CN114669299B - 一种介孔碳负载铜铁双金属催化剂及其制备方法与应用 - Google Patents

一种介孔碳负载铜铁双金属催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN114669299B
CN114669299B CN202210249491.8A CN202210249491A CN114669299B CN 114669299 B CN114669299 B CN 114669299B CN 202210249491 A CN202210249491 A CN 202210249491A CN 114669299 B CN114669299 B CN 114669299B
Authority
CN
China
Prior art keywords
copper
catalyst
mesoporous carbon
nitrate
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210249491.8A
Other languages
English (en)
Other versions
CN114669299A (zh
Inventor
刘福建
刘丽娟
梁诗景
彭小波
江莉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210249491.8A priority Critical patent/CN114669299B/zh
Publication of CN114669299A publication Critical patent/CN114669299A/zh
Application granted granted Critical
Publication of CN114669299B publication Critical patent/CN114669299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种介孔碳负载铜铁双金属催化剂及其制备方法与应用,以铜盐和铁盐为金属源,碱作为沉淀剂,通过分批次投料,利用水热共沉淀作用,制备得到铜铁双金属氧化物,与有序介孔碳混磨均匀后经H2还原得到介孔碳负载铜铁双金属催化剂,并将其用于电催化硝酸根还原合成氨反应中。本发明制得的介孔碳负载铜铁双金属催化剂具有双金属协同效应,能在催化剂上有效吸附活化硝酸根,并将其转化为氨,且介孔碳载体的存在使得催化剂具有较大的比表面积和良好的电导性,并且增强了催化剂的稳定性,使得催化剂具有良好的电催化硝酸根还原性能。本发明的制备方法简单便捷、能耗小、成本低,有较大的应用潜力。

Description

一种介孔碳负载铜铁双金属催化剂及其制备方法与应用
技术领域
本发明属于材料制备、电催化及精细化工的技术领域,具体涉及一种介孔碳负载铜铁双金属催化剂及其制备方法与应用。
背景技术
氨是世界上具有重要意义的基础化学产品之一,是氮肥、药物、含氮有机化工品的重要中间体。同时,氢原子在氨分子中的比例约为17.6%,因此它也被认为是高能高含氢量和零碳的能源载体。目前,工业氨合成方法主要源自传统的Haber-Bosch工艺,主要利用天然气或煤作为起始原料,通过铁基固体催化剂催化反应合成氨,但这一过程消耗了全球超过1%的能源供应,并产生了巨量的二氧化碳。在“碳达峰碳中和”的“双碳”国家战略目标下,寻找一种利用可再生能源的绿色可持续合成氨方法具有重大意义。
基于上述需求,可再生能源驱动电化学氮气还原反应(eNRR)合成氨受到广泛关注。然而,氮气的N≡N键键能高(941kJ/mol),使得氮气难以活化,并且氮气在电解质中的溶解度(0.02g/L,20°C,100kPa)较低。这些因素都极大地阻碍了eNRR的进行及其活性的提高。考虑到上述氮气还原的不足,另一种氮源进入了研究者们的视角。随着人类社会的发展,硝酸盐已成为环境中的常见污染物,广泛存在于地表和地下水中。与氮气相比,硝酸盐具有高溶解度(KNO3,20°C,316g/L)和低N-O键能(204kJ/mol)的优点。此外,水中硝酸盐的大量积累可能导致水体富营养化,从而抢夺水生生物所需的氧气并破坏水生生态系统。而且人体内的胃肠道微生物可以将硝酸盐还原为亚硝酸盐,这可能导致肝损伤、高铁血红蛋白症,甚至癌症。目前去除水体中硝酸盐的方法包括反渗透、电渗析和离子交换。然而,这些物理和化学过程只能浓缩和分离硝酸盐,这使得硝酸盐的去除需要很高的成本。因此以硝酸盐为N源、水为氢源的电化学硝酸盐还原反应合成氨(eNiTRR)策略引起了广泛关注。但是由于N存在-3到+5的宽价态范围,因此在eNiTRR的过程中涉及多种中间产物,这使得反应机制复杂,最终反应产物包括N2、NH3以及NO2 -等。
