓圆角的那些颗粒,几乎没有平面和小凹角。″滚圆形″颗粒是具有均匀凸粒轮廓的那些颗粒,没有可辨识的平面、转角或凹角。
根据以下程序进行本发明的二氧化硅颗粒为圆形至滚圆形的表征。收集代表性的二氧化硅颗粒样品,通过扫描电子显微镜(SEM)检查。以代表完整图像的两个不同的放大水平照相。第一个图像以大约200倍放大拍摄并用于获得样品同质性的观感。接下来,评价大约20,000放大的SEM图像。优选地,图像中应该显示最少大约20个颗粒并且注意确保图片代表作为整体的样品。然后通过根据表1的类别来评价和表征该图像中的颗粒。至少80%的本发明颗粒具有达100cc/100g的吸油值,可以被表征为圆形至滚圆形。
表1.颗粒圆度表征
为了帮助表征颗粒圆度,可以使用图8所示的标准轮廓图。将放大的SEM图像中展示的颗粒与图8所示标准颗粒圆度图相比较并做相应分类。该过程通常在沉淀科学研究中进行。作为具体实例,由本公开工艺制备的图3-5所示颗粒通过与图8比较而在性质上被分类为圆形至滚圆形,意味着至少80%的颗粒是圆形至滚圆形。相反,由传统分批工艺制备的图6所示二氧化硅产物通过与图8比较而被分类为主要是有棱角的、略带棱角的和略圆形的,因为可以观察到平侧和尖锐锯齿状的边缘。
还可以根据圆度指数来表征吸油值小于100cc/100g的本发明的二氧化硅颗粒。如本文使用的,″圆度指数″被定义为转角和边缘的曲率半径与颗粒最大内切圆半径之比。可以根据以下方程式计算圆度指数:
其中r是各个转角的曲率半径,N是转角数目,而R是颗粒最大内切圆的半径。计算各个曲率半径r并相加。然后通过除以转角数平均该值。然后将得到的值除以最大内切圆半径R。利用20,000倍放大的SEM图像,可手动或使用商业途径可获得的图形分析软件进行该过程。
参考图9,r1..r5是各个转角的曲率半径,并且R是颗粒最大内切圆半径。作为实例,平均曲率半径等于最大内切圆半径的完美球体具有1.0的圆度指数。随着颗粒中边缘和平面数目的增加,方程式的分子减小,颗粒总体圆度降低。圆度详细讨论于″Stratigraphy and Sedimentation,″第二版,Krumbein和Sloss(1963),其关于圆度的教导在此通过引用并入。
一方面,本发明的二氧化硅颗粒具有达100cc/100g的吸油值,其中至少80%的二氧化硅颗粒具有至少0.8或者更优选至少0.9的圆度指数。此类二氧化硅颗粒还具有大于0.9的球形度(S80)系数和小于8.0mg损失/100,000转的黄铜Einlehner磨损值。如上讨论的,至少80%的这些颗粒还可以通过与图8所示轮廓相比较而被分类为圆形至滚圆形。用于计算圆度指数的方法如上讨论,即,评价在放大20,000倍的SEM图像中优选具有至少20个颗粒的代表性样品。
具有达100cc/100g的吸油值的本发明的二氧化硅颗粒还具有至少0.9的球形度系数(S80)。如本文使用的,如下定义和计算″S80″。将代表二氧化硅颗粒样品的放大20,000倍的SEM图像输入照片成像软件,描绘每个颗粒的轮廓(二维)。彼此靠近但互不连接的颗粒应该被认为是用于评价的单独颗粒。然后用颜色填充加轮廓的颗粒,将图像输入颗粒表征软件(例如,可获自Media Cybernetics,Inc.,Bethesda,Maryland的IMAGE-PROPLUS),该软件能够测定颗粒的周长和面积。然后可根据以下方程式计算颗粒的球形度。
其中周长是从颗粒轮廓描绘得出的软件测量周长,并且其中面积是在颗粒描绘周长内的软件测量面积。
对完全在SEM图像内的每一个颗粒进行上述计算。然后根据值对这些值分选,弃掉这些值的最低的20%。这些值的剩余80%被平均而获得S80。作为实例,发现图5所示颗粒的球形度系数(S80)是0.97。
一般没有发现吸油值大于100cc/100g的二氧化硅颗粒具有与上述二氧化硅颗粒同样高的球形度和圆度。然而,此类颗粒具有增大粘度的能力,还在洁齿剂组合物中提供优良的清洁性能。这些颗粒的示例性图像示于图7,这是以下实施例2中讨论的样品2F。
因此,在另一方面,本发明的二氧化硅颗粒可以具有大于100cc/100g的吸油值。这些颗粒可能不表现出与上述那些颗粒相同的圆度和球形度,上述那些颗粒具有达100cc/100g的吸油值。然而,吸油值大于100cc/100g的二氧化硅颗粒被表征为具有3至15μm的粒度,并且在20%二氧化硅载量时表现出至少85、例如85至120的表膜清洁比(PCR)值。
本发明的二氧化硅颗粒还由以下讨论的许多其他性质表征。除非另外指出,以下特征性质涉及吸油值达100cc/100g以及大于100cc/100g的颗粒。
在工艺过程的各个阶段和各种颗粒处理步骤之后或之前测定本发明的二氧化硅颗粒的中值粒度。如本文使用的,中值粒度、平均粒度(APS)和D50在本文指50%样品具有更小尺寸且50%样品具有更大尺寸的粒度。
一方面,本发明的二氧化硅颗粒在液体反应介质中存在时具有3至10μm、优选3至8μm和更优选4至6μm的中值粒度。在特定实例中,液体反应介质中的二氧化硅颗粒的中值粒度是5至6μm。为了测定液体反应介质中颗粒的中值粒度,例如通过体积置换,可以从再循环反应区取出小份液体反应介质,并且可以分析该小份中的颗粒。
在从回路反应区排出二氧化硅产物并干燥二氧化硅产物之后,但在任何研磨步骤之前,得到的二氧化硅颗粒具有3至25μm的中值粒度。在一些实例中,在干燥之后但在研磨之前,二氧化硅颗粒具有3至15μm的中值粒度。在其他实例中,在干燥之后但在研磨之前,二氧化硅颗粒具有4至8μm的中值粒度。
如上讨论的,可以使用研磨来减小干燥二氧化硅颗粒的粒度。例如,在雷蒙德研磨或空气研磨(air milling)之后,二氧化硅颗粒一般具有3至10μm的中值粒度。在特定实例中,二氧化硅颗粒在研磨(包括雷蒙德研磨和/或空气研磨)之后具有3至7μm或甚至5至7μm的粒度。
一般,发现颗粒的干燥粒度、球形度和圆度与二氧化硅结构有关。当结构降低时,干燥时得到较高百分比的滚圆形/较高球形度颗粒,而液体反应介质(浆体)粒度分布几乎没有变化。当结构提高时,滚圆形颗粒/较高球形度水平降低,并且在干燥时平均粒度增加。通过温和的雷蒙德研磨可以使较高结构样品降低至其浆体粒度。更强烈的雷蒙德研磨以及空气研磨没有明显降低比浆体粒度小得多的粒度。较低结构产物的研磨没有导致粒度的太大变化。二氧化硅颗粒的结构一般指吸油能力。因此,低结构二氧化硅具有低吸油能力,而高结构二氧化硅具有高吸油能力。
使用可获自Horiba Instruments,Boothwyn,Pa的LA-930型(或LA-300或等同物)激光散射仪器测定中值粒度。
一般而言,本发明的二氧化硅颗粒具有窄的粒度分布。可以基于许多参数,包括均一度系数、曲率系数和分布对称性,来评价粒度分布。均一度系数(Cu)被定义为D60/D10。曲率系数(Cc)被定义为(D30/(D10×D60))。峰对称性也可以被定义为(D90-D50)/(D50-D10),其中1.0的形状值将代表完美对称曲线。二氧化硅颗粒的均一度系数一般范围从1.8至2.5。曲率系数一般范围从0.2至0.31,而曲线形状值一般范围从1.3至1.7。在特定实例中,峰对称性范围从1.3至1.5,表明二氧化硅颗粒非常对称的分布。
本发明的二氧化硅颗粒具有范围从57至272cc水/100g二氧化硅的吸水值,尽管吸水值可以更高。使用C.W. Brabender Instruments,Inc的吸收计″C″转矩流变仪测定吸水值。将一杯二氧化硅(或硅酸盐)的大约1/3转移至吸收计的混合室,在150rpm搅拌。然后以6ml/min的速率添加水,记录混合粉末所需的扭矩。当水被粉末吸收时,扭矩达到最大,因为粉末从自由流动的粉末转变为糊。然后,将达到最大扭矩时添加的水的总体积标准化为可被100g粉末吸收的水的量。因为粉末是原样使用(它没有事先干燥),通过以下方程式,使用粉末的游离水分值来计算″水分校正的水AbC值″。
通常使用吸收计根据ASTM D2414方法B和C以及ASTM D3493来测定炭黑的吸油量。
如上讨论的,一方面,本发明的二氧化硅颗粒具有达100cc/100g、例如30至100cc/100g的吸油值,而在另一方面,二氧化硅颗粒具有大于100cc/100g的吸油值,例如范围从大于100cc/100g至150cc/100g。一般,发现本发明的二氧化硅颗粒具有范围从30至171cc(cm3或mL)的吸油量/100g二氧化硅的吸油能力。
使用磨损法(rub-out method)(ASTM D281)测量吸油值。该方法基于如下原理:通过用刮刀在光滑表面摩擦亚麻油/二氧化硅混合物直至形成刚性腻子样糊而混合亚麻油与二氧化硅。通过测量得到展开时弯曲的糊混合物所需的油量,可以计算二氧化硅的吸油值,这代表饱和二氧化硅吸收能力所需的每单位重量二氧化硅油量。较高的吸油水平指示较高的二氧化硅结构。低值指示低结构二氧化硅。可以根据以下方程式确定吸油值。
本发明的二氧化硅颗粒一般表现出范围从10至425m2/g的BET表面积。在特定实例中,二氧化硅颗粒表现出范围从10至300m2/g和优选从50至350m2/g的BET表面积。通过Brunaur等人,J.Am.Chem.Soc,60,309(1938)的BET氮吸附方法测定了本公开的二氧化硅颗粒的BET表面积,其关于BET表面积测量的教导在此通过引用并入。
本公开的二氧化硅颗粒的CTAB表面积一般范围从10至250m2/g,在一些实例中从50至200m2/g。通过二氧化硅表面CTAB(鲸蜡基三甲基溴化铵)的吸收来测定二氧化硅的CTAB表面积,离心分离过量物,并使用表面活性剂电极通过用月桂基硫酸钠滴定定量。具体地,将大约0.5g二氧化硅放入含有100.00ml CTAB溶液(5.5g/L)的250-ml烧杯,在电搅拌板上混合1小时,然后以10,000rpm离心30分钟。向100-ml烧杯中5ml澄清上清液添加1ml的10%Triton X-100。使用0.1N HCl调节pH至3.0-3.5,使用表面活性剂电极(Brinkmann SUR1501-DL)用0.0100M月桂基硫酸钠滴定样品以测定终点。
本公开的二氧化硅颗粒的汞(Hg)注入体积(mercury intruded volume)一般范围从0.5至3mL/g。使用Micromeritics Autopore II9220装置,通过汞孔隙度测定法测量汞注入体积或总孔体积(Hg)。采用等于130°的接触角θ(∵)和等于485达因/cm的表面张力γ,通过Washburn方程式可以计算孔直径。由于压力的作用,迫使汞进入颗粒的空隙,在每个压力设定下计算每克样品注入的汞的体积。本文表达的总孔体积代表从真空至60,000psi的压力下注入的汞的累积体积。将每个压力设定下体积的增量(cm3/g)针对对应于压力设定增量的孔半径或直径作图。注入体积对孔半径或直径曲线中的峰对应于孔径分布模式并鉴定样品中最常见的孔径。具体地,调整样品大小以在粉末射线透度仪中实现25%-75%的杆体积(stemvolume),所述粉末射线透度仪具有5mL球管(bulb)和约1.1mL的杆体积。抽空样品至50μm Hg的压力并保持5分钟。在大约103个数据收集点的每一个,汞填充孔,从1.5至60,000psi,10秒平衡时间。
本发明的二氧化硅颗粒的水溶液一般会表现出小于10mg损失/100,000转、优选小于8mg损失/100,000转和更优选小于5mg损失/100,0000转的黄铜Einlehner磨损(BEA)值。BEA值通常是至少1。BEA值的具体范围包括1至10、1至8、1至7、和1至5mg损失/100,000转。
用于测量本发明的二氧化硅产物硬度的黄铜Einlehner磨损(BEA)测试详细描述于Karpe等人的美国专利号6,616,916,其关于BE磨损测试的教导在此通过引用并入。一般,测试包括如下使用Einlehner AT-1000研磨机:(1)将Fourdrinier黄铜丝网称重并暴露于10%二氧化硅水悬液的作用,持续固定长度的时间;(2)然后测定磨损量为每100,000转从Fourdrinier丝网的毫克黄铜损失。以mg损失为单位测量的结果可以被表征为10%黄铜Einlehner(BE)磨损值。
二氧化硅颗粒的Technidyne亮度值一般范围从95至100。在特定实例中,Technidyne亮度值范围从97至100、或甚至98至100。为了测量亮度,将精细粉末二氧化硅压成光滑表面小球,并使用TechnidyneBrightmeter S-5/BC分析。该仪器具有双光束光学系统,其中样品以45°的角度照明,在0°观察反射光。这符合TAPPI测试方法T452和T646和ASTM标准D985。以足够压力将粉末材料压成约1cm的小球,得到光滑且没有松散颗粒或光泽的小球表面。
本公开的二氧化硅颗粒的分散液一般会具有大于1.4的折射率(RI)值。在一些实例中,本公开的二氧化硅颗粒的分散液具有1.4至1.5的RI值。分散液一般具有范围从20至75的%透射值(%T)。
为了测量折射率和光透射度,制备了一系列甘油/水贮液(约10个),使得这些溶液的折射率介于1.428和1.460之间。通常,这些贮液将覆盖70wt%至90wt%甘油水溶液的范围。为了测定RI,将一滴或两滴的每种标准溶液单独放在折射计(Abbe60折射计型号10450)的固定板上。将覆盖板固定并锁定入位。打开光源和折射计,读取每个标准溶液的折射率。
在单独的20-ml小瓶中,将2.0+/-0.01ml本公开的二氧化硅产物添加至18.0+/-0.01ml每种各自的甘油/水贮液(对于测量的吸油量高于150的产物,测试使用1.0g本公开的二氧化硅产物和19.0g甘油/水贮液)。然后剧烈摇瓶以形成二氧化硅分散液,去除瓶塞,将瓶放入干燥器,然后用真空泵抽空干燥器(约24英寸Hg)。
然后使分散液脱气120分钟,肉眼检查完全脱气。在样品回到室温之后(大约10分钟),根据生产商操作说明,测量590nm下的″%T″(Spectronic20D+)。通过将小份的每种分散液放入石英比色杯并在590nm波长下以0-100的刻度读取每个样品的%T,测量了本公开的二氧化硅产物的%T。将%透射比对贮液RI绘制成曲线。二氧化硅的RI被定义为%T对RI曲线上绘制的峰最大值(纵坐标或X-值)的位置。峰最大值的Y-值(或横坐标)是%T。
可以过滤二氧化硅颗粒并用水洗涤以降低硫酸钠水平(存在时)至可允许的水平。反应产物的洗涤一般在过滤之后进行。如果必要,可以在进入本文描述的随后步骤之前调节洗涤的湿饼的pH。本发明的二氧化硅颗粒的硫酸钠含量可以达到约6%。通过已知浓度的二氧化硅浆体的电导率测量硫酸钠含量。具体地,称取38g二氧化硅湿饼样品,放入HamiltonBeach Mixer,型号30的1夸脱混合杯,添加140ml去离子水。混合浆体5至7分钟,然后将浆体转移至250-ml量筒,用去离子水填充量筒至250-ml刻度,使用水冲洗混合杯。通过将量筒(封盖)翻转几次来混合样品。使用电导计例如Cole Parmer CON500型号19950-00来测定浆体的电导率。通过将样品电导率与从已知的硫酸钠/二氧化硅组合物浆体增量法产生的标准曲线相比较来确定硫酸钠含量。
洁齿剂组合物
本发明的二氧化硅产物在洁齿剂组合物中作为磨料或清洁剂的部分或全部是特别有用的。如本文使用的,″洁齿剂组合物″指可例如通过清洁可及的牙齿表面而用于保持口腔卫生的组合物。洁齿剂组合物可以是液体、粉末或糊。通常,洁齿剂组合物主要由水、去污剂、湿润剂、粘合剂、增香剂和细粉磨料(本公开的二氧化硅产物)构成。当加入洁齿剂组合物时,本发明的二氧化硅颗粒可以约5%至约50%重量、优选约10%至约50%重量和更优选约10%至约35%重量的水平存在。作为具体实例,洁齿剂组合物可以包含以约20%重量存在的二氧化硅颗粒。
示例性的口腔洁齿剂或口腔清洁制剂可以任何适合量、例如以下述量(%重量)包括下述成分的任何一种或多种。以下实施例中二氧化硅增稠剂可以是本领域已知的任何增稠剂,例如以下讨论的ZEODENT产物,和/或可以包括本发明的二氧化硅颗粒。磨料优选含有表2所示量的本发明的二氧化硅颗粒。
表2.示例性洁齿剂组合物中的成分和相对量
在洁齿剂组合物中,本公开的二氧化硅颗粒可以单独用作磨料,或者与本文讨论或本领域已知的其他磨料材料一起用作添加剂或联合磨料。因此,任何数目的其他常规类型的磨料添加剂可以存在于本发明的洁齿剂组合物中。其他此类磨料颗粒包括例如沉淀的碳酸钙(PCC)、研磨的碳酸钙(GCC)、白垩、膨润土、磷酸氢钙或其二水合物形式、硅胶(本身及任何结构的)、沉淀二氧化硅、无定形沉淀二氧化硅(本身及任何结构的)、珍珠岩、二氧化钛、磷酸氢钙、焦磷酸钙、氧化铝、水合氧化铝、煅烧氧化铝、硅酸铝、不溶性偏磷酸钠、不溶性偏磷酸钾、不溶性碳酸镁、硅酸锆、颗粒热固性树脂和其他适合的磨料材料。此类材料可以被引入洁齿剂组合物以定制目标制剂的抛光特征。
除了磨料组分,洁齿剂还可以含有一种或多种感官增强剂。感官增强剂包括湿润剂、增甜剂、表面活性剂、香料、着色剂和增稠剂(有时还称为粘合剂、树胶或稳定剂)。
湿润剂用于向洁齿剂添加实体或″口感(mouth texture)″以及防止洁齿剂干燥。适合的湿润剂包括聚乙二醇(以多种不同的分子量)、丙二醇、甘油(丙三醇)、赤藓醇、木糖醇、山梨糖醇、甘露糖醇、乳糖醇和氢化淀粉水解产物及其混合物。在具体实例中,湿润剂以洁齿剂组合物的约20wt%至约50wt%的量存在,例如40%。
可以向洁齿剂组合物(例如,牙膏)添加增甜剂以赋予产物令人愉悦的味道。适合的增甜剂包括糖精(作为糖精钠、糖精钾或糖精钙)、甜蜜素(cyclamate)(作为钠盐、钾盐或钙盐)、安赛蜜(acesulfame-K)、奇异果甜蛋白、新橙皮苷二氢查尔酮、氨化甘草皂苷、右旋糖、左旋糖、蔗糖、甘露糖和葡萄糖。
表面活性剂可用于本发明的牙膏组合物以使组合物更加在美容上可接受。表面活性剂优选是赋予组合物去污和起泡性质的去污材料。适合的表面活性剂是安全且有效量的阴离子、阳离子、非离子、两性离子、两性和甜菜碱型表面活性剂,例如月桂基硫酸钠、十二烷基苯磺酸钠、月桂酰肌氨酸的碱金属或铵盐、豆蔻酰肌氨酸盐、棕榈酰肌氨酸盐、硬脂酰肌氨酸盐和油酰肌氨酸盐、聚氧乙烯失水山梨糖醇单硬脂酸酯、异硬脂酸酯和月桂酸酯、月桂基硫代乙酸钠、N-月桂酰肌氨酸、N-月桂酰、N-豆蔻酰或N-棕榈酰肌氨酸的钠盐、钾盐和乙醇胺盐、烷基酚的聚氧化乙烯缩合物、椰油酰胺丙基甜菜碱、月桂酰胺丙基甜菜碱、棕榈酰甜菜碱等。月桂基硫酸钠是优选的表面活性剂。表面活性剂通常以约0.1%至约15%重量、优选约0.3%至约5%重量、例如约0.3%至约2.5%重量的量存在于本发明的口腔护理组合物中。
还可以向洁齿剂组合物添加增香剂。适合的增香剂包括但不限于鹿蹄草油、薄荷油、留兰香油、黄樟油和丁香油、肉桂、茴香脑、薄荷醇、百里酚、丁子香酚、桉叶油素、柠檬、橙和增加水果味、香味等的其他此类香味化合物。这些增香剂一般包括醛、酮、酯、酚、酸和脂肪族、芳香族和其他醇的混合物。
可以添加着色剂以改进产物的美观。适合的着色剂包括但不限于适当管理机构例如FDA批准的那些着色剂以及欧洲食品和药品法规中列出的那些,并且包括诸如TiO2的色素和诸如FD&C和D&C染料的着色剂。
增稠剂在洁齿剂组合物中用于提供凝胶状结构,该结构稳定牙膏防止相分离。适合的增稠剂包括二氧化硅增稠剂;淀粉;淀粉的甘油剂;树胶,例如刺梧桐树胶(苹婆胶)、黄蓍胶、阿拉伯树胶、印度胶、阿拉伯胶、黄原胶、瓜尔胶和纤维素胶;硅酸镁铝(Veegum);角叉菜胶;海藻酸钠;琼脂;果胶;明胶;纤维素化合物,例如纤维素、羧甲基纤维素、羟乙基纤维素、羟丙基纤维素、羟甲基纤维素、羟甲基羧丙基纤维素、甲基纤维素、乙基纤维素和硫酸纤维素;天然和合成的粘土,例如锂蒙脱石粘土;及其混合物。增稠剂或粘合剂的典型水平是牙膏组合物的约0wt%至约15wt%。
作为非限制性实例,用于牙膏组合物的有用的二氧化硅增稠剂包括例如无定形沉淀二氧化硅,例如ZEODENT165二氧化硅。其他优选的(尽管是非限制性的)二氧化硅增稠剂是ZEODENT153、163和/或167以及ZEOFREE177和/或265二氧化硅产品,全部获自J.M.Huber Corporation。
治疗剂也可用于组合物以提供龋齿、牙周疾病和温度敏感的预防和治疗。治疗剂的非限制性实例有氟化物来源,例如氟化钠、单氟磷酸钠、单氟磷酸钾、氟化亚锡、氟化钾、氟代硅酸钠、氟代硅酸铵等;缩聚磷酸盐,例如焦磷酸四钠、焦磷酸四钾、焦磷酸二氢二钠、焦磷酸一氢三钠;三聚磷酸盐、六偏磷酸盐、三偏磷酸盐和焦磷酸盐,例如;抗微生物剂例如三氯生,双胍例如双胍定、双氯苯双胍己烷和葡糖酸双氯苯双胍己烷;酶,例如木瓜蛋白酶、菠萝蛋白酶、葡糖淀粉酶、淀粉酶、葡聚糖酶、变聚糖酶(mutanase)、脂肪酶、果胶酶、鞣酸酶和蛋白酶;季铵化合物,例如苯扎氯铵(BZK)、苄索氯(BZT)、西吡氯铵(CPC)和溴化度米芬;金属盐,例如柠檬酸锌、氯化锌和氟化亚锡;血根草提取物和血根碱;挥发油,例如桉叶油素、薄荷醇、百里酚和水杨酸甲酯;氟化胺;过氧化物等。治疗剂可以治疗上安全且有效的水平单独或组合用于洁齿剂制剂。
还可以向本发明的组合物添加防腐剂以阻止细菌生长。可以安全且有效的量添加被批准用于口腔组合物的适合防腐剂,例如对羟基苯甲酸甲酯、对羟基苯甲酸丙酯和苯甲酸钠。
本文公开的洁齿剂还可以含有许多另外成分,例如脱敏剂、愈合剂、其他龋齿预防剂、螯合剂/掩蔽剂、维生素、氨基酸、蛋白质、其他抗齿菌斑/抗结石剂、遮光剂、抗生素、抗酶、酶、pH控制剂、氧化剂、抗氧化剂等。
洁齿剂组合物通常还包括溶剂,其通常是水。一般,除了上述添加剂以外,水提供组合物的平衡。水优选是去离子的并且不含杂质。洁齿剂通常包含约5wt%至约70wt%的水,例如5wt%至35wt%、例如11%的水。
本公开的洁齿剂组合物的具体实例是包含以下的组合物:10%-50%重量的本公开的二氧化硅颗粒、甘油、山梨糖醇、水、CARBOWAX600、CEKOL、焦磷酸四钠、糖精钠、氟化钠、ZEODENT、二氧化钛、月桂基硫酸钠、香料和任选的着色剂。
可以使用多种测量来评价本文公开的洁齿剂组合物。洁齿剂组合物的清洁性质通常以表膜清洁比(″PCR″)值的方式表示。PCR测试测量洁齿剂组合物在固定刷牙条件下从牙齿去除表膜的能力。PCR测试描述于″InVitro Removal of Stain With Dentifrice″G.K.Stookey等人,J.Dental Res.,61,1236-9,1982,其有关PCR的教导在此通过引用并入。一般,本发明的洁齿剂组合物在20%载量水平下具有至少85的PCR值,例如约85至约107。
本发明的洁齿剂组合物的放射性牙本质磨损(RDA)一般是至少100,例如约100至约315。根据Hefferen,Journal of Dental Res.,1976年七月-八月,55(4),pp.563-573提出并且在Wason美国专利号4,340,583、4,420,312和4,421,527中描述的方法,测定含有本发明使用的二氧化硅颗粒的洁齿剂的RDA值,其关于RDA测量的教导在此各自通过引用并入。PCR和RDA结果都根据洁齿剂组合物的组分的性质和浓度而变化。PCR和RDA值是无单位的。
本公开的洁齿剂组合物的牙膏(洁齿剂)粘度是变化的,并且可以利用配有Helipath T-F锭子并设为5rpm的布鲁克菲尔德粘度计型号RVT来测量,通过在锭子下降穿过牙膏测试样品的三个不同水平测量牙膏在25℃的粘度并取结果的平均值。布鲁克菲尔德粘度以厘泊(cP)表示。
连续回路反应器
在各个方面,可以使用连续回路反应器或管式反应器进行本发明的工艺。适合的连续回路反应器一般包括酸化剂入口、碱金属硅酸盐入口和产物排出口,全部与由一个或多个管界定的连续回路流体连通。使用多种工具,例如回路本身中的泵,可以再循环连续回路中的液体介质。连续回路反应器的其他组件可包括但不限于回路中用于控制液体介质温度的热交换器、用于控制压力的回压阀和/或回路中用于混合液体反应介质内容物的线上混合装置。
参考图1,示例性的连续回路反应器100包括用于将酸化剂引入回路反应区的液体介质的酸化剂入口110和用于将碱金属硅酸盐引入回路反应区的碱金属硅酸盐入口120。回路反应区由界定连续回路的一个或多个管130界定。连续回路反应器100中还可以存在各种其他组件,包括用于使液体介质再循环穿过一个或多个管130的泵140。在本发明工艺期间,泵140应该与液体反应介质流体连通。连续回路也可以与线上混合装置150流体连通。在图1所示的实例中,线上混合装置150还与酸化剂入口流体连通,并且用于促进酸化剂进入连续回路,还用于混合回路反应区内的液体介质。可以存在热交换器160以控制连续回路中液体介质的温度。因此,热交换器160与界定连续回路的一个或多个管130热连通。随着酸化剂、碱金属硅酸盐或如上讨论的另一种液体被连续添加至反应,液体介质将从连续回路溢出并经产物排出口170离开回路反应区。然后收集产物。在一个特定方面,反应可以配备与一个或多个管130流体连通的一个或多个压力控制装置,例如用于调节回路反应器内部压力的回压阀(未显示)。
任何适合的泵140可用于回路反应器。线上混合装置150部分用于向再循环液体介质提供高剪切环境,并且优选是转子/定子型线上混合器。有用的转子/定子混合器的实例包括由SILVERSON Machines,Inc.生产的SILVERSON线上混合器,例如SILVERSON型号450LS;或者可商业途径获自IKA-Works Inc.,Wilmington,N.C.28405和Charles Ross and SonCompany,Hauppage,N.Y.11788的那些,包括型号ME-410/420X和450X。
实施例
提出以下实施例以为本领域普通技术人员提供本文要求保护的化合物、组合物、物品、装置和/或方法如何完成和评价的完整公开和描述,并且意图仅是本发明的示例而不意图限制本发明人视为其发明的范围。已经努力确保有关数字(例如,量、温度等)的准确性,但是应考虑一些误差和偏差。除非另外指明,份是重量份,温度是℃或室温,并且压力是大气压或接近大气压。
实施例1.连续回路反应器
连续回路反应器配置了循环回路,其中反应浆体可以在排出之前被循环多次(参见图1)。循环回路包括通过多段柔软管连接在一起的多段固定管。管道/软管的内径大约是1″。将泵放在回路的一侧以循环反应,将SILVERSON线上混合器安装在另一侧以对系统提供额外的剪切力,并且还用作引入酸化剂的入口。在泵和混合器之间安装静态混合器热交换器(KENICS型号1-Pilot-HT-EX32,可获自Chemineer,Inc.,Dayton,Ohio),以提供控制二氧化硅生产过程中的温度的手段。位于酸化剂入口之后的排出管允许产物排出,作为硅酸盐和酸化剂添加速率的函数。排出管还可以安装有回压阀,使反应器系统能够在大于100℃的温度下运行。可以确定产物排放管的方向以将产物收集进入用于额外调整(例如,pH调节)的罐,或者产物可以被直接排入旋转或按压型滤器。任选地,可以将酸添加入产物排放线以避免当产物以大于7.0的pH制备时的合成后pH调节。
实施例2.二氧化硅产物的制备
使用实施例1中描述的连续回路反应器制备二氧化硅产物。在将酸化剂和碱金属硅酸盐引入连续回路反应器之前,首先添加沉淀二氧化硅、硫酸钠、硅酸钠和水并以80L/min再循环。这在本文称为液体反应介质,如上讨论的,可以向其中添加额外的酸化剂和碱金属硅酸盐。进行该初始步骤以向循环回路填充近似于典型分批的内容物和浓度,从而使所需二氧化硅产物可以被收集之前的清扫时间最短。认为该步骤还最小化回路反应器内容物的胶凝。然而,应注意,可以将酸化剂和碱金属硅酸盐直接加入仅填充了水的回路反应器,而不胶凝或堵塞系统。因此,在引入酸化剂和碱金属硅酸盐之前,液体反应介质可以包括水而没有晶种二氧化硅。
制备了1.5kg ZEODENT103、1.34kg硫酸钠、11.1L硅酸钠(2.65MR,13.3%)和20L水的溶液。然后将大约15.5L的该溶液添加至回路反应器的再循环回路,将它加热至68℃。在以60Hz(3485RPM)运行的再循环回路中,用SILVERSON线上混合器以80L/min再循环内容物。以1.7L/min的硅酸盐速率和足以维持pH9.5的酸速率向回路同时添加硅酸钠(2.65MR,13.3%)和硫酸(11.4%)。必要时,相应调节酸速率以维持所述pH。在这些条件下添加酸和硅酸盐,持续40分钟,以在收集所需二氧化硅产物之前将不想要的二氧化硅清扫出系统。在经过40分钟之后,清空收集容器并弃掉其内容物。连续添加酸和硅酸盐,同时在以40RPM搅拌并维持温度大约60℃(除非另外规定,收集温度与反应温度相同)的容器中收集二氧化硅产物。在收集所需量的二氧化硅产物之后,停止酸和硅酸盐的添加。允许回路内容物循环。通过人工添加硫酸而将收集容器中的二氧化硅产物调节至pH5.0,然后过滤并洗涤至大约1500μS的电导率,随后干燥。
在表3所示条件下进行样品2B至2E。
根据样品2A进行样品2F至2S,除了在洗涤/过滤步骤之前不进行pH调节。在干燥之前,通过人工添加稀硫酸而将产物pH调节至5.5。
根据样品2F进行样品2J,除了在干燥之前调节pH至6.5。
如上所述使用连续回路反应器进行样品2N,除了从SILVERSON线上混合器除去定子。
表3.样品2A至2S的反应条件概述
参考表3,酸化剂和碱金属硅酸盐以给定速率添加并保持相对于液体反应介质的给定百分比。酸化剂是硫酸,并且碱金属硅酸盐是硅酸钠。
可以下述方式计算给定颗粒在排出之前环绕沉淀回路穿行的平均通过次数或大约次数。参考下示方程式,通过将系统体积除以原材料速率(硅酸盐添加速率+酸添加速率)来计算再循环回路中二氧化硅产物排出之前的停留时间。然后通过将再循环速率除以系统体积,可以计算通过次数/分钟。然后可以将停留时间乘以通过次数/分钟以获得平均通过次数。
随着平均通过次数增加,颗粒的球形度和圆度特征得到改善。
一般,连续回路反应器容易能够在反应期间维持给定条件。如上讨论的,在给定的硅酸盐流速下,调节酸的速率以达到所需的pH。酸速率稳定后,可以维持在所需条件下的连续运行。通过调整酸添加速率而实现pH的调节。具体测试了范围从pH2.5至9.5的条件和范围从24至122℃的温度,没有发现液体反应介质的阻塞或胶凝。
实施例3.从实施例2制备的二氧化硅颗粒
表征了实施例2中制备的二氧化硅产物。一般发现在大多数测试反应条件下的反应浆体粒度(循环回路中的颗粒粒度)是约4-8μm,大部分实例落入4-6μm范围。颗粒的干燥粒度和球形度/圆度与二氧化硅结构直接相关。当结构降低时,干燥时得到较高百分比的具有高球形度和圆度的未聚集颗粒,而浆体粒度分布几乎没有变化。当结构提高时,颗粒聚集水平增加,颗粒的球形度和圆度降低,并且在干燥时平均粒度增加。
通过温和的雷蒙德研磨可以使较高结构样品降低至其浆体粒度。更强烈的雷蒙德研磨以及空气研磨没有明显降低比浆体粒度小得多的粒度。低结构产物的研磨没有导致粒度的太大变化。通过连续工艺生产的二氧化硅的粒度分布是高斯型的,并且通常不如通过常规工艺制备的沉淀二氧化硅宽广。使用连续回路反应器制备的颗粒的浆体、喷雾干燥的、雷蒙德研磨的和空气研磨的粒度显示于表4。对于其他实例,未研磨的干燥二氧化硅样品被指定为″-1″,雷蒙德研磨的样品为″-2″,并且空气研磨的样品为″-3″。通过连续回路工艺和常规工艺制备的二氧化硅产物的粒度分布显示于图2。
表4.通过连续回路工艺制备的二氧化硅产物的浆体、喷雾干燥的和研磨的粒度。
以上描述和表3所列的反应条件允许生产具有″低″至″中高结构″的示例性二氧化硅产物,吸油值一般范围从32至171cc/100g。生产的二氧化硅产物的水分校正的水AbC值范围从57至272cc/100g。CTAB表面积范围从10至250m2/g。范围从17至425的BET表面积高于通过常规分批工艺生产的典型沉淀二氧化硅材料。通过连续工艺制备的二氧化硅产物的亮度值非常好,这可能归因于其高球形度和圆度。通过本文公开的连续工艺生产的二氧化硅产物表现出通常大于96的亮度值,除了在小于7的pH下制备的那些。通过本公开工艺制备的二氧化硅产物的物理性质显示于表5。
表5.连续反应器样品的物理性质
还评价了使用本文公开的连续工艺制备的示例性二氧化硅颗粒批次的粒度分布。结果示于表6。均一度系数(Cu)被定义为D60/D10。曲率系数(Cc)被定义为(D30/(D10×D60))。峰对称性被定义为(D90-D50)/(D50-D10),其中1.0的峰对称性值将代表完美对称的分布。
表6.粒度分布性质
样品 均一度系数 曲率系数 峰对称性
2B-2 2.47 0.23 1.48
2B-3 2.37 0.26 1.60
2C-2 2.33 0.26 1.60
2C-3 2.43 0.29 1.35
2E-2 2.22 0.30 1.43
2F-2 1.98 0.23 1.44
2F-3 2.20 0.24 1.44
通过本文公开的连续工艺制备的二氧化硅产物的扫描电子显微照片表现出相对于常规二氧化硅更加球形和同质得多的分布。低结构产物的球形度/圆度水平一般更大,因为它们在干燥时不容易聚集。随着结构水平提高,颗粒的球形度/圆度和同质性程度降低。当使通过连续回路工艺制备的二氧化硅产物与通过传统分批技术生产的那些相比较时,可以明显发现球形度和圆度的差异。通过连续回路反应器生产的低、中和中高结构二氧化硅产物和通过传统分批工艺制备的二氧化硅产物的扫描电子显微照片示于图3-6。
还研究了SILVERSON线上混合器对赋予系统的剪切力水平的调整。功率输入从30hz调整至60hz并从SILVERSON线上混合器去除定子,没有明显影响产生的颗粒的球形度和圆度品质。然而,平均通过次数与颗粒的球形度和圆度相关。在类似条件下进行样品2P、2Q和2R,除了改变再循环速率(和平均通过次数)。发现具有最高平均通过次数(71)的样品2R与样品2P和2Q相比具有最高品质的球形度和颗粒圆度。
实施例4.从不同的酸化剂制备的二氧化硅颗粒
(i)4A.
制备了包括1.5kg ZEODENT103、1.34kg硫酸钠、11.1L硅酸钠(2.65MR,13.3%)和20L水的溶液。然后将大约15.5L的该溶液添加至实施例1中描述的回路反应器的再循环回路,并将它加热至50℃。在以60Hz(3485RPM)运行的再循环回路中,用SILVERSON线上混合器以78L/min再循环内容物。以0.5L/min的硅酸盐速率和足以维持pH9.5的二氧化碳速率(流速大约是47L/min)向回路同时添加硅酸钠(2.65MR,13.3%)和二氧化碳(99.9%)。必要时,相应调节二氧化碳流速以维持所述pH。在这些条件下添加二氧化碳和硅酸盐,持续40分钟,以在收集所需材料之前将不想要的二氧化硅清扫出系统。在经过40分钟之后,清空收集容器并弃掉其内容物。连续添加二氧化碳和硅酸盐,同时在以40RPM搅拌并维持温度大约50℃的容器中收集二氧化硅产物。在收集所需量的产物之后,停止二氧化碳和硅酸盐的添加。允许回路内容物循环。通过人工添加硫酸而将收集容器中的二氧化硅产物调节至pH6.0,然后过滤并洗涤至大约1500μS的电导率,如果需要则干燥并研磨。
(ii)4B.
根据实施例4A的方法进行实施例4B,除了硅酸钠含有10%重量的硫酸钠,利用大约64L/min的二氧化碳流速维持pH在8.5。
(iii)4C.
制备了包括1.5kg ZEODENT103、1.34kg硫酸钠、11.1L硅酸钠(2.65MR,13.3%)和20L水的溶液。然后将大约15.5L的该溶液添加至回路反应器的再循环回路,并将它加热至43℃。在以60Hz(3485RPM)运行的再循环回路中,用SILVERSON线上混合器以80L/min再循环内容物。以2.55L/min的硅酸盐速率和足以维持pH7.5的酸速率向回路同时添加硅酸钠(2.65MR,13.3%)和包含浓度为23g/L的硫酸钠的硫酸(11.4%)。必要时,相应调节酸速率以维持所述pH。在这些条件下添加酸(含有硫酸钠)和硅酸盐,持续40分钟,以在收集所需材料之前将不想要的二氧化硅清扫出系统。在经过40分钟之后,清空收集容器并弃掉其内容物。连续添加酸(含有硫酸钠)和硅酸盐,同时在以40RPM搅拌并维持温度大约45℃的容器中收集二氧化硅产物。在收集所需量的产物之后,停止酸和硅酸盐的添加。允许回路内容物循环。然后过滤并洗涤收集容器中的二氧化硅产物至大约1500μS的电导率。在喷雾干燥之前,通过人工添加硫酸来调节pH至pH6.0。
(iv)4D.
根据实施例4C进行实施例4D,除了硅酸盐速率是1.7L/min,pH维持在7.1,反应温度是95℃,并且收集温度维持在大约90℃。
(v)4E.
根据实施例4D进行实施例4E,除了硅酸盐浓度是19.5%,17%硫酸含有浓度为8.5g/L的硫酸铝,反应温度是40℃,并且pH维持在7.5。
表7.实施例4中制备的二氧化硅样品的物理性质
除了硫酸,在连续回路反应器中可以使用添加剂和其他酸化剂以生产沉淀二氧化硅。实施例4A和4B使用了二氧化碳替代硫酸作为酸化剂。这通过将气体经由SILVERSON混合器引入连续回路反应器来实现。在这些实施例中使用了较慢的硅酸盐速率(0.5L/min),以赋予被引入的二氧化碳足以反应并维持所需pH的时间,因为二氧化碳的流动是有限的。因为二氧化碳产生弱酸(碳酸),使用了大于8.5的目标pH。如通过(SEM)观察到的,从实施例4A得到的二氧化硅产物具有高球形度和圆度。不需要雷蒙德研磨或空气研磨而达到5至7μm范围内的中值粒度。实施例4C、4D和4E利用了硫酸钠水溶液和硫酸的混合物作为酸化剂,并且表7显示了物理性质。
实施例5.洁齿剂组合物
制备了包含本公开的二氧化硅颗粒的洁齿剂组合物。评价了用于洁齿剂组合物的二氧化硅产物的许多重要性质。通过本公开连续工艺生产的示例性二氧化硅颗粒的Einlehner磨损值显著低于预期,范围从1.8至8.1mg损失/100k转。对于常规沉淀二氧化硅产物,随着结构降低,Einlehner值通常增加。对本公开连续工艺二氧化硅产物,没有发现这种趋势。Einlehner值与粒度一致。测试的示例性二氧化硅产物的Perspex磨损值也比预期低得多,范围从3.3至8.7。
通过4%山梨糖醇溶液测试方法,百分比透射(%T)值范围约20%至80%。对于所有制备的样品观察到了大于1.439的折射率(RI)值。超过典型沉淀二氧化硅产物的RI值增加可能是由于较低的反应温度。如使用Hefferren方法测试的,测试的四种样品的粉末RDA值范围从105至221。该测试由Indiana University School of Dentistry进行。
还发现连续工艺可用于制备与阳离子成分相容的二氧化硅产物,所述阳离子成分例如西吡氯铵(CPC)。CPC是用于漱口制剂以减少齿菌斑、结石和齿龈炎的阳离子抗微生物剂。由于CPC分子的阳离子部分与带负电荷的二氧化硅表面之间的强相互作用,常规二氧化硅材料通常与CPC不相容。为了提高二氧化硅与CPC的相容性,可以制备具有减少的可用于CPC结合的表面积的非常低结构的二氧化硅产物。通过常规分批技术生产CPC相容性二氧化硅产物可能是有问题的,因为通常需要增加的批次以实现必要的结构,并且此类高密二氧化硅的研磨可能导致低亮度值。本公开连续工艺的使用允许以可接受的生产率制备具有非常好的亮度值的低结构二氧化硅产物,因为不需要锤磨或空气研磨而达到所需的粒度范围。进行的牙科二氧化硅测试概况示于表8。
表8.通过连续工艺制备的二氧化硅产物的磨损和光学数据
选择具有跨越所述结构范围的结构的几个样品用于配制成牙膏以进行PCR、PDA和REA测试。以20%载量和与传统二氧化硅材料组合的较低载量水平将样品配制成洁齿剂。表9-12显示了制剂。这些样品和一系列其他样品的几种被放入两个不同的制剂以进行洁齿剂稳定性评价。
表9.牙膏制剂
表10.牙膏制剂
表11.牙膏制剂
表12.牙膏制剂
表9-12所列的牙膏制剂的性质示于表13。发现制备的牙膏样品在25℃老化6周之后具有可接受的美容性质。在相同时段之后,氟化物利用率值都大于85%。对于除了实施例5W和5X之外的所有样品,通过连续二氧化硅工艺生产的二氧化硅产物的粘度增加类似于低结构二氧化硅,实施例5W和5X在增加粘度方面比ZEODENT113更有效。
测量了一系列二氧化硅产物的PCR、RDA和REA值。对于测试样品而言,PCR值范围从83(实施例5AE)至107(实施例5AA)。当以10%至15%的载量水平配制时,PCR值一般是90-100范围。洁齿剂RDA值范围从94至315,取决于测试二氧化硅的结构和载量水平。实施例5AA是在2J中制备的二氧化硅的20%载量,具有315的最高RDA值。这是生产的最低结构二氧化硅产物,因此是最具磨损性的。当以5%至10%载量范围的载量水平与传统二氧化硅材料例如ZEODENT113组合配制时,发现超过单独ZEODENT113的清洁改善。还测试了通过连续回路反应器以较高结构水平生产的几种二氧化硅产物,并发现具有类似于传统高清洁二氧化硅材料的PCR值(实施例5X和5W),并且发现比含有20%载量ZEODENT113的洁齿剂更有效地增加粘度(实施例5R)。使用连续回路反应器制备的较高结构二氧化硅产物的清洁性质表现出比传统中至高结构二氧化硅材料高得多的PCR和RDA值。实施例5X和5W中的二氧化硅产物表现出双功能性质,因为它们提供了非常好的清洁,同时提供足够的粘度增加。
由连续回路反应器生产的低至中结构二氧化硅产物的REA值低于或等于ZEODENT113的REA值,表明这些材料的球形性质对牙釉质的磨损可能比传统的高清洁二氧化硅材料例如ZEODENT103少。洁齿剂测试数据总结于表13。
表13.表7-10中所示制剂的洁齿剂数据
实施例6.硅酸铝钠和硅酸铝镁钠的制备
(i)6A
制备了1.5kg ZEODENT103、1.34kg硫酸钠、11.1L硅酸钠(3.32MR,20.0%)和20L水的溶液。然后将大约15.5L的该溶液添加至实施例1中描述的回路反应器的再循环回路,将它加热至60℃。在以60Hz(3485RPM)运行的再循环回路中,用SILVERSON线上混合器以80L/min再循环内容物。以1.7L/min的硅酸盐速率和足以维持pH8.5的硫酸铝速率向回路同时添加硅酸钠(3.32MR,20.0%)和硫酸铝水溶液(11.4%)。必要时,相应调节酸速率以维持所述pH。在这些条件下添加酸和硅酸盐,持续40分钟,以在收集所需材料之前将不想要的二氧化硅清扫出系统。在经过40分钟之后,清空收集容器并弃掉其内容物。连续添加酸和硫酸铝,同时在以40RPM搅拌并维持温度大约60℃的容器中收集二氧化硅产物。在收集所需量的产物之后,停止硫酸铝和硅酸盐的添加。允许回路内容物循环。然后将收集容器中的硅酸盐产物过滤,洗涤至大约1500μS的电导率并干燥。
(ii)6B.
根据实施例6A进行实施例6B,除了再循环速率是77L/min,反应温度是36℃,并且收集容器温度维持在室温。样品在干燥后经雷蒙德研磨。
(iii)6C.
根据实施例6B进行实施例6C,除了从装置去除静态混合器热交换器,并且反应温度是32℃。
(iv)6D.
根据实施例6C进行实施例6D,除了硫酸铝水溶液浓度是14.5%,硅酸盐速率是3.4L/min,并且反应温度是24℃。
(v)6E.
从回路反应器去除静态混合器热交换器。制备了包括1.5kgZEODENT103、1.34kg硫酸钠、11.1L硅酸钠(3.32MR,20.0%)和20L水的溶液。然后将大约15.5L的该溶液添加至回路反应器的再循环回路,将它加热至39℃。在以60Hz(3485RPM)运行的再循环回路中,用SILVERSON线上混合器以110L/min再循环内容物。以2.5L/min的硅酸盐速率和足以维持pH8.8的硫酸铝水溶液速率向回路同时添加含有4.5g/L氢氧化镁的硅酸钠(3.32MR,20.0%)和硫酸铝水溶液(34.0%)。必要时,相应调节硫酸铝水溶液速率以维持所述pH。在这些条件下添加硫酸铝水溶液和含有氢氧化镁的硅酸盐,持续25分钟,以在收集所需材料之前将不想要的二氧化硅清扫出系统。在经过25分钟之后,清空收集容器并弃掉其内容物。连续添加硫酸铝水溶液和含有氢氧化镁的硅酸盐,同时在以40RPM搅拌并维持温度大约39℃的容器中收集二氧化硅产物。在收集所需量的产物之后,停止硫酸铝水溶液和含有氢氧化镁的硅酸盐的添加。允许回路内容物循环。然后将收集容器中的硅酸盐产物过滤,洗涤至大约1500μS的电导率并干燥。
表14.实施例6中制备的二氧化硅产物的物理性质
实施例6A、6B、6C和6D描述了通过用硫酸铝水溶液中和硅酸钠而在连续回路反应器中制备硅酸铝钠。将硫酸铝水溶液通过SILVERSON线上混合器引入回路反应器。利用通过次数的调整来产生具有范围从约60至122cc/100g的吸油值的一系列产物。实施例6E描述了通过用硫酸铝水溶液中和硅酸钠/氢氧化镁而制备硅酸铝镁钠。这些二氧化硅产物的性质列于表14。这些实施例中产生的材料在性质上具有高球形度值并且是滚圆形的。诸如这些的材料可用于油漆和涂料以及纸应用。
可以对本文描述的化合物、复合材料、试剂盒、物品、装置、组合物和方法做出各种调整和改变。考虑本说明书并实施本文公开的化合物、复合材料、试剂盒、物品、装置、组合物和方法,将清楚本文描述的化合物、复合材料、试剂盒、物品、装置、组合物和方法的其他方面。意图认为说明书和实施例是示例性的。

Claims (13)

1.一种二氧化硅颗粒,所述二氧化硅颗粒具有达100cc/100g的吸油值;其中至少80%的所述二氧化硅颗粒是圆形至滚圆形的;并且其中所述二氧化硅颗粒具有大于0.9的球形度(S80)系数和小于8.0mg损失/100,000转的黄铜Einlehner磨损值,其中所述二氧化硅颗粒是通过连续工艺制备的。
2.如权利要求1所述的二氧化硅颗粒,其中所述二氧化硅颗粒具有3至15μm的中值粒度。
3.如权利要求1所述的二氧化硅颗粒,其中所述二氧化硅颗粒具有3至10μm的中值粒度。
4.如权利要求1所述的二氧化硅颗粒,其中所述二氧化硅颗粒具有30至80cc/100g的吸油值。
5.如权利要求1所述的二氧化硅颗粒,其中所述二氧化硅颗粒具有50至350m2/g的BET表面积。
6.一种洁齿剂组合物,所述洁齿剂组合物包含以所述组合物重量的5%至50%的量的二氧化硅颗粒;其中所述二氧化硅颗粒具有达100cc/100g的吸油值、大于0.9的球形度(S80)系数和小于8.0mg损失/100,000转的黄铜Einlehner磨损值;其中至少80%的所述二氧化硅颗粒是圆形至滚圆形的,其中所述二氧化硅颗粒是通过连续工艺制备的。
7.如权利要求6所述的洁齿剂组合物,其中所述组合物包含以下的一种或多种:湿润剂、溶剂、粘合剂、治疗剂、螯合剂、不同于所述二氧化硅颗粒的增稠剂、表面活性剂、不同于所述二氧化硅颗粒的磨料、增甜剂、着色剂、增香剂或防腐剂。
8.如权利要求6所述的洁齿剂组合物,其中所述二氧化硅颗粒具有3至15μm的中值粒度。
9.如权利要求6所述的洁齿剂组合物,其中所述二氧化硅颗粒具有3至10μm的中值粒度。
10.如权利要求6所述的洁齿剂组合物,其中所述二氧化硅颗粒具有30至80cc/100g的吸油值。
11.如权利要求6所述的洁齿剂组合物,其中所述二氧化硅颗粒具有50至350m2/g的BET表面积。
12.如权利要求6所述的洁齿剂组合物,其中所述组合物具有至少100的放射性牙本质磨损(RDA)值。
13.如权利要求6所述的洁齿剂组合物,其中所述组合物具有至少85的表膜清洁比(PCR)值。
CN201180009175.3A 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物 Active CN102753137B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410591716.3A CN104402008B (zh) 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物
CN201410592567.2A CN104473776B (zh) 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/711,321 US8609068B2 (en) 2010-02-24 2010-02-24 Continuous silica production process and silica product prepared from same
US12/711,321 2010-02-24
PCT/US2011/025626 WO2011106289A2 (en) 2010-02-24 2011-02-21 Continuous silica production process and silica product prepared from same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201410591716.3A Division CN104402008B (zh) 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物
CN201410592567.2A Division CN104473776B (zh) 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物

Publications (2)

Publication Number Publication Date
CN102753137A CN102753137A (zh) 2012-10-24
CN102753137B true CN102753137B (zh) 2015-07-01

Family

ID=44209705

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201410591716.3A Active CN104402008B (zh) 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物
CN201410592567.2A Active CN104473776B (zh) 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物
CN201180009175.3A Active CN102753137B (zh) 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201410591716.3A Active CN104402008B (zh) 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物
CN201410592567.2A Active CN104473776B (zh) 2010-02-24 2011-02-21 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物

Country Status (20)

Country Link
US (4) US8609068B2 (zh)
EP (3) EP3216442B1 (zh)
JP (2) JP5905401B2 (zh)
KR (4) KR101710493B1 (zh)
CN (3) CN104402008B (zh)
AR (3) AR080655A1 (zh)
AU (1) AU2011221218B2 (zh)
BR (3) BR122014004122B1 (zh)
DE (1) DE11718532T1 (zh)
ES (3) ES2402119T3 (zh)
HU (2) HUE047179T2 (zh)
MX (3) MX348190B (zh)
MY (1) MY158259A (zh)
PH (2) PH12017500235A1 (zh)
PL (3) PL3216442T3 (zh)
PT (2) PT2538915T (zh)
RU (3) RU2673449C9 (zh)
TR (1) TR201902549T4 (zh)
TW (3) TWI443066B (zh)
WO (1) WO2011106289A2 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609068B2 (en) * 2010-02-24 2013-12-17 J.M. Huber Corporation Continuous silica production process and silica product prepared from same
US8642529B2 (en) * 2010-11-15 2014-02-04 Conopco, Inc. Liquid low surfactant compositions structured with a fibrous polymer
US9028605B2 (en) * 2011-02-25 2015-05-12 J.M. Huber Corporation Coating compositions comprising spheroid silica or silicate
US9724277B2 (en) * 2011-04-04 2017-08-08 Robert L. Karlinsey Microbeads for dental use
DE102012202587A1 (de) * 2012-02-21 2013-08-22 Evonik Degussa Gmbh Verfahren zur Herstellung von hochreinem SiO2
JP5968126B2 (ja) * 2012-07-04 2016-08-10 太平洋セメント株式会社 非晶質シリカの製造方法
US9186307B2 (en) * 2012-11-19 2015-11-17 J.M. Huber Corporation Treated silicas and metal silicates for improved cleaning in dentifrice
MX369280B (es) 2013-12-20 2019-11-04 Colgate Palmolive Co Particulas de silice del tipo de nucleo y recubrimiento y usos de las mismas como agente antibacteriano.
WO2015095709A1 (en) 2013-12-20 2015-06-25 Colgate-Palmolive Company Tooth whitening oral care product with core shell silica particles
DE102014204053A1 (de) * 2014-03-05 2015-09-10 Beiersdorf Ag Abrasive Hautreinigungsmittel II
US10287438B2 (en) 2015-05-08 2019-05-14 Evonik Degussa Gmbh Color-bleed resistant silica and silicate pigments and methods of making same
HUE050377T2 (hu) * 2015-09-28 2020-11-30 Evonik Operations Gmbh Kovasav alapú antimikrobiális orális készítmények
EP3356297A4 (en) 2015-09-30 2019-05-15 Umicore PRECURSORS FOR LITHIUM TRANSITION METAL OXIDE CATHODE MATERIALS FOR RECHARGEABLE BATTERIES
PL3393971T3 (pl) * 2015-12-23 2022-03-07 Tata Chemicals Limited Sposób wytwarzania krzemionki strącanej
HUE059556T2 (hu) 2016-05-16 2022-11-28 Martinswerk Gmbh Timföld termékek és alkalmazásaik olyan polimer kompoziciókban, amelyek nagy hõvezetési tényezõvel rendelkeznek
JP6918825B2 (ja) * 2016-07-27 2021-08-11 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 改質沈降シリカの製造方法および改質沈降シリカを含有する組成物
US10486973B2 (en) * 2016-11-18 2019-11-26 Ppg Industries Ohio, Inc. Silica-based spherical particulates and methods of preparing the same
EP3554460A1 (en) 2016-12-19 2019-10-23 The Procter and Gamble Company Dentifrice compositions containing stannous compatible silica particles
KR102508981B1 (ko) 2016-12-19 2023-03-13 에보니크 오퍼레이션즈 게엠베하 제1주석 상용성 실리카
MX2020002218A (es) * 2017-08-28 2020-07-20 Evonik Operations Gmbh Silice esferica para oclusion de tubulo.
US11285088B2 (en) * 2017-08-29 2022-03-29 Evonik Operations Gmbh Spherical silica particle size for RDA control
CN108046278B (zh) * 2018-01-23 2020-12-08 合肥星巢环保科技有限公司 一种管式连续流法制备高比表面积二氧化硅的方法
KR102567067B1 (ko) * 2018-04-30 2023-08-11 주식회사 엘지화학 우수한 분산성을 갖는 알루미노실리케이트 나노입자의 제조 방법, 상기 알루미노실리케이트 나노입자를 포함한 고무 보강재 및 이를 포함한 타이어용 고무 조성물
CN112334410B (zh) * 2018-06-12 2023-09-22 赢创运营有限公司 用于降低rda的球形亚锡相容性二氧化硅颗粒
JP2021526558A (ja) 2018-06-12 2021-10-07 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Rdaを減少させるための球状のスズ融和性シリカ粒子を有する歯磨剤配合物
CN109319794A (zh) * 2018-11-20 2019-02-12 福建省三明同晟化工有限公司 一种连续法制备沉淀二氧化硅的方法
EP3883532B1 (de) * 2018-11-23 2022-08-24 BLBR GmbH Aufschäumbare zahnpflegezusammensetzung, system bestehend aus der zahnpflegezusammensetzung und einem spender sowie verwendung der zahnpflegezusammensetzung in einem verfahren zum gleichzeitigen reinigen mehrerer, vorzugsweise aller zähne
EP3659968A1 (en) * 2018-11-29 2020-06-03 ImerTech Mineral composition
EP3890687A2 (en) 2018-12-04 2021-10-13 The Procter & Gamble Company Oral care compositions with improved tin compatability
CN109850911B (zh) * 2019-04-08 2023-11-28 原初科技(北京)有限公司 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法
CN110606492B (zh) * 2019-10-29 2022-07-12 朱志宏 一种连续合成白炭黑及氟化钠的方法
WO2021093961A1 (de) 2019-11-14 2021-05-20 Wacker Chemie Ag Modifizierte fällungskieselsäure mit reduziertem feuchteanteil
CN111392739B (zh) * 2020-03-27 2020-12-01 广州市飞雪材料科技有限公司 一种高分散性增稠型二氧化硅的制备方法及应用
CN112174147B (zh) * 2020-09-30 2023-12-22 南京工业大学 一种管式连续流法制备球形纳米二氧化硅的方法
CA3193933A1 (en) 2020-10-02 2022-04-07 Bob Tse-Weng Lin Spherical, low surface area precipitated silicas as matting agents in powder coatings
CA3138558C (en) 2020-11-16 2024-01-30 Church & Dwight Co., Inc. Teeth cleaning composition comprising banana extract
KR20230138530A (ko) 2021-02-11 2023-10-05 에보니크 오퍼레이션즈 게엠베하 무정형 비-다공성 실리카
WO2023117446A1 (en) * 2021-12-20 2023-06-29 Evonik Operations Gmbh Precipitated silica and methods thereof
WO2023227642A1 (en) 2022-05-27 2023-11-30 Evonik Operations Gmbh Spherical calcium silicate
WO2023245069A2 (en) * 2022-06-14 2023-12-21 Aquestive Therapeutics, Inc. Enhanced delivery epinephrine and prodrug compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065095A (zh) * 2004-11-24 2007-10-31 J.M.休伯有限公司 高清洁性/低研磨性的二氧化硅材料和含有这种材料的洁齿产品

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060418A1 (fr) * 1999-04-02 2000-10-12 Sanyo Chemical Industries, Ltd. Poudres imprimantes
US2727876A (en) 1952-03-06 1955-12-20 Du Pont Composition and process
US3386810A (en) * 1961-10-03 1968-06-04 Burke Apparatus for the production of silica pigments
US3324093A (en) * 1963-10-21 1967-06-06 Phillips Petroleum Co Loop reactor
US4001379A (en) * 1968-04-27 1977-01-04 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Process of making superfine amorphous high structural silicic acid
US4122160A (en) * 1974-10-31 1978-10-24 J. M. Huber Corporation Toothpaste compositions containing improved amorphous precipitated silicas
US3987096A (en) * 1975-01-20 1976-10-19 E. I. Du Pont De Nemours And Company Process for chlorination of acetaldoxime
CA1096161A (en) * 1976-12-24 1981-02-24 Katsuhiko Kanamori Pressure-sensitive, electrically conductive elastomeric composition
US4421527A (en) 1977-12-20 1983-12-20 J. M. Huber Corporation High fluoride compatibility dentifrice abrasives and compositions
US4340583A (en) 1979-05-23 1982-07-20 J. M. Huber Corporation High fluoride compatibility dentifrice abrasives and compositions
US4420312A (en) 1979-05-23 1983-12-13 J. M. Huber Corporation Method for production of high fluoride compatibility dentifrice abrasives and compositions
DE3370469D1 (en) * 1982-11-16 1987-04-30 Hoechst Ag Aluminium silicates with a zeolite structure and process for their preparation
US4587120A (en) * 1982-12-29 1986-05-06 Lion Corporation Oral composition and abrasive therefor
JPS60105609A (ja) 1983-03-04 1985-06-11 Taki Chem Co Ltd 歯磨用シリカ基剤及びその製造方法
FR2567504B1 (fr) * 1984-07-11 1989-12-29 Rhone Poulenc Chim Base Colloides de silice et silices spheriques et procedes pour leur obtiention
FR2567505B1 (fr) * 1984-07-11 1986-11-21 Rhone Poulenc Chim Base Silice a prise d'huile elevee et a structure primaire controlee et procede pour son obtention
JPS61220182A (ja) * 1985-03-26 1986-09-30 Nitto Electric Ind Co Ltd カセツトテ−プ用テ−プガイド
JPS6287507A (ja) * 1985-10-11 1987-04-22 Fuji Debuison Kagaku Kk 歯磨剤
US4874549A (en) * 1985-12-13 1989-10-17 Advanced Micro-Matrix, Inc. Pressure sensitive electro-conductive materials
GB8604985D0 (en) * 1986-02-28 1986-04-09 Unilever Plc Precipitated silicas
JPS62252312A (ja) * 1986-04-25 1987-11-04 Nippon Chem Ind Co Ltd:The 含水珪酸の製造方法
US4767433A (en) 1986-05-22 1988-08-30 Asahi Glass Company Ltd. Spherical silica glass powder particles and process for their production
DE3751943T2 (de) * 1986-08-04 1997-04-03 Dainippon Ink & Chemicals Herstellungsverfahren von Tonern für die Entwicklung von elektrostatischen Bildern und derartige Toner
JP2742693B2 (ja) * 1988-09-22 1998-04-22 コニカ株式会社 磁性トナー
US5030286A (en) 1988-09-22 1991-07-09 Ppg Industries, Inc. High solids aqueous silica slurry
EP0495039B2 (en) * 1990-08-06 2003-10-08 INEOS Silicas Limited Silicas
FR2678259B1 (fr) * 1991-06-26 1993-11-05 Rhone Poulenc Chimie Nouvelles silices precipitees sous forme de granules ou de poudres, procedes de synthese et utilisation au renforcement des elastomeres.
KR960010781B1 (ko) 1991-10-02 1996-08-08 유니레버 엔브이 실리카
US5279807A (en) * 1992-05-26 1994-01-18 E. I. Du Pont De Nemours And Company Method for preparing low-concentration polysilicate microgels
IL104722A (en) 1993-02-02 1998-04-05 Rotem Fertilizers Ltd Process for the manufacture of pure silica from rock containing it
JPH06239722A (ja) * 1993-02-15 1994-08-30 Johnson & Johnson Kk 歯みがき組成物
US5691095A (en) * 1994-12-09 1997-11-25 Dainippon Ink And Chemicals, Inc. Toner for developing electrostatic latent image and process for producing the same
US5658553A (en) 1995-05-02 1997-08-19 The Procter & Gamble Company Dentifrice compositions
US5676932A (en) * 1995-05-02 1997-10-14 J.M. Huber Corporation Silica abrasive compositions
US5651958A (en) 1995-05-02 1997-07-29 The Procter & Gamble Company Dentifrice compositions
DE19524182A1 (de) * 1995-07-03 1997-01-09 Basf Ag Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Polymeren
US5891421A (en) * 1996-03-22 1999-04-06 J.M. Huber Corporation Precipitated silicas having improved dentifrice performance characteristics and methods of preparation
FR2747669B1 (fr) * 1996-04-22 1998-05-22 Rhone Poulenc Chimie Procede de preparation de particules creuses de silice
US5929156A (en) * 1997-05-02 1999-07-27 J.M. Huber Corporation Silica product for use in elastomers
CN1152822C (zh) * 1997-06-04 2004-06-09 纳幕尔杜邦公司 改进的制备低浓度聚硅铝酸盐微凝胶的方法
KR100573343B1 (ko) * 1997-06-13 2006-04-24 이 아이 듀폰 디 네모아 앤드 캄파니 저-농도 폴리알루미노실리케이트 마이크로겔의 개선된제조 방법
US6239235B1 (en) * 1997-07-15 2001-05-29 Phillips Petroleum Company High solids slurry polymerization
DE69910905T2 (de) * 1998-06-22 2004-07-15 Mitsubishi Polyester Film Corp. Biaxial-orientierte Polyesterfolie
US6406789B1 (en) * 1998-07-22 2002-06-18 Borden Chemical, Inc. Composite proppant, composite filtration media and methods for making and using same
JP4412759B2 (ja) * 1999-04-30 2010-02-10 水澤化学工業株式会社 球状シリカゲル粒子及びその製法
US6114430A (en) 1999-08-25 2000-09-05 H.B. Fuller Licensing & Financing, Inc. Aqueous paint compositions comprising polyether amides
US6274112B1 (en) * 1999-12-08 2001-08-14 E. I. Du Pont De Nemours And Company Continuous production of silica-based microgels
CA2292819A1 (en) 1999-12-22 2001-06-22 Bayer Inc. Process for the production of a precipitated silica slurry with a controlled aggregate particle size distribution
US6290933B1 (en) * 2000-05-09 2001-09-18 Colgate-Palmolive Company High cleaning dentifrice
US6403059B1 (en) * 2000-08-18 2002-06-11 J. M. Huber Corporation Methods of making dentifrice compositions and products thereof
US6419174B1 (en) * 2000-08-18 2002-07-16 J. M. Huber Corporation Abrasive compositions and methods for making same
US6652611B1 (en) * 2000-08-18 2003-11-25 J. M. Huber Corporation Method for making abrasive compositions and products thereof
JP2002275274A (ja) 2001-03-19 2002-09-25 Dokai Chemical Industries Co Ltd 鱗片状シリカ粒子を含有する高い保存安定性を有する硬化性組成物及びその製造方法
KR20070011650A (ko) 2001-10-25 2007-01-24 마츠시다 덴코 가부시키가이샤 코팅재 조성물 및 그것에 의해 형성된 피막을 가지는 물품
TWI228553B (en) 2001-11-16 2005-03-01 Du Pont Method of producing coating compositions and coating compositions made therefrom
US20030110338A1 (en) 2001-12-06 2003-06-12 Yuanlong Wang Method and apparatus for emulating computer buses using point-to-point techniues
US6616916B1 (en) * 2001-12-10 2003-09-09 J. M. Huber Corporation Transparent dentifrices
GB0130907D0 (en) * 2001-12-22 2002-02-13 Ineos Silicas Ltd Amorphous silica
FR2833937B1 (fr) 2001-12-26 2004-11-12 Rhodia Chimie Sa Silices a faible reprise en eau
US20030228369A1 (en) 2002-05-06 2003-12-11 Kuhrts Eric Hauser Process for conversion of high viscosity fluids and compositions thereof
JP4587293B2 (ja) * 2002-08-03 2010-11-24 エボニック デグサ ゲーエムベーハー 高表面積を有する高分散性の沈降珪酸
DE10248799B4 (de) 2002-10-19 2007-03-15 Georg Gros Partikel enthaltende Beschichtungszusammensetzung und Verfahren zur Beschichtung von Oberflächen
US6946119B2 (en) * 2003-02-14 2005-09-20 J.M. Huber Corporation Precipitated silica product with low surface area, dentifrices containing same, and processes
JP4239835B2 (ja) * 2004-01-28 2009-03-18 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像用現像剤及び画像形成方法
US7429789B2 (en) 2004-03-31 2008-09-30 Endicott Interconnect Technologies, Inc. Fluoropolymer dielectric composition for use in circuitized substrates and circuitized substrate including same
GB0416256D0 (en) * 2004-07-20 2004-08-25 Avecia Ltd Manufacturing process
US20070258922A1 (en) 2004-11-01 2007-11-08 Wozniak Mark E Novel silica- or silicate-based pigments for wrinkle-hiding cosmetic applications
US20070253987A1 (en) 2004-11-01 2007-11-01 Wozniak Mark E Novel pigments for wrinkle-hiding cosmetic applications
US7670593B2 (en) * 2004-11-24 2010-03-02 J.M. Huber Corporation High-cleaning silica materials and dentifrice containing such
US20060110307A1 (en) * 2004-11-24 2006-05-25 Mcgill Patrick D High-cleaning silica materials made via product morphology control and dentifrice containing such
US7303742B2 (en) * 2004-11-24 2007-12-04 J.M. Huber Corporation Viscosity-modifying silica materials that exhibit low cleaning and abrasive levels and dentifrices thereof
US7306788B2 (en) * 2004-11-24 2007-12-11 J.M. Huber Corporation High-cleaning/moderate abrasive silica materials and dentifrice containing such materials
US20080187498A1 (en) * 2005-02-04 2008-08-07 Edward Francis Multiphase Toothpaste Composition
US7731110B2 (en) * 2005-06-29 2010-06-08 J.M. Huber Corporation Method for making precipitated silica compositions and products thereof
US7159803B1 (en) * 2005-06-29 2007-01-09 J.M. Huber Corporation Method for making particulate compositions and products thereof
DE102005043201A1 (de) * 2005-09-09 2007-03-15 Degussa Ag Fällungskieselsäuren mit einer besonderen Porengrößenverteilung
KR100740346B1 (ko) 2005-12-01 2007-07-19 이엔비나노텍(주) 나노기공 실리카의 제조장치 및 그 제조방법
GB0525369D0 (en) * 2005-12-14 2006-01-18 Ineos Silicas Ltd Silicas
US7906598B2 (en) * 2006-08-30 2011-03-15 Intertape Polymer Corp. Recirculation loop reactor bulk polymerization process
US7270803B1 (en) * 2006-03-23 2007-09-18 J.M. Huber Corporation High-cleaning, low abrasion, high brightness silica materials for dentrifices
US20070224133A1 (en) * 2006-03-23 2007-09-27 Mcgill Patrick D High-cleaning silica materials made via product morphology control under high shear conditions
JPWO2007122930A1 (ja) * 2006-04-20 2009-09-03 旭硝子株式会社 コアシェル型シリカおよびその製造方法
JP5631530B2 (ja) * 2007-12-07 2014-11-26 日揮触媒化成株式会社 表面平滑性を備えた多孔質シリカ系粒子、その製造方法および該多孔質シリカ系粒子を配合してなる化粧料
MY151227A (en) 2008-05-16 2014-04-30 Colgate Palmolive Co Oral compositions and uses thereof
US20100047742A1 (en) 2008-08-25 2010-02-25 Pitcock Jr William Henry Tubule-blocking silica materials for dentifrices
ES2560202T3 (es) * 2008-11-25 2016-02-17 The Procter & Gamble Company Composiciones para el cuidado bucal con sílice fundida
US8609068B2 (en) * 2010-02-24 2013-12-17 J.M. Huber Corporation Continuous silica production process and silica product prepared from same
US9028605B2 (en) 2011-02-25 2015-05-12 J.M. Huber Corporation Coating compositions comprising spheroid silica or silicate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065095A (zh) * 2004-11-24 2007-10-31 J.M.休伯有限公司 高清洁性/低研磨性的二氧化硅材料和含有这种材料的洁齿产品

Also Published As

Publication number Publication date
US20150086463A1 (en) 2015-03-26
US9617162B2 (en) 2017-04-11
PH12017500235A1 (en) 2019-03-11
RU2014144151A (ru) 2016-05-27
EP3210592B1 (en) 2019-08-21
ES2402119T3 (es) 2019-06-13
US8945517B2 (en) 2015-02-03
TW201434746A (zh) 2014-09-16
TWI488810B (zh) 2015-06-21
CN104473776A (zh) 2015-04-01
RU2012132276A (ru) 2014-03-27
JP2013520503A (ja) 2013-06-06
BR122014004158B1 (pt) 2018-07-17
RU2673449C9 (ru) 2019-03-05
EP2538915B1 (en) 2018-11-21
ES2748574T3 (es) 2020-03-17
PL3210592T3 (pl) 2020-01-31
WO2011106289A2 (en) 2011-09-01
PT3210592T (pt) 2019-11-05
PH12017500271A1 (en) 2018-10-08
PL3216442T3 (pl) 2020-02-28
CN104402008B (zh) 2017-05-24
KR20130008568A (ko) 2013-01-22
US9327988B2 (en) 2016-05-03
RU2673449C1 (ru) 2018-11-27
KR20170020551A (ko) 2017-02-22
JP5905401B2 (ja) 2016-04-20
RU2539136C2 (ru) 2015-01-10
JP5914708B2 (ja) 2016-05-11
KR20160104731A (ko) 2016-09-05
ES2748576T3 (es) 2020-03-17
DE11718532T1 (de) 2013-07-25
US20160214865A1 (en) 2016-07-28
US20110206746A1 (en) 2011-08-25
TW201136833A (en) 2011-11-01
MX2012008829A (es) 2012-11-29
MX348190B (es) 2017-06-02
AR080655A1 (es) 2012-04-25
AR096331A2 (es) 2015-12-23
CN104402008A (zh) 2015-03-11
AU2011221218B2 (en) 2014-01-16
PL2538915T3 (pl) 2019-05-31
CN102753137A (zh) 2012-10-24
BR112012021263B1 (pt) 2018-03-06
PT2538915T (pt) 2019-02-27
KR101830313B1 (ko) 2018-02-20
AU2011221218A1 (en) 2012-08-16
BR122014004122A2 (pt) 2018-01-23
CN104473776B (zh) 2016-08-17
TWI443066B (zh) 2014-07-01
EP3210592A1 (en) 2017-08-30
EP3216442A1 (en) 2017-09-13
BR122014004158A2 (pt) 2018-02-06
EP2538915A2 (en) 2013-01-02
HUE042617T2 (hu) 2019-07-29
TW201434747A (zh) 2014-09-16
RU2591242C2 (ru) 2016-07-20
US8609068B2 (en) 2013-12-17
EP3216442B1 (en) 2019-08-21
KR101710532B1 (ko) 2017-02-27
KR101652771B1 (ko) 2016-09-01
ES2402119T1 (es) 2013-04-29
MY158259A (en) 2016-09-30
MX352133B (es) 2017-11-10
KR20160104732A (ko) 2016-09-05
HUE047179T2 (hu) 2020-04-28
TR201902549T4 (tr) 2019-03-21
KR101710493B1 (ko) 2017-02-27
JP2015129082A (ja) 2015-07-16
WO2011106289A3 (en) 2012-01-12
TWI496742B (zh) 2015-08-21
BR122014004122B1 (pt) 2018-07-10
US20140072634A1 (en) 2014-03-13
AR109367A2 (es) 2018-11-21

Similar Documents

Publication Publication Date Title
CN102753137B (zh) 连续的二氧化硅生产工艺及由该工艺制备的二氧化硅产物
PT1313436E (pt) Composições abrasivas e métodos para a sua produção
MX2007006248A (es) Materiales de silice de altamente limpiadores hechos a traves de control de morfologia de producto y dentifrico que contiene los mismos.
AU2013205147B2 (en) Continuous Silica Production Process And Silica Product Prepared From Same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20181121

Address after: essen

Patentee after: Evonik Degussa GmbH

Address before: Georgia, USA

Patentee before: J.M. Huber Corporation

TR01 Transfer of patent right
CP01 Change in the name or title of a patent holder

Address after: Essen, Germany

Patentee after: Evonik Operations Limited

Address before: Essen, Germany

Patentee before: EVONIK DEGUSSA GmbH

CP01 Change in the name or title of a patent holder