CN102716766A - 液相co2甲烷化催化剂、制备方法及其应用 - Google Patents

液相co2甲烷化催化剂、制备方法及其应用 Download PDF

Info

Publication number
CN102716766A
CN102716766A CN2012101969371A CN201210196937A CN102716766A CN 102716766 A CN102716766 A CN 102716766A CN 2012101969371 A CN2012101969371 A CN 2012101969371A CN 201210196937 A CN201210196937 A CN 201210196937A CN 102716766 A CN102716766 A CN 102716766A
Authority
CN
China
Prior art keywords
metal active
active constituent
liquid
methanation
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101969371A
Other languages
English (en)
Other versions
CN102716766B (zh
Inventor
张岩丰
詹晓东
郑兴才
王志龙
方章建
薛永杰
陶磊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Original Assignee
Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Kaidi Engineering Technology Research Institute Co Ltd filed Critical Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Priority to CN201210196937.1A priority Critical patent/CN102716766B/zh
Publication of CN102716766A publication Critical patent/CN102716766A/zh
Priority to PCT/CN2013/076858 priority patent/WO2013185559A1/zh
Priority to EP13803691.8A priority patent/EP2862628A4/en
Priority to US14/569,769 priority patent/US20150126626A1/en
Application granted granted Critical
Publication of CN102716766B publication Critical patent/CN102716766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0285Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre also containing elements or functional groups covered by B01J31/0201 - B01J31/0274
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • B01J2231/625Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2 of CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及液相CO2甲烷化催化剂、制备方法及其应用。它包括两亲性离子液体和分散在两亲性离子液体中的金属活性组分,所述金属活性组分在两亲性离子液体中以稳定胶体的状态存在,粒径0.5~20nm,形状为球形,其包括第一种金属活性组分和第二种金属活性组分,所述的第一金属活性组分为镍,所述的第二金属活性组分为镧、铈、钼、钌、镱、铑、钯、铂、钾、镁中的一种或一种以上的混合,所述第一金属活性组分和第二金属活性组分的摩尔比为10:0.1-2。该液相CO2甲烷化催化剂中金属活性组分粒径较小,分布较窄,易于分离,可实现循环利用,应用前景广;在100-200oC下低温液相可实现CO2的甲烷化,具有很好的低温催化活性、甲烷选择性和较好的热稳定性;制备方法简单易行,成本较低,易于推广。

Description

液相CO2甲烷化催化剂、制备方法及其应用
技术领域
本发明涉及催化合成及纳米材料领域,具体地指一种液相CO2甲烷化催化剂制备方法及其应用。
背景技术
天然气是一种优质、清洁能源和高效碳氢资源。随着城市化进程的加快和人民生活水平的提高,人们对天然气的需求呈快速增长势头。天然气供需出现了较大缺口。合成天然气技术作为一种高碳能源向低碳、富氢能源转化的有效途径,具有良好的环境效益和经济效益。
同时,近年来,CO2排放增加导致全球气候变暖,将CO2甲烷化不仅可以解决CO2的排放问题,而且可以合成出优质、洁净的能源,因此CO2甲烷化反应引起了人们广泛的关注。过去几十年中,Ni基催化剂作为活性最高的甲烷化非贵金属类催化剂已经得到广泛的研究专利CN102091629 A、CN 101773833 A等公开了镍基CO2甲烷化催化剂,但这种方法不仅需要消耗较大的能量,而且在高温和较高水蒸气分压下催化剂的强度会下降,沉积在基体表面的催化剂层也将出现侵蚀和脱落,而限制CO2甲烷化催化剂的应用。
针对CO2甲烷化反应强放热、热力学上低温有利的特点,本发明结合纳米金属粒子催化剂独特的结构和限域效应,提供了一种在液相和低温条件下可实现CO2甲烷化的液相CO2甲烷化催化剂。
发明内容
本发明所要解决的技术问题在于针对现有CO2甲烷化技术中CO2甲烷化催化剂存在的不足,而提供一种在液相和低温条件下可实现CO2甲烷化的液相CO2甲烷化催化剂、制备方法及其应用。
为解决上述技术问题,本发明采用的技术方案为:
液相CO2甲烷化催化剂,其特征在于:它包括两亲性离子液体和分散在两亲性离子液体中的金属活性组分,所述金属活性组分在两亲性离子液体中以稳定胶体的状态存在,粒径0.5~20nm,形状为球形,其包括第一种金属活性组分和第二种金属活性组分,所述的第一金属活性组分为镍,所述的第二金属活性组分为镧、铈、钼、钌、镱、铑、钯、铂、钾、镁中的一种或一种以上的混合,所述第一金属活性组分和第二金属活性组分的摩尔比为10:0.1-2。
按上述方案,所述两亲性离子液体和第一金属活性组分的摩尔比为10:0.1-2。
按上述方案,所述两亲性离子液体为两亲性小分子离子液体或两亲性聚合物离子液体;
所述的两亲性小分子离子液体包括但不限于:N-烷基吡啶盐酸盐、N-烷基吡啶四氟硼酸盐、1,3-二烷基咪唑四氟硼酸盐、1,3-二烷基咪唑盐酸盐、1,3-二烷基咪唑六氟磷酸盐,其中所述烷基碳链长度在8-18之间;
所述的两亲性聚合物离子液体包括但不限于聚1-(4-苯乙烯基)-3-甲基咪唑六氟磷酸盐、聚1-(4-苯乙烯基)-3-甲基咪唑三氟甲磺酰亚胺盐、聚1-(4-苯乙烯基)-3-甲基咪唑四氟硼酸盐、聚1-(4-苯乙烯基)-3-丁基咪唑四氟硼酸盐、聚1-(4-苯乙烯基)-3-丁基咪唑-聚吡咯烷酮盐酸盐。
液相CO2甲烷化催化剂的制备方法,其特征在于:它包括以下步骤:在室温下将上述金属活性组分的可溶性盐与两亲性离子液体分散于液体介质中,其中所述第一金属活性组分的可溶性盐和第二金属活性组分的可溶性盐皆以金属离子计量,两者的摩尔比为10: 0.1-2,得到金属活性组分的可溶性盐、两亲性离子液体的混合体系溶液,然后调节体系pH到8-10,继续搅拌反应1-3h后,100-200oC、0.1-4.0Mpa以H2还原1-6h,最后离心后经过滤、洗涤、干燥即得。
按上述方案,所述的第一金属活性组分Ni的可溶性盐为硝酸盐、醋酸盐或氯化物;所述的第二金属活性组分的可溶性盐为硝酸盐。
按上述方案,将第一金属活性组分的可溶性盐以金属离子计量,所述的两亲性离子液体与和第一金属活性组分的可溶性盐的摩尔比为10:0.1-2;所述混合体系溶液中金属离子总浓度为0.0001-0.01mol/L。
按上述方案,所述的液体介质包括但不限于水、醇类、四氢呋喃、乙腈、1,4-二氧六环、正己烷、环己烷。
上述液相CO2甲烷化催化剂在CO2甲烷化中的应用方法:在反应釜中加入液相CO2甲烷化催化剂和溶剂,所述反应体系中液相CO2甲烷化催化剂的浓度控制在0.0001-0.01mol/L,然后通入CO2和H2加热到100-200oC、0.1-4.0Mpa 进行催化反应1-6小时。
按上述方案,所述溶剂包括但不限于水、醇类、四氢呋喃、乙腈、1,4-二氧六环、正己烷、环己烷。
按上述方案,所述催化反应中H2和CO2的摩尔比为0.5-5:1,优选为4.0;催化反应压力优选为3MPa。
本发明针对CO2甲烷化反应强放热、热力学上低温有利的特点,基于离子液体提出的液相CO2甲烷化催化剂可利用纳米金属粒子催化剂独特的结构和限域效应,实现对催化剂催化活性、甲烷选择性和稳定性的调控,在液相和低温条件下实现CO2的甲烷化。
本发明与现有技术相比所具有的优点和积极效果如下:
1. 本发明所述的液相CO2甲烷化催化剂中的金属活性组分粒径较小(0.5-20nm),分布较窄,由于两亲性离子液体的稳定和保护作用可以使其均匀分散在离子液体介质中,形成稳定的胶体,并在反应前后不会发生聚沉;反应后的催化剂易与产物甲烷和反应介质分离,实现催化剂的回收和循环利用,应用前景广;