已有的文献研究表明Fe对电催化硝酸根转化为NH4 +具有较高的选择性,倾向于将NO3 -转化为高附加值氨产物,但是由于Fe基催化剂在电解质中进行长时间电化学反应会发生氧化腐蚀,使其稳定性和催化活性降低。对Fe基催化剂进行合金化改进,可以进一步增强其催化稳定性。中国专利文献CN202110845307.1公开了铜、铁与金属钠在真空环境下经球磨、冷冻干燥制得双金属电催化反硝化电极材料。然而在上述技术中,制备方法苛刻需要用到极其不稳定的金属钠,且所得到的电极在空气中易被氧化,所得到的电极和催化剂仅能用于无水无氧条件下。另一方面,通过球磨法制备的双金属催化剂电极材料由于完全暴露在电解质溶液中易在电化学反应过程中毒化溶出。因此,开发高性能和良好稳定性的电催化硝酸盐还原催化剂具有重要意义。
在电催化领域,通常将稳定性好、导电性佳、成本低廉、比表面积高的碳材料用作电催化剂的载体以增强催化剂的催化稳定性和降低催化剂成本。与大孔碳(>50nm)和微孔碳(<2nm)相比,介孔碳(2~50nm)的介孔结构更适用于分散金属颗粒和提高催化剂利用率。并且有序介孔碳(OMC)材料的高度有序介孔结构有利于物质传输和降低传质阻力,可以在一定程度上加快反应速率和增强催化剂稳定性。
发明内容
为了解决上述问题,本发明的目的在于提供一种用于电催化硝酸根还原合成氨的介孔碳负载铜铁双金属催化剂的制备方法与应用。该制备方法简易可行,具有良好的原子利用率,并且双金属催化剂具有协同作用,适用于电催化硝酸根还原合成氨反应。
为实现上述目的,本发明采用如下技术方案:
本发明包括一种用于电催化硝酸根还原合成氨的介孔碳负载铜铁双金属催化剂,其是以铜盐、铁盐、碱、有序介孔碳等为原料,通过分批次投料混合,利用水热共沉淀法和H2还原,制备出良好氨选择性、绿色环保的介孔碳负载铜铁双金属催化剂,其制备方法包括以下步骤:
(1)将1.65g间苯二酚和2.5gF127溶解在20mL水和20mL乙醇的混合液中,搅拌15min,直至获得澄清溶液;
(2)加入0.2mLHCl(37wt.%),搅拌1h后滴加1.25g的37%的甲醛溶液,将混合物再剧烈搅拌反应1h,获得均匀的溶液;
(3)转移至烘箱中,在80°C水热2天。将所得聚合物用乙醇和水洗涤,并在60°C的烘箱中干燥12h。在管式炉中Ar气氛下以1°C/min的升温速率升温至800°C碳化3h。将样品研磨均匀即得有序介孔碳(OMC);
(4)称取一定铜铁摩尔比的铜源和铁源,加入30mL超纯水搅拌溶解,滴入一定量的碱溶液,搅拌均匀;
(5)放入烘箱水热,离心水洗至中性,再用乙醇洗3次,80°C烘箱干燥过夜后,在马弗炉中煅烧,即得铜铁双金属氧化物。
(6)称取一定量铜铁双金属氧化物和有序介孔碳(OMC)加入研钵中混磨均匀,在H2气氛下于管式炉中焙烧还原,得到介孔碳负载铜铁双金属催化剂。
步骤(4)中所加入碱的量按与所用铜和铁的前驱体的摩尔比为n(OH-):n(CuFe)=(1-3):1进行换算;所述碱为碳酸钠、氢氧化钠、氨水、氢氧化钾或氢氧化锂中的任意一种或两种。
步骤(4)中所用铜和铁的前驱体的量按摩尔比n(Cu):n(Fe)=1:(0.4-2.4)称取,铜铁总摩尔量为5mmol。
步骤(5)中所述铜的前驱体为氯化铜、硝酸铜、硫酸铜或乙酸铜中的任意一种;所述铁的前驱体为氯化铁、硝酸铁、乙酸铁或硫酸铁中的任意一种。
步骤(5)中所述水热反应温度为80-120°C,水热反应的时间为12-36h。
步骤(5)中所述马弗炉的焙烧温度为500-700°C,升温速率为5°C/min,焙烧时间为4-6h。
步骤(6)中所述管式炉的焙烧温度为300-450°C,升温速率为2°C/min,焙烧还原时间为3-5h。
制得的介孔碳负载铜铁双金属催化剂可用于电催化硝酸根还原合成氨,电催化硝酸根还原反应是在H-型双室反应池中进行,利用质子交换膜将阴极室和阳极室分隔开。其中,阴极室中以涂覆催化剂的疏水碳纸为工作电极和KCl饱和的Ag/AgCl电极为参比电极,阳极室以铂片为对电极,施加恒电压使阴极室溶液中的硝酸根通过电化学还原反应合成氨。
本发明的显著优点在于:
(1)本发明制备得到的催化剂为非贵金属双金属催化剂,实现了以硝酸根为氮源的常温常压电化学合成氨。采用非贵金属双金属作为催化剂,与先前研究报道的贵金属双金属催化剂相比,有利于降低生产成本,具有更大的经济效益;并且相较于传统合成氨严苛的反应条件(高温高压),该方法具有绿色环保清洁可持续的优势;
(2)本发明首先通过水热共沉淀法制备出物化性质稳定的铜铁双金属氧化物前驱体,该铜铁双金属氧化物前驱体具有完整晶型、粒度分布均匀以及原子利用率高,与介孔碳载体混磨均匀并经H2还原之后制得介孔碳负载铜铁双金属催化剂,该制备方法得到的催化剂相较于单一的铜或铁基催化剂,具有双金属协同效应,能够更好地活化吸附硝酸根,将硝酸根电催化还原为氨;
(3)将铜铁双金属组分与有序介孔碳载体混磨均匀后经氢气还原得到的介孔碳负载铜铁双金属催化剂,在一定程度上增强了催化剂在电解液中进行电化学还原反应的稳定性,从而减少双金属活性组分在电解液中的溶出和毒化。
附图说明
图1为实施例1-5所得介孔碳负载铜铁双金属催化剂和介孔碳载体的X射线粉末衍射图(XRD)。
图2为实施例1、3和5所得的介孔碳负载铜铁双金属催化剂在Ar气氛下,0.1M PBS+500 ppm KNO3的电解液中的氨产生速率和法拉第效率活性图。
图3为实施例1、3和5所得的介孔碳负载铜铁双金属催化剂的NH3-TPD曲线。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
将1.65g 间苯二酚和2.5g F127溶解在40mL乙醇的水溶液中(二者体积比为1:1),搅拌15min至变为澄清溶液,再加入0.2mL HCl(37wt.%),搅拌1h后滴加1.25g的37%的甲醛溶液,将混合溶液剧烈搅拌反应1h后转移至烘箱中80°C水热2天。将所得聚合物用乙醇和水洗涤,并在60°C烘箱中干燥12h。最后在管式炉中于Ar气氛下以1°C/min的升温速率升温至800°C碳化3h。将样品研磨均匀即得有序介孔碳OMC。
称取0.8525g氯化铜,加入30mL超纯水搅拌溶解,逐滴加入30mL含10mmol碳酸钠的碱溶液,搅拌均匀后放入100°C烘箱水热24h,冷却至室温后取出样品,离心水洗沉淀物至上清液呈中性,再用乙醇洗3次,置于80°C烘箱干燥过夜,以5°C/min的升温速率在600°C马弗炉中焙烧5h,获得铜铁双金属氧化物材料。取0.02g铜铁双金属氧化物材料和0.18g有序介孔碳(OMC)加入研钵中混磨10min,在H2气氛下以2°C/min的升温速率于管式炉中350°C焙烧4h,得到Cu-OMC催化剂,记为催化剂A。
实施例2
将1.65g 间苯二酚和2.5g F127溶解在40mL乙醇的水溶液中(二者体积比为1:1),搅拌15min至变为澄清溶液,再加入0.2mL HCl(37wt.%),搅拌1h后滴加1.25g的37%的甲醛溶液,将混合溶液剧烈搅拌反应1h后转移至烘箱中80°C水热2天。将所得聚合物用乙醇和水洗涤,并在60°C烘箱中干燥12h。最后在管式炉中于Ar气氛下以1°C/min的升温速率升温至800°C碳化3h。将样品研磨均匀即得有序介孔碳OMC。
称取0.5968g氯化铜和0.4055g氯化铁,加入30mL超纯水搅拌溶解,逐滴加入30mL含10mmol碳酸钠的碱溶液,搅拌均匀后放入100°C烘箱水热24h,冷却至室温后取出样品,离心水洗沉淀物至上清液呈中性,再用乙醇洗3次,置于80°C烘箱干燥过夜,以5°C/min的升温速率在600°C马弗炉中焙烧5h,获得铜铁双金属氧化物材料。取0.02g铜铁双金属氧化物材料和0.18g有序介孔碳(OMC)加入研钵中混磨10min,在H2气氛下以2°C/min的升温速率于管式炉中350°C焙烧4h,得到Cu7Fe3-OMC催化剂,记为催化剂B。
实施例3
将1.65g 间苯二酚和2.5g F127溶解在40mL乙醇的水溶液中(二者体积比为1:1),搅拌15min至变为澄清溶液,再加入0.2mL HCl(37wt.%),搅拌1h后滴加1.25g的37%的甲醛溶液,将混合溶液剧烈搅拌反应1h后转移至烘箱中80°C水热2天。将所得聚合物用乙醇和水洗涤,并在60°C烘箱中干燥12h。最后在管式炉中于Ar气氛下以1°C/min的升温速率升温至800°C碳化3h。将样品研磨均匀即得有序介孔碳OMC。
称取0.4263g氯化铜和0.6758g氯化铁,加入30mL超纯水搅拌溶解,逐滴加入30mL含10mmol碳酸钠的碱溶液,搅拌均匀后放入100°C烘箱水热24h,冷却至室温后取出样品,离心水洗沉淀物至上清液呈中性,再用乙醇洗3次,置于80°C烘箱干燥过夜,以5°C/min的升温速率在600°C马弗炉中焙烧5h,获得铜铁双金属氧化物材料。取0.02g铜铁双金属氧化物材料和0.18g有序介孔碳(OMC)加入研钵中混磨10min,在H2气氛下以2°C/min的升温速率于管式炉中350°C焙烧4h,得到Cu5Fe5-OMC催化剂,记为催化剂C。
实施例4
将1.65g 间苯二酚和2.5g F127溶解在40mL乙醇的水溶液中(二者体积比为1:1),搅拌15min至变为澄清溶液,再加入0.2mL HCl(37wt.%),搅拌1h后滴加1.25g的37%的甲醛溶液,将混合溶液剧烈搅拌反应1h后转移至烘箱中80°C水热2天。将所得聚合物用乙醇和水洗涤,并在60°C烘箱中干燥12h。最后在管式炉中于Ar气氛下以1°C/min的升温速率升温至800°C碳化3h。将样品研磨均匀即得有序介孔碳OMC。
称取0.2558g氯化铜和0.9461g氯化铁,加入30mL超纯水搅拌溶解,逐滴加入30mL含10mmol碳酸钠的碱溶液,搅拌均匀后放入100°C烘箱水热24h,冷却至室温后取出样品,离心水洗沉淀物至上清液呈中性,再用乙醇洗3次,置于80°C烘箱干燥过夜,以5°C/min的升温速率在600°C马弗炉中焙烧5h,获得铜铁双金属氧化物材料。取0.02g铜铁双金属氧化物材料和0.18g有序介孔碳(OMC)加入研钵中混磨10min,在H2气氛下以2°C/min的升温速率于管式炉中350°C焙烧4h,得到Cu3Fe7-OMC催化剂,记为催化剂D。
实施例5
将1.65g 间苯二酚和2.5g F127溶解在40mL乙醇的水溶液中(二者体积比为1:1),搅拌15min至变为澄清溶液,再加入0.2mL HCl(37wt.%),搅拌1h后滴加1.25g的37%的甲醛溶液,将混合溶液剧烈搅拌反应1h后转移至烘箱中80°C水热2天。将所得聚合物用乙醇和水洗涤,并在60°C烘箱中干燥12h。最后在管式炉中于Ar气氛下以1°C/min的升温速率升温至800°C碳化3h。将样品研磨均匀即得有序介孔碳OMC。
称取1.3515g氯化铁,加入30mL超纯水搅拌溶解,逐滴加入30mL含10mmol碳酸钠的碱溶液,搅拌均匀后放入100°C烘箱水热24h,冷却至室温后取出样品,离心水洗沉淀物至上清液呈中性,再用乙醇洗3次,置于80°C烘箱干燥过夜,以5°C/min的升温速率在600°C马弗炉中焙烧5h,获得铜铁双金属氧化物材料。取0.02g铜铁双金属氧化物材料和0.18g有序介孔碳(OMC)加入研钵中混磨10min,在H2气氛下以2°C/min的升温速率于管式炉中350°C焙烧4h,得到Fe-OMC催化剂,记为催化剂E。
性能测试
本发明应用实施例1-5电催化硝酸根还原合成氨。分别称取10mg催化剂,分散于1mL含乙醇、水和萘酚的混合液中(乙醇、水和萘酚的体积比为18:6:1),超声分散1h后取100μL催化剂匀浆滴涂在疏水碳纸上后自然晾干。使用H-型双室反应器,用质子交换膜分隔开阴阳两极室;采用三电极体系,对电极为铂片,KCl饱和的Ag/AgCl电极为参比电极,催化剂涂覆在疏水碳纸上作为工作电极;电解液为0.1M PBS+500 ppm KNO3,施加-0.4 V~-0.9 V(vs. RHE)的恒电压使阴极室发生电催化硝酸根还原反应。
图1为根据本发明实施例1-5方法制得的介孔碳负载铜铁双金属催化剂和介孔碳载体的X射线衍射(XRD)图,从图1可以看出,实施例1-5样品的XRD图与介孔碳的XRD图相比,显示出与铜和铁的标准卡片一致的特征衍射峰。位于43.2°、50.3°和74.0°的峰分别归属于金属Cu的(111)、(200)和(220)晶面(JCPDS:03-065-7002),位于44.7°和65.0°的峰分别归属于金属Fe的(110)和(200)晶面(JCPDS:00-006-0696)。并且随着铜铁摩尔比的增加,铜的特征衍射峰逐渐出现并增强,铁的特征衍射峰逐渐减弱并消失,进一步证实了具有不同铜铁摩尔比的介孔碳负载铜铁双金属催化剂的合成。
图2为实施例1、3和5所得的介孔碳负载铜铁双金属催化剂在Ar气氛下,0.1M PBS+500 ppm KNO3的电解液中的电催化氨产生速率和法拉第效率活性图。从图中可以看出,在氩气气氛下,所制备得到介孔碳负载铜铁双金属催化剂C(Cu5Fe5-OMC)的电化学硝酸根还原合成氨活性明显高于单一的铜或铁催化剂,当施加偏压为-0.5Vvs.RHE时,氨生成速率为148.0 μg h-1mgcat. -1,法拉第效率可达到71.4%。
图3为实施例1、3和5所得的介孔碳负载铜铁双金属催化剂的NH3-TPD曲线,在曲线中脱附峰的位置和峰面积分别与酸性位点的强弱和数目密切相关,由于硝酸根属于弱的路易斯碱,因此具有酸性位点的催化剂材料更有利于硝酸根的吸附活化。根据NH3-TPD实验,小于200°C、200-400°C以及大于400°C的脱附峰分别对应催化剂表面的弱、中和强酸性位点。图3显示与Cu-OMC和Fe-OMC相比,Cu5Fe5-OMC氨脱附更多集中在200-400°C,说明其具有更多的中强酸性位点,而在电催化硝酸根还原合成氨中,除了需要尽可能多地吸附硝酸根进行电催化还原,还需要实现NH3的脱附,因此具有更多中强酸性位点的Cu5Fe5-OMC材料更有利于电催化硝酸根还原合成氨反应,这个结果也证实了Cu5Fe5-OMC具有更高的氨产率和法拉第效率的实验结论。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

1.一种双金属催化剂在电催化硝酸根还原合成氨反应中的应用,其特征在于,催化剂由以下方法制得:以铜盐和铁盐为金属源,碱作为沉淀剂,通过分批次投料,利用水热共沉淀作用,制备得到铜铁双金属氧化物,与有序介孔碳混磨均匀后经H2还原得到介孔碳负载铜铁双金属催化剂;
所述铜盐和铁盐的总摩尔量为5mmol,加入碱的量按与所述金属源前驱体的摩尔比为n(OH-):n(CuFe)=(1-3):1;所述铜盐和所述铁盐的摩尔比n(Cu):n(Fe)=1:(0.4-2.4)。
2.如权利要求1所述一种双金属催化剂在电催化硝酸根还原合成氨反应中的应用,其特征在于:所述碱为碳酸钠、氢氧化钠、氨水、氢氧化钾或氢氧化锂中的任意一种或两种。
3.如权利要求1所述一种双金属催化剂在电催化硝酸根还原合成氨反应中的应用,其特征在于,催化剂的制备具体包括以下步骤:
(1)称取铜源和铁源,加入超纯水搅拌溶解,滴入碱溶液,搅拌均匀;
(2)放入烘箱水热,洗涤烘干后,置于马弗炉中煅烧,即得铜铁双金属氧化物;
(3)取步骤(2)制备的铜铁双金属氧化物和有序介孔碳加入研钵中混磨均匀,在惰性气氛下于管式炉中焙烧,得到介孔碳负载铜铁双金属催化剂。
4.如权利要求3所述的一种双金属催化剂在电催化硝酸根还原合成氨反应中的应用,其特征在于:所述步骤(2)中所述水热反应的温度为80-120℃,水热反应的时间为12-36h。
5.如权利要求3所述的一种双金属催化剂在电催化硝酸根还原合成氨反应中的应用,其特征在于:所述步骤(2)中马弗炉焙烧的温度为500-700°C,时间为4-6h,升温速率5°C/min。
6.如权利要求3所述的一种双金属催化剂在电催化硝酸根还原合成氨反应中的应用,其特征在于:所述步骤(3)中管式炉焙烧的温度为300-400°C,时间为3-5h,升温速率2°C/min。
7.如权利要求1-6任一项所述一种双金属催化剂在电催化硝酸根还原合成氨反应中的应用,其特征在于,有序介孔碳制备方法如下:
步骤S1、将1.65g间苯二酚和2.5gF127溶解在20mL水和20mL乙醇的混合液中,搅拌15min,直至变为澄清溶液;
步骤S2、加入0.2mL37wt.%HCl,搅拌1h后滴加1.25g的质量分数为37%的甲醛溶液,将混合物再剧烈搅拌反应1h,获得均匀的溶液;
步骤S3、转移至烘箱中,在80°C水热2天;将所得聚合物洗涤烘干后;在管式炉中于惰性气氛下以1°C/min的升温速率升温至800°C碳化3h;将样品研磨均匀即得有序介孔碳。
CN202210249491.8A 2022-03-14 2022-03-14 一种介孔碳负载铜铁双金属催化剂及其制备方法与应用 Active CN114669299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210249491.8A CN114669299B (zh) 2022-03-14 2022-03-14 一种介孔碳负载铜铁双金属催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210249491.8A CN114669299B (zh) 2022-03-14 2022-03-14 一种介孔碳负载铜铁双金属催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114669299A CN114669299A (zh) 2022-06-28
CN114669299B true CN114669299B (zh) 2023-07-25

Family

ID=82074230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210249491.8A Active CN114669299B (zh) 2022-03-14 2022-03-14 一种介孔碳负载铜铁双金属催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114669299B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584511A (zh) * 2022-09-21 2023-01-10 中国船舶重工集团公司第七一八研究所 一种铜铁析氧催化剂的制备方法
CN116116411B (zh) * 2023-01-09 2023-10-20 东莞理工学院 一种生物质碳负载铜铁双金属氧化物的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523415A (zh) * 2019-09-03 2019-12-03 浙江天地环保科技有限公司 铜铁层状双金属氢氧化物、铜铁层状双金属氢氧化物/碳基复合材料及其制备方法和应用
CN113637989A (zh) * 2021-08-10 2021-11-12 湖南大学 一种电催化硝酸根或亚硝酸根合成氨的方法
CN113699549A (zh) * 2021-09-14 2021-11-26 辽宁大学 一种钌&锡双金属氧化物电催化材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272600B (zh) * 2013-06-07 2016-03-02 福州大学 一种负载型铜铁水煤气变换催化剂及其制备方法
CN108483421A (zh) * 2018-05-17 2018-09-04 福州大学 一种氮掺杂有序介孔碳材料及其制备和应用
US11964884B2 (en) * 2020-03-06 2024-04-23 Iowa State University Research Foundation, Inc. System and method for removing nitrate from water
CN111359611A (zh) * 2020-04-18 2020-07-03 台州学院 一种FeCu/C电催化剂的制备方法
CN111729678A (zh) * 2020-06-30 2020-10-02 同济大学 一种负载铜钯的介孔碳化硅基催化剂及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523415A (zh) * 2019-09-03 2019-12-03 浙江天地环保科技有限公司 铜铁层状双金属氢氧化物、铜铁层状双金属氢氧化物/碳基复合材料及其制备方法和应用
CN113637989A (zh) * 2021-08-10 2021-11-12 湖南大学 一种电催化硝酸根或亚硝酸根合成氨的方法
CN113699549A (zh) * 2021-09-14 2021-11-26 辽宁大学 一种钌&锡双金属氧化物电催化材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114669299A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
CN114669299B (zh) 一种介孔碳负载铜铁双金属催化剂及其制备方法与应用
CN110639592B (zh) 一种硼、氮掺杂碳多孔纳米片负载过渡金属纳米颗粒材料催化剂及其制备方法和应用
CN112058286B (zh) 一种二维普鲁士蓝类似物@MXene复合电催化剂的原位制备方法
CN106563504A (zh) 基于CuBTC‑PVP的双金属催化剂的制备方法及其应用
CN113862700A (zh) 一种Fe—N—C/MoO2纳米复合电催化剂及其制备方法和应用
CN107597143A (zh) 一种金属纳米颗粒均匀嵌入介孔碳球内部结构的电催化剂的可控制备方法
CN113398945A (zh) 一种球状C/FeMo纳米复合光催化剂及其制备方法
CN113896299B (zh) 一种锰铁层状双金属氢氧化物负载生物炭的电芬顿反应阴极材料及其制备方法与应用
CN111530464A (zh) 一种三维石墨烯载零价铁复合材料的制备方法
Wang et al. High Faraday efficiency of Cu 1 Co 1–BCN based on a dodecahydro-closo-dodecaborate hybrid for electrocatalytic reduction of nitrate to ammonia
Su et al. Facile synthesis of coral-like nitrogen and sulfur co-doped carbon-encapsulated FeS2 for efficient electroreduction of nitrate to ammonia
CN112657515A (zh) 3D花状Z型异质结光电催化剂Zn3In2S6@α-Fe2O3及其制备方法和应用
CN115180690B (zh) 一种氮掺杂石墨烯包覆金属铜纳米催化剂及其制备方法
CN114540840B (zh) 一种FeCo/N-C纳米复合材料及其制备方法和应用
CN115025816B (zh) 用于去除废水中硝酸盐的Cu基咪唑电催化剂及其制备方法
CN113244929B (zh) 铁铋氧化物Bi2Fe4O9的制备方法及在有机废水处理中的应用
CN113751037B (zh) 一种结合有机金属框架的金属碳化物Fe3C/Mo2C的制备和应用
CN114774969A (zh) MoO2/Ni—NC纳米复合电催化剂及其制备方法和应用
CN113502497A (zh) 一种低温等离子体调控性能的电催化剂及其制备方法与应用
CN112456612A (zh) 一种掺铜氮化碳电极、制备方法及其应用
CN111569890A (zh) 一种氧化石墨烯-氧化铽-氧化铁复合材料、合成方法及其在催化降解中的应用
CN113755874B (zh) 一种CoNi/C纳米复合材料及其制备方法以及在电催化固氮合成氨的应用
CN115646548B (zh) 用于去除废水中硝酸盐的Cu基联吡啶双配体电催化剂及其制备方法
CN115852388B (zh) 一种用于pem电解槽阴极的氮掺杂中空介孔碳球负载纳米铂电催化析氢材料、制备及应用
CN115920913A (zh) 一种脂改性微疏水电催化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant