WO2021164152A1 - 一种用于催化还原二氧化碳或碳水化合物的组合物、及方法 - Google Patents

一种用于催化还原二氧化碳或碳水化合物的组合物、及方法 Download PDF

Info

Publication number
WO2021164152A1
WO2021164152A1 PCT/CN2020/094810 CN2020094810W WO2021164152A1 WO 2021164152 A1 WO2021164152 A1 WO 2021164152A1 CN 2020094810 W CN2020094810 W CN 2020094810W WO 2021164152 A1 WO2021164152 A1 WO 2021164152A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
methylimidazole
gas
reaction
metal
Prior art date
Application number
PCT/CN2020/094810
Other languages
English (en)
French (fr)
Inventor
曹雪波
王凯
曹翰璋
Original Assignee
嘉兴学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴学院 filed Critical 嘉兴学院
Priority to US17/800,188 priority Critical patent/US20230054550A1/en
Publication of WO2021164152A1 publication Critical patent/WO2021164152A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • B01J2231/625Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2 of CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/06Halogens; Compounds thereof
    • C07C2527/08Halides
    • C07C2527/12Fluorides
    • C07C2527/1213Boron fluoride

Definitions

  • the present invention relates to the technical field of chemical catalysts, in particular to a composition and method for catalytic reduction of carbon dioxide or carbohydrates.
  • the resource utilization of carbon dioxide includes physical utilization, biological utilization, and chemical utilization. Physical utilization is a recycling process that can achieve a certain amount of emission reduction (Quadrelli E A, Centi G, Duplan J L, et al.
  • thermochemical reduction method in practical industrial applications is mainly a catalytic hydrogenation reaction, and there are problems such as excessively high reaction temperature, partial by-products cannot be directly separated, and catalyst activity and stability to be improved; photochemical reduction method and photoelectrocatalytic reduction method are used as Energy-saving, pollution-free and mild reaction conditions for carbon dioxide reduction methods have been favored by researchers in recent years, but there are still problems such as low solar energy utilization and low conversion efficiency.
  • Electrocatalysis also has problems such as high power consumption, low catalytic efficiency, slow conversion speed and poor selectivity.
  • the invention with publication number CN105080564A discloses a catalyst for the conversion of carbon dioxide to carbon monoxide, which includes the following components in weight percentage: 2%-30% Mn oxide, 0.5%-10% Ce or La At least one oxide of 0.5% to 5% of Cu oxide, 1% to 5% of alkali metal and 50% to 96% of composite carrier, wherein the composite carrier includes 5% to 39% by weight ZnO and 61%-95% Al2O3.
  • carbon dioxide and hydrogen are used as the raw material gas, and the raw material gas is in contact with the catalyst under the conditions of a reaction temperature of 400 to 580°C, a reaction pressure of 1 to 3 Mpa, and a volume ratio of H2/CO2 (1.2 to 3):1
  • the reaction produces carbon monoxide.
  • the invention with publication number CN109731578A discloses a carbon dioxide hydrogenation conversion catalyst and method.
  • the catalyst is CuIn@SiO 2 with a core-shell structure, with CuIn alloy as the core and porous SiO 2 as the shell, and the CuIn alloy is coated on In the porous SiO 2 shell, the mass fraction of porous SiO 2 in the catalyst is 50-80 wt %.
  • a preparation method of a carbon dioxide hydrogenation conversion catalyst, the carbon dioxide hydrogenation conversion catalyst CuIn@SiO 2 uses polyvinylpyrrolidone (PVP) as a coating agent and cetyltrimethylammonium bromide (CTAB) as a structure directing agent , Obtained by two solvent heat treatments and reduction in a hydrogen atmosphere.
  • PVP polyvinylpyrrolidone
  • CTAB cetyltrimethylammonium bromide
  • the present invention provides a composition and method for catalytic reduction of carbon dioxide or carbohydrates, which can be reduced at room temperature, with mild reaction conditions and high conversion efficiency.
  • a composition for the catalytic reduction of carbon dioxide or carbohydrates comprising a nitrogen-containing heterocyclic compound and at least two metal elements, wherein one metal element is used as an auxiliary catalyst, and the other metal element is used as a reactant.
  • the metal element is more active than the metal element used as an auxiliary catalyst.
  • the nitrogen-containing heterocyclic compound is at least one of the following:
  • Imidazole 1-methylimidazole, 1-ethylimidazole, 1-ethyl-3-methylimidazole tetrafluoroborate, 4-methylimidazole, 1-allylimidazole, 2-methylimidazole, 1 -Butyl-3-methylimidazole bromide, 1-benzylimidazole, histamine, 1-butylimidazole, (1-imidazolyl)acetonitrile, 1,2-dimethylimidazole, 1-acetylimidazole, 1 ,2,4-Triazole. Except for 1,2,4-triazole, the above nitrogen-containing heterocyclic compounds are all imidazole compounds with imidazole rings. The ratio between the nitrogen-containing heterocyclic compound and the metal element as the reactant can be used according to the corresponding ratio in the reaction formula. Of course, adding more of one of them does not affect the progress of the reaction, and the effect is close.
  • the system cannot reduce carbon dioxide; if only one metal is used and the metal is zinc, iron, aluminum, magnesium, etc.
  • the system can reduce carbon dioxide to carbon monoxide or methane, but the reaction efficiency is very low, only one-fifth or even lower than that of bimetallic systems. Therefore, a bimetal combination is required.
  • the elemental metal (M 1 for short) used as the auxiliary catalyst is tin, copper, silver, nickel, cadmium, cobalt, and lead.
  • the metal element (M 2 for short) as the reactant is: zinc, iron, aluminum, manganese, magnesium, nickel, and tin.
  • the metal element (M 1 ) as an auxiliary catalyst is always recycled and will not be consumed. It only needs to be added in a small amount to work, while the metal element (M 2 ) as a reactant will be consumed in the reaction. Under the conventional mixing ratio, for example, the reaction efficiency is higher when the mass ratio of M 1 :M 2 is 1:0.25-250.
  • the degree of activity of metals is relative. A kind of metal can be the more active in one combination, and it can also be the less active in another combination.
  • the degree of metal activity reflects the level of the standard electrode potential of the metal.
  • the standard electrode potential of the metal is as follows:
  • the present invention also provides the application of the composition in the catalytic reduction of carbon dioxide or carbohydrates.
  • the present invention also provides a method for catalytic reduction of carbon dioxide or carbohydrates, including the following steps: mixing a substrate with the composition, and reacting to produce carbon monoxide and/or methane.
  • the nitrogen-containing heterocyclic compound when the nitrogen-containing heterocyclic compound is solid at room temperature, the nitrogen-containing heterocyclic compound is dissolved in a solvent.
  • the reaction of this application can be realized at room temperature, but for some nitrogen-containing heterocyclic compounds that are solid at room temperature, they need to be dissolved in a solvent to facilitate full contact with the reaction substrate. But the solvent itself only plays a role in dissolving, and does not participate in the entire reaction process, so only solvents that can dissolve the corresponding nitrogen-containing heterocyclic compounds can be used. More preferably, the solvent is water, methanol or ethanol.
  • the source of carbon dioxide is pure carbon dioxide or exhaust gas containing carbon dioxide.
  • the composition of the present application can reduce carbon dioxide or carbohydrates at room temperature, with mild reaction conditions and high conversion efficiency.
  • the catalytic reduction method of this application uses nitrogen-containing heterocyclic compounds (such as imidazole, 1(2,4)-methylimidazole, 1-ethylimidazole, 1-allylimidazole, 1-ethyl-3-methylimidazole, tetrakis Fluoroborate, etc.) is the solvent/main catalyst, the two-component metal is used as the reducing agent/co-catalyst, and stirring at room temperature for 1-4 hours can catalyze carbon dioxide or carbohydrates to obtain reduction products such as carbon monoxide and methane, with a conversion rate of almost 100%.
  • nitrogen-containing heterocyclic compounds such as imidazole, 1(2,4)-methylimidazole, 1-ethylimidazole, 1-allylimidazole, 1-ethyl-3-methylimidazole, tetrakis Fluoroborate, etc.
  • Figure 1 is a gas chromatogram of the gas in the bottle before the reaction in Example 1, where (a) is the gas chromatogram of the standard gas, the composition of the standard gas is 2000ppm carbon monoxide, 2000ppm methane and 2000ppm carbon dioxide; (b) is before the reaction Gas chromatogram of the gas in the bottle.
  • Example 2 shows the gas detection results in the bottle after the reaction in Example 1, where (a) is the gas chromatogram of the gas in the bottle after the reaction, and (b) is the combustion diagram of the gas in the bottle.
  • Figure 3 is a graph of the free radical signal of the catalyst M 1 and ImZ in Example 1, where (a) is the graph of the free radical signal after the reaction of M 1 and ImZ, and (b) is after the reaction of M 1 and ImZ after the introduction of carbon dioxide Free radical signal diagram.
  • FIG. 4 is a graph of XRD detection results of the reaction product in Example 1.
  • FIG. 4 is a graph of XRD detection results of the reaction product in Example 1.
  • FIG. 5 is a crystal structure diagram of the reaction product in Example 1.
  • FIG. 5 is a crystal structure diagram of the reaction product in Example 1.
  • Example 6 shows the gas detection results in the bottle after the reaction in Example 2, where (a) is the gas chromatogram after the reaction with the ionic liquid, and (b) is the combustion diagram of the gas in the bottle.
  • Figure 7 is a schematic diagram of the principle of reduction of carbon dioxide by the imidazole + bimetallic system.
  • the air-tight reaction flask is used as the reaction container in the experiment, and the volume of the reaction flask is one liter.
  • Figure 3 (a) is the free radical signal obtained by adding DMPO trapping agent to the solution after stirring 1-methylimidazole and copper powder to test EPR; (b) is the solution of 1-methylimidazole and copper powder being stirred after the solution is fed with carbon dioxide and then added DMPO trapping agent tests the free radical signal obtained by EPR (entrusted by Beijing e-testing company to test).
  • Example 3 Reduction of carbon dioxide to produce a mixture of carbon monoxide and methane
  • the flue gas emitted from point sources is generally a mixture of carbon dioxide, oxygen and nitrogen, and the content of carbon dioxide is about 15%. Separating carbon dioxide from flue gas to obtain high-purity gas will involve energy consumption links and high pressure conditions such as absorption, desorption, and compression. If carbon dioxide absorption and resource utilization can be combined, it will not only help reduce equipment investment and consumption, but also help to carry out carbon dioxide reduction reactions under low pressure and mild conditions.
  • the imidazole + bimetallic system in this study exhibits the ability to selectively and quickly absorb carbon dioxide.
  • Plants can convert carbon dioxide into carbohydrates through photosynthesis, so carbohydrates are widespread and abundant on earth.
  • the imidazole + bimetallic system has a certain effect on the conversion and utilization of carbohydrates.
  • This embodiment is the indirect utilization of carbon dioxide.
  • CO 2 is fixed into carbohydrates by means of the efficient photosynthesis of plants, and then the carbohydrates are converted into energy materials by the method of the present invention, for example, it can be used as biodiesel.
  • Example 11 Single tin catalytic system
  • the gas is carbon dioxide.
  • the magnetic stirring is turned on to make the components in the reaction flask fully mixed and react, and the gas in the flask is extracted for detection after continuous stirring for 2h, 4h, and 8h.
  • Example 12 Single zinc catalytic system
  • Example 12 Single Aluminum Catalytic System
  • Example 14 Solid imidazole catalytic system with different concentrations
  • imidazoline (imidazoline, abbreviated as ImZ) is a compound with aromatic structural characteristics and has the ability to accept electrons.
  • ImZ imidazoline
  • FIG. 7 imidazole is an electron acceptor, an electron donor metal.
  • a charge transfer complex is formed in the system, and imidazole becomes an anion rich in negative charge [ImZ] ⁇ with high activity.
  • the free radical signal is shown in Figure 3a (the detection result in Example 1).
  • M 1 first complexes with ImZ to form free radicals, has the ability to absorb and activate carbon dioxide, and reacts with M 2 and ImZ to form CO and M 2 CO 3 (ImZ) x .
  • M 1 and xImZ have a catalytic activation effect after being complexed, and a small amount is sufficient, so M 1 (metal 1) plays an auxiliary catalytic role and is always recycled and will not be consumed.
  • ImZ not only plays a catalytic role but also participates in the reaction.
  • M 2 is the reactant and finally combines with ImZ to form carbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种用于催化还原二氧化碳或碳水化合物的组合物、及方法。所述组合物包括含氮杂环化合物和至少2种金属单质,其中,至少两种金属单质的标准电极电势不同,一种活泼程度较另一种高。本申请组合物能够在室温下还原二氧化碳或碳水化合物,反应条件温和、转化效率高。本申请催化还原方法以含氮杂环化合物为溶剂/主催化剂,以双组份金属为还原剂/助催化剂,室温搅拌1-4h即可催化二氧化碳或碳水化合物得到一氧化碳、甲烷等还原产物,转化率几乎100%。反应过程中无需光照,无需加热,而且产物多为气体,无需溶剂分离等操作。

Description

一种用于催化还原二氧化碳或碳水化合物的组合物、及方法 技术领域
本发明涉及化学催化剂技术领域,特别是涉及一种用于催化还原二氧化碳或碳水化合物的组合物、及方法。
背景技术
随着全球气候变暖以及环境污染等问题日益凸显,二氧化碳的排放越来越受到人们的关注(Friedlingstein,P.;Houghton,R.A.;Marland,G.;Hackler,J.;Boden,T.A.;Conway,T.J.;Canadell,J.G.;Raupach,M.R.;Ciais,P.;Quere,C.L.Nature Geosci.2010,3,811.)。二氧化碳作为温室气体,它的含量直接影响着全球气候的变化(Schrag,D.P.Science 2007,315,812.)。目前,人类每年总能源消耗是14TW,预计到2050年将是现在的三倍(Kim,J.;Hyun,J.Y.;Chong,W.K.;Ariaratnam,S.J.Eng.Des.Technol.2015,15,270.),化石燃料的消耗就占了总消耗能量的83%,化石燃料的使用直接加剧了二氧化碳的排放。平均每年科学家们都会采用物理或化学手段捕捉数千吨二氧化碳,但是依然不能有效解决问题(Schrag,D.P.Science 2007,315,812.;Chen,B.;Nishio,M.;Song,Y.C.;Akai,M.Energy Procedia 2009,1,4969.)。二氧化碳的资源化利用包括物理利用、生物利用、化学利用。物理利用是一种循环利用过程,能够实现一定量的减排(Quadrelli E A,Centi G,Duplan J L,et al.ChemSusChem,2011,4(9),1194.);生物利用主要是通过绿色植物或微生物吸收固定二氧化碳产生生物燃料、肥料等物质,初步实现了二氧化碳的转化(Costentin C,Robert M,Savéant J M.Chemical Society Reviews,2013,42(6),2423.);而化学利用是通过某些化学反应,将二氧化碳再生转化为高附加值化工产品,是二氧化碳资源化利用最重要的途径(Markewitz P,Kuckshinrichs W,Leitner W,et al.Energy&Environmental Science,2012,5(6),7281.)。然而,二氧化碳的热力学稳定性和动力学惰性使其有效转化与利用比较困难。因此,二氧化碳的转化和利用技术的研发成为提高二氧化碳资源化利用的关键。
目前,二氧化碳的转化和利用技术主要包括热化学还原法、光化学还原法、光电催化还原法以及电化学还原法等。其中,热化学还原法在实际工业应用中主要是催化加氢反应,存在反应温度过高、部分副产物无法直接分离、催化剂活性和稳定性有待改进等问题;光化学还原法和光电催化还原法作为节能、无污染且反应条件温和的二氧化碳还原方法,近年来受到研究者的青睐,但仍然存在太阳能利用率、转化效率较低等问题。电催化也有耗电量大、催化效率不高、转化速度慢和选择性不好等问题。
比如,公开号为CN105080564A的发明公开了一种用于二氧化碳转化制一氧化碳的催化剂,以重量百分比计包括以下组分:2%~30%的Mn的氧化物,0.5%~10%的Ce或La的至少 一种氧化物,0.5%~5%的Cu的氧化物,1%~5%的碱金属以及50%~96%的复合载体,其中复合载体以重量百分比计包括5%~39%的ZnO和61%~95%的Al2O3。但该申请中以二氧化碳和氢气为原料气,在反应温度400~580℃,反应压力1~3Mpa,H2/CO2的体积比(1.2~3):1条件下,原料气与所述的催化剂接触反应得到一氧化碳。
再比如公开号为CN109731578A的发明公开了一种二氧化碳加氢转化催化剂和方法,该催化剂为核壳结构的CuIn@SiO 2,以CuIn合金为核、多孔SiO 2为壳,CuIn合金被包覆在多孔SiO 2壳中,其中该催化剂中多孔SiO 2的质量分数为50~80wt%。一种二氧化碳加氢转化催化剂的制备方法,该二氧化碳加氢转化催化剂CuIn@SiO 2以聚乙烯吡咯烷酮(PVP)为包覆剂、十六烷基三甲基溴化铵(CTAB)为结构导向剂,通过两次溶剂热处理并且在氢气气氛中还原获得。
发明内容
本发明针对现有技术中存在的不足,提供了一种用于催化还原二氧化碳或碳水化合物的组合物、及方法,能够在室温下还原,反应条件温和、转化效率高。
一种用于催化还原二氧化碳或碳水化合物的组合物,包括含氮杂环化合物和至少2种金属单质,其中,一种金属单质作为辅助催化剂,另一种金属单质作为反应物,作为反应物的金属单质较作为辅助催化剂的金属单质活泼程度高。
优选的,所述含氮杂环化合物为以下至少一种:
咪唑、1-甲基咪唑、1-乙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐、4-甲基咪唑、1-烯丙基咪唑、2-甲基咪唑、1-丁基-3-甲基咪唑溴盐、1-苄基咪唑、组胺、1-丁基咪唑、(1-咪唑基)乙腈、1,2-二甲基咪唑、1-乙酰咪唑、1,2,4-三氮唑。上述含氮杂环化合物中除了1,2,4-三氮唑外,其余均为带有咪唑环的咪唑类化合物。含氮杂环化合物与作为反应物的金属单质之间的比例可以根据反应式中对应比例进行使用,当然,其中一种多加一些也不影响反应的进行,起到的效果接近。
优选的,金属单质为2种。在使用2种金属单质就能够起作用的情况下,使用更多种的金属单质虽然同样能够起催化作用,但增加一种就相应的增加了成本。如果仅使用一种金属且该金属是铜、银、锡、镍、铅等活泼性较差的金属,体系无法还原二氧化碳;如果仅使用一种金属且该金属是锌、铁、铝、镁等较为活泼的金属,体系可以将二氧化碳还原为一氧化碳或者甲烷,但是反应效率很低,仅为双金属体系的五分之一甚至更低。因此需要双金属组合。
优选的,其中作为辅助催化剂的金属单质(简称M 1)为:锡、铜、银、镍、镉、钴、铅。其中作为反应物的金属单质(简称M 2)为:锌、铁、铝、锰、镁、镍、锡。作为辅助催化剂的金属单质(M 1)由于一直循环使用,不会消耗,仅需添加少量即可起作用,而作为反应物的 金属单质(M 2)会在反应中消耗。在常规配合比例下,比如M 1∶M 2质量比为1∶0.25~250下反应效率都较高。
金属活泼程度是相对的,一种金属在一种组合中能够作为活泼程度较高的一方,在另一种组合中也可以作为活泼程度较低的一方。金属活泼程度反映的是金属的标准电极电势高低,金属的标准电极电势具体如下:
镁:E(Mg/Mg2+)=-2.372V,
铝:E(Al/Al3+)=-1.662V,
锌:E(Zn/Zn2+)=-0.76V,
铁:E(Fe/Fe2+)=-0.447V,
镍:E(Ni/Ni2+)=-0.257V,
锰:E(Mn/Mn2+)=-1.185V,
锡:E(Sn/Sn2+)=-0.138V,
银:E(Ag/Ag+)=0.7996V,
铜:E(Cu/Cu2+)=0.337V,
镉:E(Cd/Cd2+)=-0.352V,
钴:E(Co/Co2+)=-0.28V,
铅:E(Pb/Pb2+)=-0.128V。
本发明又提供了所述组合物在催化还原二氧化碳或碳水化合物中的应用。
本发明还提供了一种催化还原二氧化碳或碳水化合物的方法,包括以下步骤:将底物与所述组合物混合,反应产生一氧化碳和/或甲烷。
优选的,当所述含氮杂环化合物在常温下为固态时,将所述含氮杂环化合物溶解在溶剂中。本申请反应在常温下即可实现,但对于一些常温下为固态的含氮杂环化合物来说,需要使用溶剂溶解后,才能便于与反应底物进行充分接触。但溶剂本身只起溶解作用,并不参与整个反应过程,所以,只需要是能够溶解相应含氮杂环化合物的溶剂都能使用。更优选的,所述溶剂为水、甲醇或乙醇。
优选的,二氧化碳来源为纯二氧化碳或含有二氧化碳的废气。
本申请组合物能够在室温下还原二氧化碳或碳水化合物,反应条件温和、转化效率高。本申请催化还原方法以含氮杂环化合物(如咪唑、1(2,4)-甲基咪唑、1-乙基咪唑、1-烯丙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐等)为溶剂/主催化剂,以双组份金属为还原剂/助催化剂,室温搅拌1-4h即可催化二氧化碳或碳水化合物得到一氧化碳、甲烷等还原产物,转化率几乎100%。反应过程中无需光照,无需加热,而且产物多为气体,无需溶剂分离等操作。
附图说明
图1为实施例1中反应前瓶中气体的气相色谱图,其中,(a)为标准气体的气相色谱图,标准气体的组成为2000ppm一氧化碳,2000ppm甲烷以及2000ppm二氧化碳;(b)为反应前瓶中气体的气相色谱图。
图2为实施例1中反应后瓶中气体检测结果,其中,(a)为反应后瓶中气体的气相色谱图,(b)为瓶中气体的燃烧图。
图3为实施例1中的催化剂M 1与ImZ的自由基信号图,其中(a)为M 1与ImZ反应后的自由基信号图,(b)为M 1与ImZ反应后通入二氧化碳后的自由基信号图。
图4为实施例1中反应产物的XRD检测结果图。
图5为实施例1中的反应生成物的晶体结构图。
图6为实施例2中反应后瓶中气体检测结果,其中,(a)为以离子液体反应后气相色谱图,(b)为瓶中气体的燃烧图。
图7为咪唑+双金属体系还原二氧化碳原理示意图。
具体实施方式
实验用容器:实验中使用气密性的反应瓶作为反应容器,反应瓶的容积为一升。
实施例1:还原二氧化碳制一氧化碳
在一升反应瓶中加有60毫升1-甲基咪唑,2.5克锌粉和0.5克铜粉。首先对反应瓶抽真空,排除瓶中的空气,然后向瓶中通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。此时用气相色谱分析反应瓶中的气体成分,结果显示在t=4.5min附近出现色谱峰(图1b)。通过与标准气体对比(图1a),确认该气体为二氧化碳。此时开启磁力搅拌,使反应瓶中各组分充分混合反应,持续搅拌2h后抽取瓶中气体进行检测。结果显示t=0.9min附近出现色谱峰(图2a),而t=4.5min附近的色谱峰彻底消失,表明二氧化碳完全转化为了一氧化碳。而且,该一氧化碳气体能剧烈燃烧(图2b),并发出一氧化碳特征的蓝色火焰。燃烧实验进一步证实了我们设计的体系能高效、彻底还原二氧化碳,而且转化的一氧化碳能作为燃料使用。
图3(a)为1-甲基咪唑与铜粉搅拌后的溶液加入DMPO捕获剂测试EPR得到的自由基信号;(b)为1-甲基咪唑与铜粉搅拌后溶液通入二氧化碳然后加入DMPO捕获剂测试EPR得到的自由基信号(委托北京e测试公司进行检测)。
表1有机元素分析(C、N、H)
样品 重量(mg) 方法 C[%] N[%] H[%]
标准品:磺胺(Sulfanilamide) 3.0480 2mg80s 41.81 16.25 4.650
检测1 2.6300 2mg80s 34.13 17.38 4.117
检测2 2.8200 2mg80s 34.17 17.33 4.100
表2氧(O)元素分析
样品 重量(mg) 方法 O[%]
标准品:苯甲酸(Benzoic acid) 2.2330 CO-IRMS 26.200
检测1 3.4220 CO-IRMS 25.106
检测2 3.6380 CO-IRMS 25.165
对反应后生成的白色粉末进行XRD检测(图4)和元素分析(结果如表1和2所示,检测1和检测2为反应产物进行两次重复实验。委托北京e测试公司进行检测),分析产物为Zn(CO 3)(C 4N 2H 6) 2·2H2O,晶体结构如图5所示。
实施例2:还原二氧化碳制甲烷
在一升反应瓶中加入60毫升离子液体(1-乙基-3-甲基咪唑四氟硼酸盐),2.5g锌粉和0.5g铜粉。真空脱除反应瓶中的空气后,再通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。通过气相色谱检测确认瓶中的气体为纯二氧化碳后,开启磁力搅拌,使各组分混合反应。搅拌反应3h后,抽取瓶中气体进行检测。结果显示t=2.2min附近出现色谱峰(图6a),而t=4.5min附近的色谱峰彻底消失,表明二氧化碳完全转化为了甲烷。该甲烷气体同样能剧烈燃烧(图6b),并发出特征的蓝色火焰。燃烧实验证实了1-乙基-3-甲基咪唑四氟硼酸盐+铜+锌体系能将二氧化碳气体高效、彻底还原为甲烷燃料。
实施例3:还原二氧化碳制一氧化碳和甲烷混合气
在上述一升反应瓶中加入8克咪唑,60毫升甲醇,2.5克锌粉和0.1克银粉。真空脱除反应瓶中的空气后,再通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。通过气相色谱检测确认瓶中的气体为纯二氧化碳后,开启磁力搅拌,使各组分混合反应。搅拌反应3h后,抽取瓶中气体进行检测。气相色谱结果显示反应瓶中的二氧化碳全部转化,转化产物是一氧化碳和甲烷的混合物,混合气中一氧化碳为主要组分,其含量约为70%。
实施例4:其他含氮杂环化合物+双金属体系
除以上列举的二氧化碳还原实例外,其他类似的咪唑+双金属体系同样也能在室温下还原 二氧化碳,还原产物为一氧化碳、甲烷或者二者的混合物,具体结果如表3所示(注:由于1-乙基咪唑、1-甲基咪唑、1-丁基-3-甲基咪唑型离子液体等物质自身即为液态,因此该类体系可无需添加甲醇、乙醇等溶剂溶解咪唑)。
表3咪唑类溶液与双组分金属及反应后的产物
Figure PCTCN2020094810-appb-000001
实施例5:二氧化碳的捕集与原位转化
从点源(电厂、铝厂、水泥厂等)排放的烟道气一般为二氧化碳、氧气和氮气的混合物,其中二氧化碳的含量在15%左右。将二氧化碳从烟道气中分离,获得高纯气体将涉及吸收、脱附和压缩等能耗环节和高压条件。如果能将二氧化碳的吸收和资源化利用环节结合起来,既有助于减少设备投入和降耗,又有助于在低压温和条件下进行二氧化碳还原反应。本研究中的咪唑+双金属体系展现出了选择性和快速吸收二氧化碳的能力。现以1-甲基咪唑+铜+锌体系为例说明:在上述一升反应瓶中加入60毫升1-甲基咪唑,2.5克锌粉和0.5克铜粉。然后向密闭的反应瓶中鼓泡通入模拟烟道气(15%二氧化碳+85%氧气),色谱分析表明90%的二氧化碳都能在通气的过程中得到吸收。通气结束后首先真空脱除反应瓶中的氧气,避免转化后的气体产物中混杂有氧气。此时开启磁力搅拌,使体系充分混合反应。搅拌2h后,使用气相色谱分析反应瓶中的气体成分,结果显示瓶中充满了一氧化碳,纯度为100%,这表明吸收的二氧化碳在咪唑+双金属体系中得到了高效和选择性的转化。此一技术绕过了二氧化碳的吸收和脱附环节,实现了二氧化碳的吸收和资源化利用的结合。
实施例6:碳水化合物的转化
植物可以通过光合作用将二氧化碳转化为碳水化合物,因此碳水化合物在地球上广泛、大量存在。咪唑+双金属体系在碳水化合物的转化利用上具有一定的效果。现以1-甲基咪唑+铜+锌体系为例,在上述一升反应瓶中加入30毫升1-甲基咪唑,1毫升水,2.5克锌粉,0.5克铜粉和3克葡萄糖(或者蔗糖、或者淀粉,或者纤维素),抽真空脱除瓶中的空气后,密闭反应瓶。开启磁力搅拌,使各体系充分混合反应。搅拌4h后,使用气相色谱分析反应瓶中的气体成分。结果表明上述碳水化合物均能分解产生一氧化碳,其中以葡萄糖效果最佳,由其产生的一氧化碳的最大浓度可以达到10 5ppm。
该实施例是二氧化碳的间接利用,首先是借助植物高效的光合作用将CO 2固定成碳水化合物,然后再利用本发明方法将碳水化合物转换成能源物质,比如可以作为生物柴油。
实施例7:单一铜催化体系
在一升反应瓶中加有60毫升1-乙基咪唑(或咪唑、2-甲基咪唑、1-甲基咪唑、1-烯丙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐)和2克铜粉。首先对反应瓶抽真空,排除瓶中的空气,然后向瓶中通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。此时用气相色谱分析反应瓶中的气体成分,结果显示在t=4.5min附近出现色谱峰。通过与标准气体对比,确认该气体为二氧化碳。此时开启磁力搅拌,使反应瓶中各组分充分混合反应,持续搅拌2h、4h、8h后抽取瓶中气体进行检测。结果只显示t=4.5min附近的色谱峰,表明二氧化碳完全没有转化。
实施例8:单一镍催化体系
在一升反应瓶中加有60毫升1-乙基咪唑(或咪唑、2-甲基咪唑、1-甲基咪唑、1-烯丙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐)和2克镍粉。首先对反应瓶抽真空,排除瓶中的空气,然后向瓶中通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。此时用气相色谱分析反应瓶中的气体成分,结果显示在t=4.5min附近出现色谱峰。通过与标准气体对比,确认该气体为二氧化碳。此时开启磁力搅拌,使反应瓶中各组分充分混合反应,持续搅拌2h、4h、8h后抽取瓶中气体进行检测。结果只显示t=4.5min附近的色谱峰,表明二氧化碳完全没有转化。
实施例9:单一银催化体系
在一升反应瓶中加有60毫升1-乙基咪唑(或咪唑、2-甲基咪唑、1-甲基咪唑、1-烯丙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐)和1克银粉。首先对反应瓶抽真空,排除瓶中的空气,然后向瓶中通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。此时用气相色谱分析反应瓶中的气体成分,结果显示在t=4.5min附近出现色谱峰。通过与标准气体对比,确认该气体为二氧化碳。此时开启磁力搅拌,使反应瓶中各组分充分混合反应,持续搅拌2h、4h、8h后抽取瓶中气体进行检测。结果只显示t=4.5min附近的色谱峰,表明二氧化碳完全没有转化。
实施例10:单一钴催化体系
在一升反应瓶中加有60毫升1-乙基咪唑(或咪唑、2-甲基咪唑、1-甲基咪唑、1-烯丙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐)和2克钴粉。首先对反应瓶抽真空,排除瓶中的空气,然后向瓶中通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。此时用气相色谱分析反应瓶中的气体成分,结果显示在t=4.5min附近出现色谱峰。通过与标准气体对比,确认该气体为二氧化碳。此时开启磁力搅拌,使反应瓶中各组分充分混合反应,持续搅拌2h、4h、8h后抽取瓶中气体进行检测。结果只显示t=4.5min附近的色谱峰,表明二氧化碳完全没有转化。
实施例11:单一锡催化体系
在一升反应瓶中加有60毫升1-乙基咪唑(或咪唑、2-甲基咪唑、1-甲基咪唑、1-烯丙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐)和2克锡粉。首先对反应瓶抽真空,排除瓶中的空气,然后向瓶中通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。此时用气相色谱分析反应瓶中的气体成分,结果显示在t=4.5min附近出现色谱峰。通过 与标准气体对比,确认该气体为二氧化碳。此时开启磁力搅拌,使反应瓶中各组分充分混合反应,持续搅拌2h、4h、8h后抽取瓶中气体进行检测。结果只显示t=4.5min附近的色谱峰,表明二氧化碳完全没有转化。
实施例12:单一锌催化体系
在一升反应瓶中加有60毫升1-烯丙基咪唑(或咪唑、2-甲基咪唑、1-甲基咪唑、1-乙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐)和2克锌粉。首先对反应瓶抽真空,排除瓶中的空气,然后向瓶中通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。此时用气相色谱分析反应瓶中的气体成分,结果显示在t=4.5min附近出现色谱峰。通过与标准气体对比,确认该气体为二氧化碳。此时开启磁力搅拌,使反应瓶中各组分充分混合反应,持续搅拌2h,后抽取瓶中气体进行检测。结果显示t=0.9min附近出现色谱峰,而t=4.5min附近的色谱峰仍有色谱峰,表明二氧化碳完全转化为了一氧化碳,通过峰面积计算二氧化碳转化率为7.5%。持续搅拌24h后抽取瓶中气体进行检测其转化率只达到35%。
实施例12:单一铝催化体系
在一升反应瓶中加有60毫升1-丁基-3-甲基咪唑溴盐(或咪唑、2-甲基咪唑、1-甲基咪唑、1-乙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐)和2克铝粉。首先对反应瓶抽真空,排除瓶中的空气,然后向瓶中通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。此时用气相色谱分析反应瓶中的气体成分,结果显示在t=4.5min附近出现色谱峰。通过与标准气体对比,确认该气体为二氧化碳。此时开启磁力搅拌,使反应瓶中各组分充分混合反应,持续搅拌2h,后抽取瓶中气体进行检测。结果显示t=2.2min附近出现色谱峰,而t=4.5min附近的色谱峰仍有色谱峰,表明二氧化碳完全转化为了甲烷,通过峰面积计算二氧化碳转化率为3.8%。持续搅拌24h后抽取瓶中气体进行检测其转化率只达到16.6%。
实施例13:不同比例的金属催化体系
在一升反应瓶中加有60毫升1-甲基咪唑,加入不同比例的金属1和金属2,典型体系如表4所示。
表4金属比例对二氧化碳转化率的影响(反应温度:室温;反应时间:2h)
编号 金属1(M 1) 金属2(M 2) 金属1与金属2质量比 二氧化碳转化率
1 铜粉(10g) 铁粉(2.5g) 4∶1 99.23%
2 铜粉(5g) 铁粉(2.5g) 2∶1 99.98%
3 铜粉(2.5g) 铁粉(2.5g) 1∶1 99.91%
4 铜粉(0.5g) 铁粉(2.5g) 1∶5 99.92%
5 铜粉(0.25g) 铁粉(2.5g) 1∶10 99.87%
6 铜粉(0.25g) 铁粉(5g) 1∶20 99.65%
7 铜粉(0.25g) 铁粉(10g) 1∶40 99.42%
8 铜粉(0.25g) 铁粉(20g) 1∶80 99.33%
9 铜粉(0.25g) 铁粉(25g) 1∶100 99.53%
10 铜粉(0.25g) 铁粉(50g) 1∶200 99.68%
11 铜粉(10g) 锌粉(2.5g) 4:1 99.74%
12 铜粉(5g) 锌粉(2.5g) 2∶1 99.13%
13 铜粉(2.5g) 锌粉(2.5g) 1∶1 99.34%
14 铜粉(0.5g) 锌粉(2.5g) 1∶5 99.26%
15 铜粉(0.25g) 锌粉(2.5g) 1∶10 99.45%
16 铜粉(0.25g) 锌粉(5g) 1∶20 99.88%
17 铜粉(0.25g) 锌粉(20g) 1∶80 99.95%
18 铜粉(0.25g) 锌粉(25g) 1∶100 99.36%
19 铜粉(0.25g) 锌粉(50g) 1∶200 99.23%
20 银粉(10g) 锌粉(2.5g) 4∶1 99.17%
21 银粉(2.5g) 锌粉(2.5g) 1∶1 99.85%
22 银粉(0.5g) 锌粉(2.5g) 1∶5 99.39%
23 银粉(0.25g) 锌粉(2.5g) 1∶10 99.50%
24 银粉(0.1g) 锌粉(25g) 1∶250 99.76%
首先对反应瓶抽真空,排除瓶中的空气,然后向瓶中通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。此时用气相色谱分析反应瓶中的气体成分,结果显示在t=4.5min附近出现色谱峰。通过与标准气体对比,确认该气体为二氧化碳。此时开启磁力搅拌,使反应瓶中各组分充分混合反应,持续搅拌2h后抽取各个瓶中气体进行检测。结果显示t=0.9min与t=4.5min附近均出现色谱峰,表明二氧化碳部分转化为了一氧化碳。通过峰面积得出其转化率为表4所示,由此可见两种金属之间的比例对催化效率没影响。
实施例14:不同浓度的固体咪唑催化体系
在一升反应瓶中加入不同质量的4-甲基咪唑,60毫升乙醇,2.5克金属1和0.1克金属2。 典型体系如表5所示。
表5咪唑化合物浓度对二氧化碳转化率转化率的影响(反应温度:室温;反应时间:2h)
编号 咪唑类 溶剂 金属1(M 1) 金属2(M 2) 二氧化碳转化率
1 4-甲基咪唑(5g) 乙醇(60ml) 银粉(0.1g) 镍粉(2.5g) 26.45%
2 4-甲基咪唑(10g) 乙醇(60ml) 银粉(0.1g) 镍粉(2.5g) 27.00%
3 4-甲基咪唑(20g) 乙醇(60ml) 银粉(0.1g) 镍粉(2.5g) 26.32%
4 4-甲基咪唑(4g) 乙醇(60ml) 银粉(0.1g) 镍粉(2.5g) 25.97%
5 4-甲基咪唑(5g) 乙醇(60ml) 钴粉(0.5g) 铝粉(2.5g) 13.35%
6 4-甲基咪唑(10g) 乙醇(60ml) 钴粉(0.5g) 铝粉(2.5g) 14.54%
7 4-甲基咪唑(20g) 乙醇(60ml) 钴粉(0.5g) 铝粉(2.5g) 13.70%
8 4-甲基咪唑(40g) 乙醇(60ml) 钴粉(0.5g) 铝粉(2.5g) 13.20%
真空脱除反应瓶中的空气后,再通入高纯二氧化碳(99.999%),压力达到0.1~0.3MPa范围时停止通气,密闭反应瓶。通过气相色谱检测确认瓶中的气体为纯二氧化碳后,开启磁力搅拌,使各组分混合反应。搅拌反应3h后,抽取瓶中气体进行检测。气相色谱结果显示反应瓶中的二氧化碳部分转化,转化产物是一氧化碳,其各个瓶内转化率如表5。由此可见除固体咪唑类试剂特别少外,固体咪唑类试剂溶解后的浓度对催化效率没有明显的影响。
实施例15:反应机理
本申请反应的机理以咪唑类化合物为例:咪唑类化合物(imidazoline,简写为ImZ)是一种具有芳香结构特征的化合物,具有接受电子的能力。当ImZ和一些金属M 1接触后,相互间可发生电子转移(图7),咪唑为电子接受体,金属为电子给予体。电荷转移后体系中形成了电荷转移络合物,咪唑成为了富负电荷的阴离子[ImZ] Θ,拥有高活性,其自由基信号见图3a(实施例1中检测结果)。而二氧化碳中的碳原子具有缺电子的结构,因此[ImZ] Θ将能活化二氧化碳分子,形成二氧化碳阴离子自由基(图3b,实施例1中检测结果)。该自由基从体系另一更活泼的金属M 2继续得到一个电子,最终歧化成为一个一氧化碳分子和一个碳酸根离子,碳酸根与ImZ和金属M 2生成M 2CO 3(ImZ) x(x=1,2,3),比如,实施例1中的反应生成物为Zn(CO 3)(C 4N 2H 6) 2·2H 2O(图5)。生成的一氧化碳分子还有可能继续经历(6H +,6e -)过程,直至生成甲烷分子。其余含氮杂环化合物的催化原理类似。
反应方程如下:M 2+xImZ+2CO 2===CO+M 2CO 3(ImZ) x,(x=1,2,3)
本申请的一个或多个实施例中为M 1先与ImZ络合形成自由基,具有吸收和活化二氧化 碳的能力,并与M 2和ImZ反应,形成CO与M 2CO 3(ImZ) x。本申请中M 1与xImZ络合后具有催化活化的效果,少量即可以,所以M 1(金属1)起辅助催化作用,一直循环使用,不会消耗。ImZ既起到催化的作用又参与了反应,M 2为反应物,最后与ImZ结合生成碳酸盐。

Claims (10)

  1. 一种用于催化还原二氧化碳或碳水化合物的组合物,其特征在于,包括含氮杂环化合物和至少2种金属单质,其中,一种金属单质作为辅助催化剂,另一种金属单质作为反应物,作为反应物的金属单质较作为辅助催化剂的金属单质活泼程度高。
  2. 如权利要求1所述的组合物,其特征在于,所述含氮杂环化合物为以下至少一种:
    咪唑、1-甲基咪唑、1-乙基咪唑、1-乙基-3-甲基咪唑四氟硼酸盐、4-甲基咪唑、1-烯丙基咪唑、2-甲基咪唑、1-丁基-3-甲基咪唑溴盐、1-苄基咪唑、组胺、1-丁基咪唑、(1-咪唑基)乙腈、1,2-二甲基咪唑、1-乙酰咪唑、1,2,4-三氮唑。
  3. 如权利要求1所述的组合物,其特征在于,金属单质为2种。
  4. 如权利要求2所述的组合物,其特征在于,其中作为辅助催化剂的金属单质为:锡、铜、银、镍、镉、钴、铅。
  5. 如权利要求2所述的组合物,其特征在于,其中作为反应物的金属单质为:锌、铁、铝、锰、镁、镍、锡。
  6. 如权利要求1~5任一所述组合物在催化还原二氧化碳或碳水化合物中的应用。
  7. 一种催化还原二氧化碳或碳水化合物的方法,其特征在于,包括以下步骤:将底物与如权利要求1~5任一所述组合物混合,反应产生一氧化碳和/或甲烷。
  8. 如权利要求7所述的方法,其特征在于,当所述含氮杂环化合物在常温下为固态时,将所述含氮杂环化合物溶解在溶剂中。
  9. 如权利要求8所述的方法,其特征在于,所述溶剂为水、甲醇或乙醇。
  10. 如权利要求7所述的方法,其特征在于,二氧化碳来源为纯二氧化碳或含有二氧化碳的废气。
PCT/CN2020/094810 2020-02-20 2020-06-08 一种用于催化还原二氧化碳或碳水化合物的组合物、及方法 WO2021164152A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/800,188 US20230054550A1 (en) 2020-02-20 2020-06-08 Composition and method for catalytic reduction of carbon dioxide or carbohydrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010103825.1 2020-02-20
CN202010103825.1A CN111389459B (zh) 2020-02-20 2020-02-20 一种用于催化还原二氧化碳或碳水化合物的组合物、及方法

Publications (1)

Publication Number Publication Date
WO2021164152A1 true WO2021164152A1 (zh) 2021-08-26

Family

ID=71415095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094810 WO2021164152A1 (zh) 2020-02-20 2020-06-08 一种用于催化还原二氧化碳或碳水化合物的组合物、及方法

Country Status (3)

Country Link
US (1) US20230054550A1 (zh)
CN (1) CN111389459B (zh)
WO (1) WO2021164152A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574902B (zh) * 2022-04-06 2024-02-09 中国科学技术大学 一种表面具有配体修饰的银纳米晶催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215962A (zh) * 2008-09-03 2011-10-12 新加坡科技研究局 二氧化碳还原
CN102716766A (zh) * 2012-06-15 2012-10-10 武汉凯迪工程技术研究总院有限公司 液相co2甲烷化催化剂、制备方法及其应用
CN103341364A (zh) * 2013-07-09 2013-10-09 福州大学 一种促进co2光催化还原性能的方法
CN109908960A (zh) * 2019-04-08 2019-06-21 中国科学院过程工程研究所 一种用于二氧化碳加氢反应的催化体系及合成正丁醇的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270107A (ja) * 2009-04-21 2010-12-02 Sumitomo Chemical Co Ltd 変性金属錯体
US8524903B2 (en) * 2009-08-24 2013-09-03 The University Of North Carolina At Chapel Hill Ruthenium or osmium complexes and their uses as catalysts for water oxidation
US8721866B2 (en) * 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
EP2680964A4 (en) * 2011-03-04 2014-11-19 Univ Leland Stanford Junior CATALYSTS FOR CARBON DIOXIDE REDUCTION IN METHANOL
CN106268795B (zh) * 2015-05-12 2019-03-19 中国科学院大连化学物理研究所 金属-氧化铈催化剂的制备方法及其在二氧化碳电催化还原中的应用
CN106622252A (zh) * 2016-11-28 2017-05-10 宁夏大学 一种co2加氢制甲醇的催化剂
CN107774247B (zh) * 2017-10-25 2020-06-05 吉林大学 一种二氧化碳电化学还原催化剂及其制备方法
EP3524574A1 (en) * 2018-02-13 2019-08-14 Gaznat SA, Société pour l'pprovisionnement et le transport du gaz naturel en Suisse Romande Fe-n-c catalyst, method of preparation and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215962A (zh) * 2008-09-03 2011-10-12 新加坡科技研究局 二氧化碳还原
CN102716766A (zh) * 2012-06-15 2012-10-10 武汉凯迪工程技术研究总院有限公司 液相co2甲烷化催化剂、制备方法及其应用
CN103341364A (zh) * 2013-07-09 2013-10-09 福州大学 一种促进co2光催化还原性能的方法
CN109908960A (zh) * 2019-04-08 2019-06-21 中国科学院过程工程研究所 一种用于二氧化碳加氢反应的催化体系及合成正丁醇的方法

Also Published As

Publication number Publication date
CN111389459A (zh) 2020-07-10
CN111389459B (zh) 2021-04-13
US20230054550A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
Chang et al. Emerging materials and methods toward ammonia‐based energy storage and conversion
Zhang et al. Recent advances in application of graphitic carbon nitride‐based catalysts for photocatalytic nitrogen fixation
CN108793422B (zh) 光催化电极耦合微生物燃料电池促进焦化废水处理方法
Xia et al. Construction of single-atom catalysts for electro-, photo-and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges
Su et al. Keggin-type SiW12 encapsulated in MIL-101 (Cr) as efficient heterogeneous photocatalysts for nitrogen fixation reaction
CN114318392B (zh) 一种MoS2-NiS2/NF析氢材料及其制备方法与应用
CN109647407A (zh) 一种基于双金属mof纳米晶复合材料的制备方法和应用
CN114517304B (zh) 具有PdCu合金颗粒负载的NiFe-LDH金属纳米片材料电催化剂制备方法
WO2021164152A1 (zh) 一种用于催化还原二氧化碳或碳水化合物的组合物、及方法
Huang et al. “On–off” switch for H2 and O2 generation from HCOOH resp. H2O2
Li et al. Research progress in green synthesis of ammonia as hydrogen-storage carrier under ‘hydrogen 2.0 economy’
Hafeez et al. Review on recent progress and reactor set-ups for hydrogen production from formic acid decomposition
CN113862715B (zh) 一种多价态铜纳米材料、其制备方法及其作为电催化剂在碳捕获技术中的应用
Li et al. Atomically dispersed VNC catalyst with saturated coordination effect for boosting electrochemical oxygen reduction
Ma et al. Anchoring single Pt atoms on hollow Ag3VO4 spheres for improved activity towards photocatalytic H2 evolution reaction
Huang et al. Simultaneous catalytic reduction of p-nitrophenol and hydrogen production on MIL-101 (Fe)-based composites
CN1245329C (zh) 含氢无机化合物水溶液制氢催化剂及制氢方法
CN113249753B (zh) 硫化钼@钴-mof/nf析氢材料及原位合成方法和应用
Du et al. Recent progress in electrochemical synthesis of carbon-free hydrogen carrier ammonia and ammonia fuel cells: A review
CN113699549A (zh) 一种钌&锡双金属氧化物电催化材料及其制备方法和应用
Hui et al. Recent progress of photocatalysts based on tungsten and related metals for nitrogen reduction to ammonia
CN1601788A (zh) 直接甲醇燃料电池阳极电催化剂的制备方法
CN114807981A (zh) 一种高效合成H2O2的Zn-N-C电催化剂的制备方法及其应用
CN114540866A (zh) 基于单原子镍催化剂电化学还原一氧化氮产氨的方法
CN114284511A (zh) 一种基于超声辅助合成直接醇类燃料电池阳极催化剂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920270

Country of ref document: EP

Kind code of ref document: A1