2.本发明所述的液相CO2甲烷化催化剂中使用的两亲性离子液体保护剂不仅可以防止金属活性组分纳米粒子的聚集,而且可以将CO2吸附到金属活性组分纳米粒子表面,提高液相中催化活性中心表面CO2的浓度,有利于CO2甲烷化的进行,在液相和100-200oC低温条件下可实现CO2的甲烷化,具有很好的低温催化活性、甲烷选择性和较好的热稳定性;适用于液相二氧化碳甲烷化反应,也避免了常规CO2固载催化剂的催化剂层高温易脱落、活性组分聚集长大而导致寿命缩短的问题,同时可大大节约工艺能耗,降低成本;
3.制备方法简单易行,成本较低,易于推广。
附图说明
图1为本发明实施例1制备的液相CO2甲烷化催化剂的电镜照片;
图2为本发明实施例8的液相CO2甲烷化催化剂经300h的甲烷化活性趋势图。
具体实施方式
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
实施例1
在室温下将硝酸镍、硝酸镁与1-16烷基-3-甲基咪唑盐酸盐离子液体按摩尔比为1:0.2:20混合分散于液体介质水中,得到混合体系溶液,所述混合体系溶液中硝酸镍的物质的量浓度为2.79×10-4mol/L,然后加入氨水调节体系pH值到9.0,继续搅拌反应3h后,将反应液转移到反应釜中在150oC、3.0MPa下通入H2还原 2h,最后离心后经过滤、水洗、乙醇洗涤、干燥即得。经TEM测试,见图1。由图1可知:该液相CO2甲烷化催化剂中的金属活性组分纳米粒子平均粒径11.8nm,粒径分布较窄,分布均匀。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量溶剂水,控制反应体系中催化剂的浓度为0.005mol/L,根据nH2:nCO2=4通入CO2和H2,然后加热到150oC、3MPa反应2h,测定CO2的转化率和甲烷选择率,结果见表1。
实施例2
在室温下将醋酸镍、硝酸镧与1-18烷基-3-甲基咪唑六氟磷酸盐离子液体按摩尔比为1:0.15:20混合分散于液体介质乙醇中,得到混合体系溶液,所述醋酸镍的物质的量浓度为3.61×10-4mol/L,然后加入三乙胺调节体系pH值到8.0,继续搅拌反应2h后,将反应液转移到反应釜中在100oC、3.0MPa压力下通入H2还原1.5h,最后离心后经过滤、水洗、乙醇洗涤、干燥即得。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量的溶剂水,控制反应体系中催化剂的浓度为0.005mol/L,根据nH2:nCO2=4,通入CO2和H2,然后加热到150oC、3MPa反应2h,测定CO2的转化率和甲烷选择率,结果见表1。
实施例3 
在室温下将硝酸镍、硝酸铈与两亲性离子液体N-十二烷基吡啶四氟硼酸盐(C12PyBF4)按摩尔比为1:0.15:18 混合分散于液体介质乙腈中,得到混合体系溶液,所述混合体系中硝酸镍的物质的量浓度为1.32×10-3 mol/L,然后加入二异丙基叔丁胺调节体系pH值到10.0,继续搅拌反应3h后,将反应液转移到反应釜中在150oC、3.0MPa压力下通入H2还原1.5h,最后离心后经过滤、洗涤、干燥即得。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量的溶剂乙腈,控制反应体系中催化剂的浓度为0.005mol/L,根据nH2:nCO2=4,通入CO2和H2,然后加热到120oC、1MPa反应3h,测定CO2的转化率和甲烷选择率,结果见表1。
实施例4 
在室温下将硝酸镍、硝酸钼与两亲性离子液体聚1-(4-苯乙烯基)-3-甲基咪唑三氟甲磺酰亚胺盐按摩尔比为1:0.12:16混合分散于液体介质水中,得到混合体系溶液,所述混合体系中硝酸镍的物质的量浓度为6.35×10-4 mol/L,然后加入氨水调节体系pH值到10.0,继续搅拌反应2.5h后,将反应液转移到反应釜中在200oC、2.0MPa压力下通入H2还原2h,最后离心后经过滤、洗涤、干燥即得。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量的溶剂二氧六环,控制反应体系中催化剂的浓度为0.005mol/L,根据nH2:nCO2=4,通入CO2和H2,然后加热到150oC、3MPa反应1h,测定CO2的转化率和甲烷选择率,结果见表1。
实施例5
在室温下将硝酸镍、硝酸钌和硝酸钾与两亲性离子液体N-十六烷基吡啶四氟硼酸盐按摩尔比为1:0.1:0.1:20 混合分散于液体介质四氢呋喃中,得到混合体系溶液,所述混合体系中硝酸镍的物质的量浓度为8.1×10-4mol/L,然后加入氨水调节体系pH值到8.0,继续搅拌反应1h后,将反应液转移到反应釜中在150oC、1.0MPa压力下通入H2还原5h,最后离心后经过滤、洗涤、干燥即得。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量的溶剂四氢呋喃,控制反应体系中催化剂的浓度为0.005mol/L,根据nH2:nCO2=4,通入CO2和H2,然后加热到110oC、3MPa反应2.5h,测定CO2的转化率和甲烷选择率,结果见表1。
实施例6
在室温下将醋酸镍、硝酸镱与两亲性离子液体聚1-(4-苯乙烯基)-3-甲基咪唑四氟硼酸盐按摩尔比为1:0.15:15 混合分散于液体介质环己烷中,得到混合体系溶液,所述混合体系中硝酸镍的物质的量浓度为9.81×10-4mol/L,然后加入氨水调节体系pH值到8.0,继续搅拌反应2h后,将反应液转移到反应釜中在150oC、0.1MPa压力下通入H2还原3h,最后离心后经过滤、洗涤、干燥后得到所述液相CO2甲烷化催化剂。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量的溶剂环己烷,控制反应体系中催化剂的浓度为0.005mol/L,根据nH2:nCO2=0.5,通入CO2和H2,然后加热到190oC、4MPa反应1.5h,测定CO2的转化率和甲烷选择率,结果见表1。
实施例7
在室温下将硝酸镍、硝酸铑与两亲性离子液体聚1-(4-苯乙烯基)-3-丁基咪唑四氟硼酸盐按摩尔比为1:0.16:10混合分散于液体介质乙醇中,得到混合体系溶液,所述混合体系中硝酸镍的物质的量浓度为1.28×10-3mol/L,然后加入氨水调节体系pH值到8.0,继续搅拌反应3h后,将反应液转移到反应釜中在100oC、0.5MPa压力下通入H2还原2h,最后离心后经过滤、洗涤、干燥后得到所述液相CO2甲烷化催化剂。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量的溶剂乙醇,控制反应体系中催化剂的浓度为0.003mol/L,根据nH2:nCO2=4,通入CO2和H2,然后加热到110oC、3MPa反应2h,测定CO2的转化率和甲烷选择率,结果见表1。
实施例8
在室温下将硝酸镍、硝酸钯与两亲性离子液体N-辛烷基吡啶四氟硼酸盐按摩尔比为1: 0.01: 100 混合分散于液体介质二氧六环中,得到混合体系溶液,所述混合体系中硝酸镍的物质的量浓度为3.18×10-3mol/L,然后加入氨水调节体系pH值到8.0,继续搅拌反应3h后,将反应液转移到反应釜中在200oC、3.0MPa压力下通入H2还原2h,最后离心后经过滤、洗涤、干燥后得到所述液相CO2甲烷化催化剂。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量的溶剂二氧六环,控制反应体系中催化剂的浓度为0.0005mol/L,根据nH2:nCO2=3,通入CO2和H2,然后加热到120oC、3MPa反应2h,测定CO2的转化率和甲烷选择率,结果见表1。
并将催化反应自催化反应始持续进行300h,检测该催化过程中二氧化碳的转化率和甲烷选择率随反应时间的变化趋势图,见图2。由图2可知:该液相CO2甲烷化催化剂的稳定性好。
实施例9
在室温下将氯化镍、硝酸铂与两亲性离子液体聚1-(4-苯乙烯基)-3-丁基咪唑-聚吡咯烷酮盐酸盐、按摩尔比为1:0.05:5混合分散于液体介质 正己烷中,得到混合体系溶液,所述混合体系中硝酸镍的物质的量浓度为6.28×10-4mol/L,然后加入氨水调节体系pH值到8.0,继续搅拌反应3h后,将反应液转移到反应釜中在100oC、4MPa压力下通入H2还原2h,最后离心后经过滤、洗涤、干燥后得到所述液相CO2甲烷化催化剂。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量的溶剂水,控制反应体系中催化剂的浓度为0.00015mol/L,根据nH2:nCO2=5,通入CO2和H2,然后加热到200oC、2MPa反应2h,测定CO2的转化率和甲烷选择率,结果见表1。
实施例10
在室温下将硝酸镍、硝酸铈和硝酸镁与两亲性离子液体1,3-二辛基咪唑四氟硼酸盐按摩尔比为1:0.15:0.05:10混合分散于液体介质水中,得到混合体系溶液,所述混合体系中硝酸镍的物质的量浓度为3.18×10-3mol/L,然后加入三乙胺调节体系pH值到9.0,继续搅拌反应3h后,将反应液转移到反应釜中在150oC、3.0MPa压力下通入H2还原2h,最后离心后经过滤、洗涤、干燥后得到所述液相CO2甲烷化催化剂。
将上述催化剂用于CO2甲烷化反应,具体为:取适量的上述催化剂加入到反应釜中,然后加入适量的溶剂正己烷,控制反应体系中催化剂的浓度为0.01mol/L,根据nH2:nCO2=4,通入CO2和H2,然后加热到100oC、3MPa反应2h,测定CO2的转化率和甲烷选择率,结果见表1。
本发明实施例均采用以下公式计算二氧化碳的转化率、产物的选择性。
Figure 2012101969371100002DEST_PATH_IMAGE001
表1:液相CO2甲烷化催化剂的制备条件及催化性能
Figure 2012101969371100002DEST_PATH_IMAGE002

Claims (10)

1.液相CO2甲烷化催化剂,其特征在于:它包括两亲性离子液体和分散在两亲性离子液体中的金属活性组分,所述金属活性组分在两亲性离子液体中以稳定胶体的状态存在,粒径0.5~20nm,形状为球形,其包括第一种金属活性组分和第二种金属活性组分,所述的第一金属活性组分为镍,所述的第二金属活性组分为镧、铈、钼、钌、镱、铑、钯、铂、钾、镁中的一种或一种以上的混合,所述第一金属活性组分和第二金属活性组分的摩尔比为10:0.1-2。
2.根据权利要求1所述的液相CO2甲烷化催化剂,其特征在于:所述两亲性离子液体和第一金属活性组分的摩尔比为10:0.1-2。
3.根据权利要求1所述的液相CO2甲烷化催化剂,其特征在于:所述两亲性离子液体为两亲性小分子离子液体或两亲性聚合物离子液体;
所述的两亲性小分子离子液体包括但不限于:N-烷基吡啶盐酸盐、N-烷基吡啶四氟硼酸盐、1,3-二烷基咪唑四氟硼酸盐、1,3-二烷基咪唑盐酸盐、1,3-二烷基咪唑六氟磷酸盐,其中所述烷基碳链长度在8-18之间;
所述的两亲性聚合物离子液体包括但不限于聚1-(4-苯乙烯基)-3-甲基咪唑六氟磷酸盐、聚1-(4-苯乙烯基)-3-甲基咪唑三氟甲磺酰亚胺盐、聚1-(4-苯乙烯基)-3-甲基咪唑四氟硼酸盐、聚1-(4-苯乙烯基)-3-丁基咪唑四氟硼酸盐、聚1-(4-苯乙烯基)-3-丁基咪唑-聚吡咯烷酮盐酸盐。
4.液相CO2甲烷化催化剂的制备方法,其特征在于:它包括以下步骤:在室温下将上述金属活性组分的可溶性盐与两亲性离子液体分散于液体介质中,其中所述第一金属活性组分的可溶性盐和第二金属活性组分的可溶性盐皆以金属离子计量,两者的摩尔比为10: 0.1-2,得到金属活性组分的可溶性盐、两亲性离子液体的混合体系溶液,然后调节体系pH到8-10,继续搅拌反应1-3h后,100-200oC、0.1-4.0Mpa以H2还原1-6h,最后离心后经过滤、洗涤、干燥即得。
5.根据权利要求4所述的液相CO2甲烷化催化剂的制备方法,其特征在于:所述的第一金属活性组分Ni的可溶性盐为硝酸盐、醋酸盐或氯化物;所述的第二金属活性组分的可溶性盐为硝酸盐。
6.根据权利要求4所述的液相CO2甲烷化催化剂的制备方法,其特征在于:将第一金属活性组分的可溶性盐以金属离子计量,所述的两亲性离子液体与和第一金属活性组分的可溶性盐的摩尔比为10:0.1-2;所述混合体系溶液中金属离子总浓度为0.0001-0.01mol/L。
7.根据权利要求4所述的液相CO2甲烷化催化剂的制备方法,其特征在于:所述的液体介质包括但不限于水、醇类、四氢呋喃、乙腈、1,4-二氧六环、正己烷、环己烷。
8.根据权利要求1所述的液相CO2甲烷化催化剂在CO2甲烷化中的应用方法,其特征在于:它是在反应釜中加入液相CO2甲烷化催化剂和溶剂,所述反应体系中液相CO2甲烷化催化剂的浓度控制在0.0001-0.01mol/L,然后通入CO2和H2加热到100-200oC、0.1-4.0Mpa 进行催化反应1-6小时。
9.根据权利要求8所述的液相CO2甲烷化催化剂在CO2甲烷化中的应用方法,其特征在于:所述溶剂包括但不限于水、醇类、四氢呋喃、乙腈、1,4-二氧六环、正己烷、环己烷。
10.根据权利要求8所述的液相CO2甲烷化催化剂在CO2甲烷化中的应用方法,其特征在于:所述催化反应中H2和CO2的摩尔比为0.5-5:1。
CN201210196937.1A 2012-06-15 2012-06-15 液相co2甲烷化催化剂、制备方法及其应用 Active CN102716766B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201210196937.1A CN102716766B (zh) 2012-06-15 2012-06-15 液相co2甲烷化催化剂、制备方法及其应用
PCT/CN2013/076858 WO2013185559A1 (zh) 2012-06-15 2013-06-06 液相co2甲烷化催化剂、制备方法及其应用
EP13803691.8A EP2862628A4 (en) 2012-06-15 2013-06-06 LIQUID PHASE CO2 METHANIZATION CATALYST, MANUFACTURING METHOD AND USE THEREOF
US14/569,769 US20150126626A1 (en) 2012-06-15 2014-12-14 Liquid catalyst for methanation of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210196937.1A CN102716766B (zh) 2012-06-15 2012-06-15 液相co2甲烷化催化剂、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN102716766A true CN102716766A (zh) 2012-10-10
CN102716766B CN102716766B (zh) 2015-06-17

Family

ID=46942711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210196937.1A Active CN102716766B (zh) 2012-06-15 2012-06-15 液相co2甲烷化催化剂、制备方法及其应用

Country Status (4)

Country Link
US (1) US20150126626A1 (zh)
EP (1) EP2862628A4 (zh)
CN (1) CN102716766B (zh)
WO (1) WO2013185559A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013185559A1 (zh) * 2012-06-15 2013-12-19 武汉凯迪工程技术研究总院有限公司 液相co2甲烷化催化剂、制备方法及其应用
CN111389459A (zh) * 2020-02-20 2020-07-10 嘉兴学院 一种用于催化还原二氧化碳或碳水化合物的组合物、及方法
CN113522331A (zh) * 2020-04-21 2021-10-22 中国科学院理化技术研究所 一种碳基钴钯双金属纳米催化剂及其制备与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111701618A (zh) * 2020-06-28 2020-09-25 江苏思派新能源科技有限公司 一种离子液体催化剂及其制备方法和用途
SE544807C2 (en) * 2020-12-09 2022-11-22 Gerald Mcinerney A colloidal particle dispersion for use in an antimicrobial and virucidal surface coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045206A (zh) * 2007-05-08 2007-10-03 北京大学 一种进行费托合成反应的方法及其专用催化剂
CN101380581A (zh) * 2007-09-07 2009-03-11 新奥科技发展有限公司 一种新型甲烷化催化剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463878B (en) * 2008-09-25 2012-11-21 Dca Consultants Ltd Capture of carbon oxides
CN102091629A (zh) 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 二氧化碳甲烷化催化剂
CN101773833B (zh) 2010-02-06 2013-04-10 山西大学 一种二氧化碳甲烷化催化剂及其制备方法
CN102247850B (zh) * 2011-05-26 2013-06-26 肖天存 甲烷化催化剂及其制备工艺和甲烷化反应装置
CN102716766B (zh) * 2012-06-15 2015-06-17 武汉凯迪工程技术研究总院有限公司 液相co2甲烷化催化剂、制备方法及其应用
CN103111308A (zh) * 2013-03-05 2013-05-22 北京大学 水相直接合成Pt-Co双金属纳米粒子的方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045206A (zh) * 2007-05-08 2007-10-03 北京大学 一种进行费托合成反应的方法及其专用催化剂
CN101380581A (zh) * 2007-09-07 2009-03-11 新奥科技发展有限公司 一种新型甲烷化催化剂及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013185559A1 (zh) * 2012-06-15 2013-12-19 武汉凯迪工程技术研究总院有限公司 液相co2甲烷化催化剂、制备方法及其应用
CN111389459A (zh) * 2020-02-20 2020-07-10 嘉兴学院 一种用于催化还原二氧化碳或碳水化合物的组合物、及方法
CN111389459B (zh) * 2020-02-20 2021-04-13 嘉兴学院 一种用于催化还原二氧化碳或碳水化合物的组合物、及方法
WO2021164152A1 (zh) * 2020-02-20 2021-08-26 嘉兴学院 一种用于催化还原二氧化碳或碳水化合物的组合物、及方法
CN113522331A (zh) * 2020-04-21 2021-10-22 中国科学院理化技术研究所 一种碳基钴钯双金属纳米催化剂及其制备与应用

Also Published As

Publication number Publication date
US20150126626A1 (en) 2015-05-07
EP2862628A4 (en) 2016-02-17
CN102716766B (zh) 2015-06-17
EP2862628A1 (en) 2015-04-22
WO2013185559A1 (zh) 2013-12-19

Similar Documents

Publication Publication Date Title
CN102489312B (zh) 基于多孔材料限域的费托合成钴基纳米催化剂及其制备方法
CN102716766B (zh) 液相co2甲烷化催化剂、制备方法及其应用
CN102631932B (zh) 用于室温下肼分解制氢的镍基金属催化剂及其制备和应用
CN104600327B (zh) 一种碳载纳米铂合金催化剂的制备方法
CN102614928A (zh) 一种负载型纳米非晶态合金催化剂及其制备方法
CN102000575A (zh) 一种用于浆态床反应器的钴基费托合成催化剂及其制备和应用
CN106784880B (zh) 水溶性一维金钯合金纳米线的合成方法
CN107952437A (zh) 用于二氧化碳加氢合成甲醇的Cu/二氧化钛纳米片催化剂及其制备方法
CN104785274A (zh) 一种大孔径本体型Ni-Mo加氢脱氧催化剂的制备方法
CN101157041A (zh) 一种纳米铜基甲醇合成催化剂的制备方法
CN105597772B (zh) 核壳结构的钴基催化剂及其制备方法
CN101632929B (zh) 一种高温甲醇水蒸气重整制氢催化剂及其制备方法
CN102671711B (zh) 负载型纳米非晶态合金催化剂及其制备方法和应用
CN106944067A (zh) 一种用于甲烷二氧化碳重整制合成气的催化剂的制备方法
CN112387283A (zh) 一种低温二氧化碳甲烷化催化剂及其制备方法
CN105457631A (zh) 一种用于草酸酯气相加氢制备乙醇酸酯的催化剂和制备方法
CN101259414B (zh) 用于对硝基苯酚加氢制备对氨基苯酚的催化剂及其制备方法
CN110433815A (zh) 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
CN106006551B (zh) 三元共聚物纳米球负载的Ni‑B催化剂在催化硼氢化钠和水解制氢反应中的应用
CN104437509A (zh) 一种醋酸酯加氢制备乙醇用催化剂的制备方法
CN101428226A (zh) 用于对苯二甲酸精制的选择性加氢催化剂
CN102671673A (zh) 一种钴基费托合成催化剂及其制备方法及应用
CN103058138B (zh) 制备合成气的方法
CN105413707A (zh) 用于亚硝基二甲胺还原的双金属Pd-Ni/CeO2-TiO2催化剂及其制备方法
CN115254171A (zh) 一种具有空心核壳结构的高分散铜基酯加氢催化剂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant