CN108793422B - 光催化电极耦合微生物燃料电池促进焦化废水处理方法 - Google Patents

光催化电极耦合微生物燃料电池促进焦化废水处理方法 Download PDF

Info

Publication number
CN108793422B
CN108793422B CN201810530810.6A CN201810530810A CN108793422B CN 108793422 B CN108793422 B CN 108793422B CN 201810530810 A CN201810530810 A CN 201810530810A CN 108793422 B CN108793422 B CN 108793422B
Authority
CN
China
Prior art keywords
bivo
rgo
fuel cell
znin
photochemical catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810530810.6A
Other languages
English (en)
Other versions
CN108793422A (zh
Inventor
柳丽芬
周静
石静
王守凯
安陆阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810530810.6A priority Critical patent/CN108793422B/zh
Priority to PCT/CN2018/091910 priority patent/WO2019223051A1/zh
Priority to US16/478,104 priority patent/US20200165148A1/en
Publication of CN108793422A publication Critical patent/CN108793422A/zh
Application granted granted Critical
Publication of CN108793422B publication Critical patent/CN108793422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J35/33
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明提供了一种光催化电极耦合微生物燃料电池促进焦化废水处理方法,属于焦化废水处理与节能资源化技术领域。用La‑ZnIn2S4/RGO/BiVO4和硅溶胶在不锈钢网上固定涂覆的方法形成导电催化复合膜电极,并在其焦化废水中加入HSO3 ,阳极微生物中插入碳棒,用导线连接,构成电路回路,施加卤钨灯作为光源,作用于催化电极上,构成光催化电极耦合微生物燃料电池处理焦化废水系统。分别实现了在不同RGO含量的La‑ZnIn2S4/RGO/BiVO4催化剂条件下催降解焦化废水的效果影响,相同浓度的NaHSO3和Na2SO4溶液对焦化废水的降解效果的影响。

Description

光催化电极耦合微生物燃料电池促进焦化废水处理方法
技术领域
本发明属于焦化废水处理与节能资源化技术领域,涉及La-ZnIn2S4/RGO/BiVO4复合催化剂及光催化电极耦合微生物燃料电池组件的制备,及其协同作用,并在反应过程中加入HSO3 -降解处理焦化废水,HSO3 -有助于提高焦化废水降解率,为处理焦化废水起到促进作用。
背景技术
焦化废水主要是由煤工业和石油工业产生的,它是炼焦、煤气在960-1000摄氏度高温干馏、净化过程中,产生的一种较难处理的工业有机废水,其组成成分非常复杂,有硫化物、氰化物、高浓度的氨氮及大量难以生物降解的杂环多环芳香烃化合物等有毒有害物质。不同的处理方法(物理化学法,生化处理法,光催化氧化技术,Fenton试剂法,催化湿式氧化技术等),在能够发挥降解作用的同时都存在着各自的局限性。目前,将La-ZnIn2S4/RGO/BiVO4三元复合催化剂运用到光催化型微生物燃料电池中降解焦化废水的报道还未出现。
为了提高焦化废水降解效果,实验前期将光催化技术和微生物燃料电池相结合,将催化剂La-ZnIn2S4/RGO/BiVO4引入光催化型微生物燃料电池反应器中,以达到降解的目的。目前,以La-ZnIn2S4/RGO/BiVO4作为催化剂,将光催化技术与微生物燃料电池二者技术相结合,很大程度上降解了焦化废水中的有机污染物含量,在焦化废水处理工艺中有重要意义。
目前,用于穿梭光产生电荷的固态电子介体中已被证明有前景的主要有两种材料,贵金属和还原的氧化石墨烯(RGO)。片状RGO材料在特定的层状结构,化学稳定性,提供了优于贵金属的形态多样性和较低的制备成本。
另外,钒酸铋(BiVO4)因其带隙窄,波长响应范围宽,已被证明是一种具有很好应用前景的光催化剂。BiVO4主要有单斜白钨矿,四方锆石和四方钨白矿3种晶型,其中单斜白钨矿相由于具有较窄的带隙能(2.4eV),对紫外光和可见光都能产生响应,表现出较好的光催化活性。在以前的研究中,为了提高电荷分离效率和调节BiVO4和底物相互作用,各种金属盐(例如,AgNO3,Cu(NO3)2,Ni(NO3)2,RuCl3,PdCl2等)作为助催化剂负载在BiVO4表面可以改善它的光催化效率。而RGO电子介体可以很容易地扩展到基于半导体的复合光催化系统中,用RGO处理的BiVO4不论在光催氧化分解水还是在有机污染物的降解方面都表现出独特的活性。
而属于ABXCY型半导体三元硫化物ZnIn2S4,因带隙较窄、光催化性能强、比表面积大、吸附性能好等优点,在降解染料废水、光催化分解水制氢等方面受到了广泛好评。通过耦合不同催化剂形成的异质结构可有效提高电荷分离,将不同吸收波长范围的光催化进行耦合可以增大其波长吸收范围,从而提高光催化效率。
本申请以La-ZnIn2S4/RGO/BiVO4作为实验催化剂,希望以此催化剂能够有效降解焦化废水,以达到吸附和降解焦化废水中有机污染物的效果。
发明内容
本发明设计了La-ZnIn2S4/RGO/BiVO4光催化型微生物燃料电池组件,成功构建了光催化电极耦合微生物燃料电池系统。该系统不仅可以用作电极,还兼具光催化效果以及导电作用,整体处理焦化废水的效率大大提高,能耗较低,焦化废水中有机污染物浓度大大降低。该系统理论上可降解焦化废水,扩展了负载型光催化剂的应用,以及在处理其他废水时提供了一些思路。
本发明的技术方案:
光催化电极耦合微生物燃料电池降解焦化废水的方法,步骤如下:
(1)制备La-ZnIn2S4/RGO/BiVO4系列复合物:将Bi(NO3)3·5H2O溶于14wt%HNO3中,搅拌,然后向其中加入CTAB溶液,控制CTAB与Bi(NO3)3·5H2O的质量比为1:15;再添加GO,搅拌,得到混合液A液;
将NH4VO3溶于2mo/l NaOH溶液中,逐滴加入到A液,控制NH4VO3与A液中Bi(NO3)3·5H2O的摩尔比为1:1;用2mol/l NaOH溶液调节pH=6,搅拌;于200℃温度条件下反应2h,冷却,得到混合物;洗涤,离心,烘干,研磨,获得x RGO/BiVO4,碾磨成粉,即为xRGO/BiVO4;其中,x为RGO/BiVO4中RGO与BiVO4的质量比不大于1.5%;
将Zn(NO3)3·6H2O、In(NO3)3·5H2O以及过量的TAA溶于去离子水中,再加入La(NO3)3和RGO/BiVO4,加入去离子水,搅拌;于80℃温度条件下反应6h,冷却,得到混合物;经离心,烘干,研磨,获得y La-ZnIn2S4/RGO/BiVO4,碾磨成粉,即为yLa-ZnIn2S4/xRGO/BiVO4;其中,La-ZnIn2S4与RGO/BiVO4的质量比为1:5,y为La与ZnIn2S4的质量比0.01;
(2)光催化电极耦合微生物燃料电池膜组件制备:向步骤(1)制备得到的yLa-ZnIn2S4/xRGO/BiVO4系列复合物中添加硅溶胶,yLa-ZnIn2S4/xRGO/BiVO4系列复合物与硅溶胶的比例为1g:1ul,利用超声均匀,将其涂抹于不锈钢网片上,干燥;
(3)光催化电极耦合微生物燃料电池催化处理系统构建:系统通过质子交换膜分为两室,一室中放有微生物,碳棒插入其中,作为阴极;另一室中为加有NaHSO3的焦化废水,步骤(2)制备得到的光催化电极耦合微生物燃料电池膜组件作为阳极,并放置卤钨灯,通过导线连接,形成电路,卤钨灯垂直照射光催化电极耦合微生物燃料电池膜组件。
所述的污染物为焦化废水中的有机污染物。
本发明的有益效果:该系统集成了光催化膜电极和微生物燃料电池产电性能以及耦合协同作用,吸附和降解焦化废水中的有机污染物;对焦化废水中难降解的有机污染物能够有效吸附和降解,该系统中的光催化剂和微生物能够很好地保证其不失去活性,并且能够持续产电。
附图说明
图1是光催化电极与微生物燃料电池耦合系统作用下,加入相同浓度的NaHSO3,不同RGO含量的La-ZnIn2S4/RGO/BiVO4催化剂条件下,降解焦化废水的效果对比题,图中,横坐标为时间(h),纵坐标为焦化废水的TOC降解效率(%)。
图2是光催化电极与微生物燃料电池耦合系统作用下,阳极焦化废水中分别加入相同浓度的NaHSO3和Na2SO4处理条件下,降解焦化废水效果对比图。图中,横坐标为时间(h),纵坐标为焦化废水TOC降解效率的(%)。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
实施例一:不同RGO含量的催化剂降解焦化废水
在光催化膜电极耦合微生物燃料电池的双室长方体反应器系统中,将膜组件和卤钨灯均放入系统中,用碳棒放入用质子交换膜隔开的微生物阳极中,光催化剂接触系统中的含有NaHSO3的焦化废水为光电阴极,阴极室底部有曝气头持续曝气,用鳄鱼夹连接膜上方,将卤钨灯放入反应装置中,反应前关闭卤钨灯电源,先进行0.5h的暗反应后,再打开卤钨灯电源,光反应4h,反应开始后,前2.5小时每隔0.5h用移液枪进行取样,后两小时每隔1.0h取样,反应共进行4.5h,用TOC/TN检测仪检测样品中TOC含量,并计算焦化废水中有机污染物的降解效果。
图1中,0.5%RGO降解效果最佳,为82.02%。
实施例二:含有相同浓度的NaHSO3和Na2SO4的体系降解焦化废水
在光催化膜电极耦合微生物燃料电池的双室长方体反应器系统中,将膜组件和卤钨灯均放入系统中,用碳棒放入用质子交换膜隔开的微生物阳极中,一个是光催化剂接触系统中的含有NaHSO3的焦化废水为光电阴极(另一个是光催化剂接触系统中的含有Na2SO4的焦化废水为光电阴极,其他条件相同)阴极室底部有曝气头持续曝气,用鳄鱼夹连接膜上方,将卤钨灯放入反应装置中,反应前关闭卤钨灯电源,先进行0.5h的暗反应后,再打开卤钨灯电源,光反应4h,反应开始后,前2.5小时每隔0.5h用移液枪进行取样,后两小时每隔1.0h取样,反应共进行4.5h,用TOC/TN检测仪检测样品中TOC含量,并计算焦化废水中有机污染物的降解效果。
图2中,含有NaHSO3的焦化废水和含有Na2SO4的焦化废水进行对比,发现含有NaHSO3的焦化废水光催化膜电极耦合微生物燃料电池的系统中降解焦化废水的效率(82%)远远优于含有Na2SO4的焦化废水的降解效率(15%)。

Claims (2)

1.一种光催化电极耦合微生物燃料电池降解焦化废水的方法,其特征在于,步骤如下:
(1)制备La-ZnIn2S4/RGO/BiVO4系列复合物:将Bi(NO3)3·5H2O溶于14wt%HNO3中,搅拌,然后向其中加入CTAB溶液,控制CTAB与Bi(NO3)3·5H2O的质量比为1:15;再添加GO,搅拌,得到混合液A液;
将NH4VO3溶于2mo/l NaOH溶液中,逐滴加入到A液,控制NH4VO3与A液中Bi(NO3)3·5H2O的摩尔比为1:1;用2mol/l NaOH溶液调节pH=6,搅拌;于200℃温度条件下反应2h,冷却,得到混合物;洗涤,离心,烘干,研磨,获得x RGO/BiVO4,碾磨成粉,即为xRGO/BiVO4;其中,x为RGO/BiVO4中RGO与BiVO4的质量比不大于1.5%;
将Zn(NO3)3·6H2O、In(NO3)3·5H2O以及过量的TAA溶于去离子水中,再加入La(NO3)3和RGO/BiVO4,加入去离子水,搅拌;于80℃温度条件下反应6h,冷却,得到混合物;经离心,烘干,研磨,获得y La-ZnIn2S4/RGO/BiVO4,碾磨成粉,即为yLa-ZnIn2S4/xRGO/BiVO4;其中,La-ZnIn2S4与RGO/BiVO4的质量比为1:5,y为La与ZnIn2S4的质量比0.01;
(2)光催化电极耦合微生物燃料电池膜组件制备:向步骤(1)制备得到的yLa-ZnIn2S4/xRGO/BiVO4系列复合物中添加硅溶胶,yLa-ZnIn2S4/xRGO/BiVO4系列复合物与硅溶胶的比例为1g:1ul,利用超声均匀,将其涂抹于不锈钢网片上,干燥;
(3)光催化电极耦合微生物燃料电池催化处理系统构建:系统通过质子交换膜分为两室,一室中放有微生物,碳棒插入其中,作为阴极;另一室中为加有NaHSO3的焦化废水,步骤(2)制备得到的光催化电极耦合微生物燃料电池膜组件作为阳极,并放置卤钨灯,通过导线连接,形成电路,卤钨灯垂直照射光催化电极耦合微生物燃料电池膜组件。
2.根据权利要求1所述的光催化电极耦合微生物燃料电池降解焦化废水的方法,其特征在于,所述的污染物为焦化废水中的有机污染物。
CN201810530810.6A 2018-05-22 2018-05-22 光催化电极耦合微生物燃料电池促进焦化废水处理方法 Active CN108793422B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810530810.6A CN108793422B (zh) 2018-05-22 2018-05-22 光催化电极耦合微生物燃料电池促进焦化废水处理方法
PCT/CN2018/091910 WO2019223051A1 (zh) 2018-05-22 2018-06-20 光催化电极耦合微生物燃料电池促进焦化废水处理方法
US16/478,104 US20200165148A1 (en) 2018-05-22 2018-06-20 A method using photocatalytic electrode coupled with microbial fuel cell to promote treatment of coking wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810530810.6A CN108793422B (zh) 2018-05-22 2018-05-22 光催化电极耦合微生物燃料电池促进焦化废水处理方法

Publications (2)

Publication Number Publication Date
CN108793422A CN108793422A (zh) 2018-11-13
CN108793422B true CN108793422B (zh) 2019-09-27

Family

ID=64090753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810530810.6A Active CN108793422B (zh) 2018-05-22 2018-05-22 光催化电极耦合微生物燃料电池促进焦化废水处理方法

Country Status (3)

Country Link
US (1) US20200165148A1 (zh)
CN (1) CN108793422B (zh)
WO (1) WO2019223051A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847735B (zh) * 2019-01-18 2021-05-18 大连理工大学 一种高效降解氨气污染物的纳米催化剂及应用
CN110327959B (zh) * 2019-06-25 2022-01-18 三明学院 一种BiVO4@CdIn2S4/g-C3N4可见光响应光催化剂及其制备方法
CN110304735B (zh) * 2019-06-27 2021-09-24 大连理工大学 一种降解焦化废水的燃料电池系统
CN111939933A (zh) * 2020-07-16 2020-11-17 沈阳化工大学 一种三元阶梯型异质结半导体光催化剂制备方法
CN112844412B (zh) * 2021-01-13 2022-10-21 华南师范大学 一种硫铟锌-MXene量子点复合光催化剂及其制备方法和应用
CN113235124B (zh) * 2021-05-18 2022-04-26 西北师范大学 一种S-FeOOH/钒酸铋复合光阳极及其制备方法
CN113526757B (zh) * 2021-08-27 2022-11-22 安徽工业大学 一种废水处理装置和处理方法
CN114180729B (zh) * 2021-12-28 2023-12-22 烟台大学 高效处理矿物尾渣浸出液废水的装置及方法
CN115382557A (zh) * 2022-04-22 2022-11-25 青岛科技大学 ZnIn2S4/Zn2GeO4双金属硫氧化物光催化剂及其制备方法和应用
CN115487661A (zh) * 2022-10-09 2022-12-20 浙江工业大学 一种光电驱动微生物光电解池降解1,2-二氯乙烷的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140551A (zh) * 2015-07-29 2015-12-09 大连理工大学 一种PANI/BiVO4复合光催化剂与微生物燃料电池耦合系统
KR20150139429A (ko) * 2014-05-29 2015-12-11 대구대학교 산학협력단 광촉매반응공정과 통합된 오염원 처리방법
CN106006929A (zh) * 2016-06-17 2016-10-12 大连理工大学 一种光电催化膜耦合微生物燃料电池全天候处理污水的方法
CN106115841A (zh) * 2016-06-28 2016-11-16 大连理工大学 一种双光电极光催化氧化水中氨态氮的系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428663B (zh) * 2015-12-14 2018-04-20 南京工业大学 一种具光催化协同效应微生物燃料电池电极及其制备方法和应用
CN106340661A (zh) * 2016-09-26 2017-01-18 大连理工大学 一种三元异质结光电催化膜燃料电池系统
CN106486687B (zh) * 2016-11-21 2019-03-19 重庆大学 光催化产过氧化氢与光催化燃料电池耦合系统
CN106630429B (zh) * 2016-12-29 2020-11-27 同济大学 一种基于生物电化学及光催化的污水原位处理系统及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150139429A (ko) * 2014-05-29 2015-12-11 대구대학교 산학협력단 광촉매반응공정과 통합된 오염원 처리방법
CN105140551A (zh) * 2015-07-29 2015-12-09 大连理工大学 一种PANI/BiVO4复合光催化剂与微生物燃料电池耦合系统
CN106006929A (zh) * 2016-06-17 2016-10-12 大连理工大学 一种光电催化膜耦合微生物燃料电池全天候处理污水的方法
CN106115841A (zh) * 2016-06-28 2016-11-16 大连理工大学 一种双光电极光催化氧化水中氨态氮的系统

Also Published As

Publication number Publication date
WO2019223051A1 (zh) 2019-11-28
US20200165148A1 (en) 2020-05-28
CN108793422A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN108793422B (zh) 光催化电极耦合微生物燃料电池促进焦化废水处理方法
Bie et al. Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts
Huang et al. Artificial nitrogen fixation over bismuth-based photocatalysts: fundamentals and future perspectives
Li et al. NiO/g-C3N4 2D/2D heterojunction catalyst as efficient peroxymonosulfate activators toward tetracycline degradation: characterization, performance and mechanism
RU2479558C2 (ru) Электрохимический способ получения азотных удобрений
Yoshino et al. Photocatalytic CO2 reduction using water as an electron donor under visible light irradiation by Z-scheme and photoelectrochemical systems over (CuGa) 0.5 ZnS2 in the presence of basic additives
Huang et al. Simultaneous and efficient photocatalytic reduction of Cr (VI) and oxidation of trace sulfamethoxazole under LED light by rGO@ Cu2O/BiVO4 pn heterojunction composite
Sacco Electrochemical impedance spectroscopy as a tool to investigate the electroreduction of carbon dioxide: A short review
Rioja-Cabanillas et al. Hydrogen from wastewater by photocatalytic and photoelectrochemical treatment
Dong et al. A halide perovskite as a catalyst to simultaneously achieve efficient photocatalytic CO 2 reduction and methanol oxidation
CN110983356B (zh) 一种低温射流等离子体耦合单原子催化的固氮装置及方法
Wang et al. Defects and internal electric fields synergistically optimized g-C3N4− x/BiOCl/WO2. 92 heterojunction for photocatalytic NO deep oxidation
US20110120880A1 (en) Electrochemical process for the preparation of nitrogen fertilizers
CN106115841B (zh) 一种双光电极光催化氧化水中氨态氮的系统
CN101024188A (zh) 卤氧化物光催化材料及其制备方法
Zhang et al. Unified photoelectrocatalytic microbial fuel cell harnessing 3D binder-free photocathode for simultaneous power generation and dual pollutant removal
Li et al. Ammonia-nitrogen removal from water with gC3N4-rGO-TiO2 Z-scheme system via photocatalytic nitrification-denitrification process
CN107952464A (zh) 一种新型光催化材料及双光催化电极自偏压污染控制系统
CN101972645A (zh) 可见光响应型半导体光催化剂钒酸铋的制备方法
CN114669299B (zh) 一种介孔碳负载铜铁双金属催化剂及其制备方法与应用
Ye et al. Photo-Fenton and oxygen vacancies' synergy for enhancing catalytic activity with S-scheme FeS 2/Bi 2 WO 6 heterostructure
Zhang et al. Unveiling Cutting‐Edge Developments in Electrocatalytic Nitrate‐to‐Ammonia Conversion
Chen et al. Hydroxyl radical and carbonate radical facilitate chlortetracycline degradation in the bio-photoelectrochemical system with a bioanode and a Bi2O3/CuO photocathode using bicarbonate buffer
Kumar et al. Incorporating Bi nanodots into CuBi2O4/CuFe2O4 heterojunction for a wide spectral synchronous photoreduction of hexavalent chromium and degradation of imidacloprid
Balachandran et al. Solar active ZnO–Eu2O3 for energy and environmental applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant