CN101024188A - 卤氧化物光催化材料及其制备方法 - Google Patents

卤氧化物光催化材料及其制备方法 Download PDF

Info

Publication number
CN101024188A
CN101024188A CN 200710037608 CN200710037608A CN101024188A CN 101024188 A CN101024188 A CN 101024188A CN 200710037608 CN200710037608 CN 200710037608 CN 200710037608 A CN200710037608 A CN 200710037608A CN 101024188 A CN101024188 A CN 101024188A
Authority
CN
China
Prior art keywords
hydracid
solution
powder
preparation
oxide photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200710037608
Other languages
English (en)
Inventor
黄富强
王文邓
林信平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN 200710037608 priority Critical patent/CN101024188A/zh
Publication of CN101024188A publication Critical patent/CN101024188A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及卤氧化物光催化材料及其制备方法,属于光催化材料领域。本发明利用固相或液相法制备卤氧化物光催化材料,其特征在于其化学组成为BiOX,X=Cl,Br,I,[Bi2O2]与[X]结构层沿c轴方向交替相互堆积,形成层状晶体构型。制备所得的BiOX(X=Cl,Br,I)均具有优异的光催化性能,可降解有机染料,降解有机有害气体,杀菌和光解水产氢。负载Ag和Pt等电子亲和力强的纳米金属颗粒,可以大幅度提高材料的光催化性能。

Description

卤氧化物光催化材料及其制备方法
技术领域
本发明涉及卤氧化物光催化材料及其制备方法,属于光催化材料领域,尤其属于染料降解、光解水产氢、有机有害气体降解、杀菌等领域。
背景技术
自1972年Fujishima和Honda发现在TiO2电极材料表面光响应产氢现象以来,光催化作为解决环境污染和能源危机一种潜在技术引起全世界的关注。在半导体光催化过程中,光照射激发价带中的电子跃迁至导带,即在导带上形成光生电子和价带上形成光生空穴;载流子迁移到粉末颗粒表面后,充分与周围的环境作用,发生复杂的氧化、还原反应。藉于此,利用电子的强还原特性和空穴的氧化作用,能够将水中的H+和OH-分别还原和氧化成H2和O2;另外,迁移到光催化剂表面的电子和空穴还能与环境中的O2、H+、OH-等作用形成·O2 -、·OH和HO2 -等活性强氧化剂,用于氧化降解和净化液相、气相中的有机污染物。
除了潜在的光解水产氢能源用途外,光催化技术在实际解决环境污染问题中已崭露头角。目前,以成本低廉、具有高化学稳定性的TiO2为基材的光催化技术已经在防日晒化妆品、高级轿车金属色面漆和电子工业、复印机行业、高压绝缘材料、集成电路基板、荧光管以及其他更多的领域得到了应用。据介绍,这种光催化技术还可广泛应用于卫生陶瓷、玻璃制品、燃具、数字键盘以及空调、冰箱、洗衣机等家用电器,将给建筑材料、家用电器以及人们的日常生活带来巨大变革。有关专家称,这种技术如果大规模推广应用,将有望成为解决环境污染问题的高科技利器。
目前国内外光催化剂的研究多数停留在TiO2及相关修饰,如材料的纳米化及高比表面化、掺杂、半导体复合、贵金属及氧化物负载等。尽管这些工作卓有成效,但其量子产率不高,而且难以用于光催化裂解水产氢之用途,因此,找寻新型高效光催化剂已成为当前此领域最重要的课题之一。根据已发现的光催化材料,其体系归类可分为氧化物、硫化物、氧硫化物、氮化物以及氧氮化物,其中氧化物往往有比较好的(光)化学稳定性;硫化物及氧硫化物虽然能够显示较理想的可见光响应特性,但作为光催化材料容易产生光化学腐蚀;氮化物及氧氮化物也具有较好的可见光吸收特性,其材料本身光催化效果不尽理想,但在负载电子亲和力强的贵金属或其氧化物后,光催化活性能够得以急剧提高,如负载Rh-Cr纳米复合氧化物的(GaN)x(ZnO)1-x固溶体粉末可见光响应光催化裂解水产氢速率可以达到mmol/h数量级,而未负载的粉末光催化活性极差。
寻找新型高效光催化剂一直是光催化技术领域一项长期而艰巨的任务,它是光催化技术能够得以大规模推广应用尤其在光解水制氢领域应用的核心所在。
发明内容
本发明的目的在于提供一种新型的卤氧化物光催化材料及多种制备方法。
在BiOX(X=Cl,Br,I)晶体结构中,[Bi2O2]与[X]结构层沿c轴方向交替相互堆积,形成这类独特的层状晶体构型。利用密度泛函(DFT)能带理论计算方法进行BiOX(X=Cl,Br,I)能带计算,结果显示,导带主要由Bi 6p轨道组成,价带主要由Cl 3p(或Br 4p,I5p)组成;BiOX(X=Cl,Br,I)半导体是一种间接跃迁材料,Bi6p在导带中较为弥散,有利于电子在材料内部的传输,提高电子导电性及相应的光生电子-空穴分离能力。紫外-可见光吸收光谱显示,BiOX(X=Cl,Br,I)材料吸收边分别对应为358,426,646nm左右,其光学禁带宽度相应在3.46,2.91,1.92eV左右。
我们采用多种固相或液相等多种方法来合成材料,并对材料进行光催化性能测试。
一、材料制备
方法一:
将Bi2O3粉体溶解于浓卤酸(HCl、HBr、HI)中,用氨水调节至pH=2~5,经过多次过滤直至检测不到X-离子(用硝酸银溶液检验)后,沉淀物烘干即得成品光催化粉末。
负载的BiOX(X=Cl,Br,I)光催化材料的具体过程可为:取BiOX(X=Cl,Br,I)催化剂粉末置入含有去离子水的烧杯中,加入足量的甲醇空穴牺牲剂和0.05~5wt%的AgNO3或0.05~5wt%H2PtCl6·6H2O,强力搅拌的同时在汞灯下照射5~10h,经过多次过滤洗涤,干燥即得负载有纳米Ag或Pt颗粒的光催化材料。
所得的BiOX(X=Cl,Br,I)光催化粉体粒径为5~120nm,负载有0.05~5wt%的Ag或Pt。
方法二:
将按化学计量比的Bi2O3和BiX3(X=Cl,Br,I)粉体置于石英管中,抽真空后封装,在400-750℃加热2-24小时。冷却后开管研磨即得成品光催化粉末。
方法三:
取去离子水于烧杯中,用相应卤酸调节溶液pH小于1,然后将溶液加热,在不断搅拌的同时,缓慢加入化学计量比的硝酸铋-卤酸溶液,同时缓慢加入浓度为5~20%NaOH溶液以中和水解产生的HNO3,维持pH值在2~5,整个过程持续约0.5~5h。其间温度恒定在50~90℃左右,继续搅拌10min以上,冷却、过滤、洗涤、烘干即得成品光催化粉末。
方法四:
加入化学计量比的卤酸、固体硝酸铋混合,然后加入占混合物重量0.5~5%无水硫酸钠和0.5~5%十二烷基苯磺酸钠溶液,再加入热水搅拌得到透明溶液,然后放入微波炉中微波辐照2~3分钟,取出急冷,过滤、洗涤、烘干即得成品光催化粉末。
方法五:
取化学计量比硝酸铋-卤酸溶液,不断搅拌的同时加入过量比的碱金属卤化物(与卤酸对应),然后用稀氨水调节pH为2~5,搅拌,过滤、洗涤、烘干即得成品光催化粉末。
方法六:
将硝酸铋溶解于足量冰醋酸中,搅拌的同时快速加入碳酸钠和碱金属卤化物的混合溶液,碳酸钠和碱金属卤化物的摩尔比为1∶(0.5~1.5),剧烈搅拌后,过滤、洗涤、烘干即得成品光催化粉末。
二、性能评价(光催化性能)
选用P25-TiO2光催化剂定性评判BiOX(X=Cl,Br,I)的光催化活性,实验过程同BiOX(X=Cl,Br,I)。
(1)染料降解和光解水产氢
将本发明所得样品粉末在自制的反应器中进行光催化降解有机染料(甲基橙)以及光催化分解水产氢的研究。照射灯源为500W的高压汞光灯。催化实验时,染料的浓度为:10mg/L,粉末在染料溶液中或纯水中的量为:0.2g/100mL。
(2)有害气体降解
将本发明所得样品粉末在自制的反应器中进行光催化降解代表性有害气体甲醛的研究。光催化反应在自制的圆柱型不锈钢光催化反应器中进行,光源为8W紫外灯(PHILIPS公司)。光催化剂用水均匀地涂在一块70mm×70mm×2mm的正方形玻璃片上,烘干后将其悬挂在反应器中的紫外灯与轴流风扇之间。先将反应系统抽真空,反应器为密闭的容器。抽真空后,通入干燥空气,直至达到大气压。然后将一定量的固体多聚甲醛气化后,注入反应容器中。实验开始时关闭紫外光源,当系统内甲醛含量不再减少即已达吸附平衡时开启紫外灯,进行UV照射,每隔20min用气相色谱仪检测系统内甲醛气体浓度,按ΔC/C0计算光催化氧化分解甲醛的降解率。
(3)杀菌测试
选取大肠杆菌E.coli及金黄色葡萄球菌作为试验菌种。用牛肉膏蛋白胨培养基对细菌进行繁殖。采用血细胞计数板在显微镜下直接计数测定溶液中所含菌量来测定粉体的杀菌效率。
从测试结果看,BiOX(X=Cl,Br,I)降解有机污染物的能力优于纳米P25-TiO2,在紫外光响应下光解水产氢速率达到10~100μmol/h数量级,优于纳米P25-TiO2,BiOX也可以降解有害气体甲醛,杀除大肠杆菌和金黄色葡萄球菌的效果均优于纳米P25-TiO2
附图说明
图1为BiOX层状晶体结构;
图2为BiOCl能带结构;
图3为BiOCl部分态密度及总的态密度;
图4为BiOX(X=Cl,Br,I)紫外-可见吸收光谱;
图5为BiOX(X=Cl,Br,I)和P25-TiO2光催化降解染料甲基橙的活性;
图6为实施例1制备的BiOCl的场发射扫描电镜图。
具体实施方式
下面介绍本发明的实施例,但本发明绝非限于实施例。
实施例1:
将Bi2O3粉末溶解于相应浓卤酸中,用稀氨水调节至pH=3,经过多次过滤直至检测不到X-离子(用硝酸银溶液检验)后,沉淀物在80℃烘干即得成品纳米光催化粉末。
负载的BiOX(X=Cl,Br,I)光催化材料的具体过程可为:取2g BiOX(X=Cl,Br,I)催化剂粉末置入含有100ml去离子水的烧杯中,加入10ml的甲醇空穴牺牲剂和适量的AgNO3或H2PtCl6·6H2O,强力搅拌的同时在300W汞灯85~10h,后经过多次过滤洗涤,干燥即得负载有纳米Ag或Pt颗粒的光催化材料。
光催化降解有机物甲基橙的实验表明,BiOX(X=Cl,Br)的紫外光催化性能优于P25-TiO2,BiOX(X=Cl,Br,I)负载Ag纳米颗粒后光催化降解甲基橙(MO)效果提高;而负载相同质量分数的Pt的效果基本上同于Ag负载的情况。
在光催化裂解水产氢中,产氢速率均可以达到10μmol/h数量级,相同条件下产氢量顺序为:BiOCl>BiOBr>BiOI。负载Pt的效果优于负载Ag的情况,产氢速率均上升,达到100μmol/h数量级,产氢量顺序仍然为:BiOCl>BiOBr>BiOI。而纯的P25-TiO2则没有光催化裂解水产氢的能力。
在降解有机有害气体甲醛的实验中,光催化2h后,BiOX(X=Cl,Br,I)的降解率均超过了90%。降解率顺序为BiOCl>BiOBr>BiOI,而纯的P25-TiO2降解率为81%。
在杀菌实验中,光催化10h后,BiOX(X=Cl,Br,I)的杀菌率顺序为BiOCl>BiOBr>BiOI,杀菌率均超过了70%。而纯的P25-TiO2杀菌率为55%。
实施例2:
将化学计量比的Bi2O3和BiX3(X=Cl,Br,I)置于石英管中,抽真空后封装,在550℃加热12小时。冷却后开管研磨即得成品光催化粉末。
光催化降解染料甲基橙,光解水产氢,降解有害物质甲醛和杀菌测试结果约为实施方式1中的40%左右,这可能是由于固相法制得的样品的比表面积较小造成的。
实施例3:
取100ml去离子水于烧杯中,用相应卤酸调节溶液pH小于1,然后将溶液加热至70℃左右,在不断搅拌的同时,缓慢加1mol硝酸铋-卤酸溶液,同对缓慢加入15%NaOH溶液以中和水解产生的HNO3,维持pH值在2左右,整个过程持续约1h。其间温度恒定在75℃左右,继续搅拌10min,冷却、过滤、洗涤、在80℃烘干即得成品光催化粉末。
性能测试结果与实施例1基本相同。
实施例4:
加入足量3mol卤酸、1mol固体硝酸铋、2wt%无水硫酸钠和1wt%十二烷基苯磺酸钠溶液,再加入75℃的热水搅拌得到透明的溶液,使总体积为200ml,然后放入微波炉中辐照2-3分钟,取出急冷,过滤、洗涤、在80℃烘干即得成品光催化粉末。
性能测试结果略高于实施例1。
实施例5:
取1mol硝酸铋溶于足量卤酸溶液,不断搅拌的同时加入2mol的相应卤化钠,然后用氨水调节pH为3,剧烈搅拌30min后,过滤、洗涤、在80℃烘干即得成品光催化粉末。
性能测试结果与实施例1基本相同。
实施例6:
将1mol硝酸铋溶解于5mol冰醋酸中,搅拌的同时快速加入3mol碳酸钠和2mol卤化钠的混合溶液,剧烈搅拌30min后,过滤、洗涤、在80℃烘干即得成品光催化粉末。
性能测试结果与实施例1基本相同。

Claims (10)

1、卤氧化物光催化材料,其特征在于其化学组成为BiOX,X=Cl,Br,I,[Bi2O2]与[X]结构层沿c轴方向交替相互堆积,形成层状晶体构型。
2、按权利要求1所述的卤氧化物光催化材料,其特征在于粉体粒径为5~120nm。
3、按权利要求1或2所述的卤氧化物光催化材料,其特征在于材料负载有0.05~5wt%的Ag或Pt。
4、一种按权利要求1或2所述的卤氧化物光催化材料的制备方法,其特征在于将Bi2O3粉体溶解于浓卤酸(HCl、HBr、HI)中,用氨水调节至pH=2~5,经过多次过滤直至检测不到X-离子(用硝酸银溶液检验)后,沉淀物烘干。
5、一种按权利要求3所述的卤氧化物光催化材料的制备方法,其特征在于将Bi2O3粉体溶解于浓卤酸(HCl、HBr、HI)中,用氨水调节至pH=2~5,经过多次过滤直至检测不到X-离子(用硝酸银溶液检验)后,沉淀物烘干;
取烘干沉淀物粉末置入含有去离子水的烧杯中,加入足量的甲醇空穴牺牲剂和0.05~5wt%的AgNO3或0.05~5wt%H2PtCl6·6H2O,强力搅拌的同时在汞灯下照射5~10h,经过多次过滤洗涤,干燥即得负载有纳米Ag或Pt颗粒的光催化材料。
6、一种按权利要求1或2所述的卤氧化物光催化材料的制备方法,其特征在于将按化学计量比的Bi2O3和BiX3(X=Cl,Br,I)粉体置于石英管中,抽真空后封装,在400-750℃加热2-24小时。冷却后开管研磨。
7、一种按权利要求1或2所述的卤氧化物光催化材料的制备方法,其特征在于取去离子水于烧杯中,用相应卤酸调节溶液pH小于1,然后将溶液加热,在不断搅拌的同时,缓慢加入化学计量比的硝酸铋-卤酸溶液,同时缓慢加入浓度为5~20%NaOH溶液以中和水解产生的HNO3,维持pH值在2~5,整个过程持续约0.5~5h,其间温度恒定在50~90℃左右,继续搅拌10min以上,冷却、过滤、洗涤、烘干。
8、一种按权利要求1或2所述的卤氧化物光催化材料的制备方法,其特征在于加入化学计量比的卤酸、固体硝酸铋混合,然后加入占混合物重量0.5~5%无水硫酸钠和0.5~5%十二烷基苯磺酸钠溶液,再加入热水搅拌得到透明溶液,然后放入微波炉中微波辐照2~3分钟,取出急冷,过滤、洗涤、烘干即得成品光催化粉末。
9、一种按权利要求1或2所述的卤氧化物光催化材料的制备方法,其特征在于取化学计量比硝酸铋-卤酸溶液,不断搅拌的同时加入过量比的碱金属卤化物(与卤酸对应),然后用稀氨水调节pH为2~5,搅拌,过滤、洗涤、烘干。
10、一种按权利要求1或2所述的卤氧化物光催化材料的制备方法,其特征在于将硝酸铋溶解于足量冰醋酸中,搅拌的同时快速加入碳酸钠和碱金属卤化物的混合溶液,碳酸钠和碱金属卤化物的摩尔比为1∶(0.5~1.5),剧烈搅拌后,过滤、洗涤、烘干即得成品光催化粉末。
CN 200710037608 2007-02-15 2007-02-15 卤氧化物光催化材料及其制备方法 Pending CN101024188A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710037608 CN101024188A (zh) 2007-02-15 2007-02-15 卤氧化物光催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710037608 CN101024188A (zh) 2007-02-15 2007-02-15 卤氧化物光催化材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201210050202.8A Division CN102794186B (zh) 2007-02-15 2007-02-15 卤氧化物光催化材料及其制备方法

Publications (1)

Publication Number Publication Date
CN101024188A true CN101024188A (zh) 2007-08-29

Family

ID=38743012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710037608 Pending CN101024188A (zh) 2007-02-15 2007-02-15 卤氧化物光催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101024188A (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850263A (zh) * 2010-06-17 2010-10-06 江西理工大学 一种Ag掺杂的BiOBr催化材料及其制备方法与应用
CN101947463A (zh) * 2010-08-06 2011-01-19 上海师范大学 一种高效紫外可见全光谱光催化材料的制备方法和应用
CN102513135A (zh) * 2011-12-30 2012-06-27 温州大学 一种BiOI/AgX可见光响应光催化剂及其制备方法和应用
CN102626644A (zh) * 2012-03-26 2012-08-08 哈尔滨工业大学 一种片状多孔碘化氧铋纳米光催化剂的制备方法
CN102631936A (zh) * 2012-04-11 2012-08-15 中山大学 一种BiOI复合材料及其制备方法和应用
CN102744087A (zh) * 2012-08-22 2012-10-24 太原理工大学 一种片状纳米氯氧化铋薄膜光催化剂的电化学制备方法
CN101935022B (zh) * 2010-02-05 2012-11-14 福州坤彩精化有限公司 形状可控的板式氯氧化铋晶体的制备方法
CN102874751A (zh) * 2012-09-28 2013-01-16 华东理工大学 一种提高溴化银/二氧化钛光解水制氢效率的方法
CN103184469A (zh) * 2011-12-28 2013-07-03 新奥科技发展有限公司 一种电解液及使用该电解液的光电催化制氢系统
CN103920510A (zh) * 2014-05-06 2014-07-16 阜阳师范学院 Mn-BiOCl光催化剂的制备方法和应用
CN103920509A (zh) * 2014-04-21 2014-07-16 合肥工业大学 介孔BiOX光催化剂、制备方法及应用
CN104071842A (zh) * 2013-03-28 2014-10-01 浙江伟星实业发展股份有限公司 氯氧化铋的制备方法
CN106607063A (zh) * 2015-10-27 2017-05-03 湖南城市学院 漂浮型可见光光催化剂及制备方法和应用
CN106732684A (zh) * 2016-12-07 2017-05-31 西南大学 复盐水解法制备高活性卤氧化铋光催化材料
CN107790159A (zh) * 2017-09-28 2018-03-13 浙江理工大学 一种高选择性催化氧化醇成醛的光催化剂及其制备与应用
CN111921542A (zh) * 2020-06-28 2020-11-13 南昌大学 一种高活性糖修饰卤氧化铋光催化材料的通用合成方法
CN113683056A (zh) * 2020-05-19 2021-11-23 中国科学院上海硅酸盐研究所 一种光催化制备氯气的方法
CN114225950A (zh) * 2021-12-21 2022-03-25 南京环保产业创新中心有限公司 一种溴氧化铋光催化剂填料及其制备方法与应用
CN115646513A (zh) * 2022-09-22 2023-01-31 西北大学 一种具有微球状形貌的BiOBr/BiOI/SDBS复合材料的制备方法及应用

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935022B (zh) * 2010-02-05 2012-11-14 福州坤彩精化有限公司 形状可控的板式氯氧化铋晶体的制备方法
CN101850263A (zh) * 2010-06-17 2010-10-06 江西理工大学 一种Ag掺杂的BiOBr催化材料及其制备方法与应用
CN101947463A (zh) * 2010-08-06 2011-01-19 上海师范大学 一种高效紫外可见全光谱光催化材料的制备方法和应用
CN101947463B (zh) * 2010-08-06 2012-07-11 上海师范大学 一种紫外可见全光谱光催化材料的制备方法和应用
CN103184469A (zh) * 2011-12-28 2013-07-03 新奥科技发展有限公司 一种电解液及使用该电解液的光电催化制氢系统
CN102513135A (zh) * 2011-12-30 2012-06-27 温州大学 一种BiOI/AgX可见光响应光催化剂及其制备方法和应用
CN102626644A (zh) * 2012-03-26 2012-08-08 哈尔滨工业大学 一种片状多孔碘化氧铋纳米光催化剂的制备方法
CN102631936A (zh) * 2012-04-11 2012-08-15 中山大学 一种BiOI复合材料及其制备方法和应用
CN102744087A (zh) * 2012-08-22 2012-10-24 太原理工大学 一种片状纳米氯氧化铋薄膜光催化剂的电化学制备方法
CN102874751A (zh) * 2012-09-28 2013-01-16 华东理工大学 一种提高溴化银/二氧化钛光解水制氢效率的方法
CN104071842A (zh) * 2013-03-28 2014-10-01 浙江伟星实业发展股份有限公司 氯氧化铋的制备方法
CN104071842B (zh) * 2013-03-28 2015-12-02 浙江伟星实业发展股份有限公司 氯氧化铋的制备方法
CN103920509B (zh) * 2014-04-21 2015-12-02 合肥工业大学 介孔BiOX光催化剂、制备方法及应用
CN103920509A (zh) * 2014-04-21 2014-07-16 合肥工业大学 介孔BiOX光催化剂、制备方法及应用
CN103920510A (zh) * 2014-05-06 2014-07-16 阜阳师范学院 Mn-BiOCl光催化剂的制备方法和应用
CN106607063B (zh) * 2015-10-27 2019-09-17 湖南城市学院 漂浮型可见光光催化剂及制备方法和应用
CN106607063A (zh) * 2015-10-27 2017-05-03 湖南城市学院 漂浮型可见光光催化剂及制备方法和应用
CN106732684A (zh) * 2016-12-07 2017-05-31 西南大学 复盐水解法制备高活性卤氧化铋光催化材料
CN106732684B (zh) * 2016-12-07 2018-04-20 西南大学 复盐水解法制备高活性卤氧化铋光催化材料
CN107790159A (zh) * 2017-09-28 2018-03-13 浙江理工大学 一种高选择性催化氧化醇成醛的光催化剂及其制备与应用
CN107790159B (zh) * 2017-09-28 2020-05-01 浙江理工大学 一种高选择性催化氧化醇成醛的光催化剂及其制备与应用
CN113683056A (zh) * 2020-05-19 2021-11-23 中国科学院上海硅酸盐研究所 一种光催化制备氯气的方法
CN111921542A (zh) * 2020-06-28 2020-11-13 南昌大学 一种高活性糖修饰卤氧化铋光催化材料的通用合成方法
CN114225950A (zh) * 2021-12-21 2022-03-25 南京环保产业创新中心有限公司 一种溴氧化铋光催化剂填料及其制备方法与应用
CN115646513A (zh) * 2022-09-22 2023-01-31 西北大学 一种具有微球状形貌的BiOBr/BiOI/SDBS复合材料的制备方法及应用

Similar Documents

Publication Publication Date Title
CN101020143A (zh) 一种卤氧化铋材料的用途
CN101024188A (zh) 卤氧化物光催化材料及其制备方法
CN102794186B (zh) 卤氧化物光催化材料及其制备方法
Li et al. Z-scheme electronic transfer of quantum-sized α-Fe2O3 modified g-C3N4 hybrids for enhanced photocatalytic hydrogen production
Yin et al. Photocatalytic oxidation of NO x under visible LED light irradiation over nitrogen-doped titania particles with iron or platinum loading
Yang et al. Efficient removal of organic contaminants by a visible light driven photocatalyst Sr6Bi2O9
CN107376968B (zh) 三氧化钨/氮化碳/氧化铋双z型光催化剂及其制备方法和应用
Zhu et al. A shuriken-shaped m-BiVO4/{0 0 1}–TiO2 heterojunction: synthesis, structure and enhanced visible light photocatalytic activity
Wang et al. Defects and internal electric fields synergistically optimized g-C3N4− x/BiOCl/WO2. 92 heterojunction for photocatalytic NO deep oxidation
CN104437589B (zh) 一种银/氧化石墨烯/氮化碳复合光催化材料及其制备方法
Feng et al. Coupling Bi 2 MoO 6 with persulfate for photocatalytic oxidation of tetracycline hydrochloride under visible light
CN106492870A (zh) 一种金属氧化物掺杂的光催化剂及其制备方法
CN106391086A (zh) 一种C3N4/SiO2异质结光催化剂制备方法
CN106552651B (zh) 一种Bi12O17Br2光催化剂的合成及应用方法
Gai et al. An alternative scheme of biological removal of ammonia nitrogen from wastewater–highly dispersed Ru cluster@ mesoporous TiO2 for the catalytic wet air oxidation of low-concentration ammonia
Gao et al. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis
CN104646001A (zh) 一种可见光响应型铁酸铋-氧化铋复合材料及其制备方法
CN108686658B (zh) 一种C-QDs-Fe2O3/TiO2复合光催化剂及其制备方法
Chen et al. Exploration of double Z-type ternary composite long-afterglow/graphitic carbon nitride@ metal–organic framework for photocatalytic degradation of methylene blue
Masula et al. Evolution of photocatalytic activity of CeO2–Bi2O3 composite material for wastewater degradation under visible-light irradiation
CN110721698A (zh) 一种钒酸铋/钒酸铜复合光催化剂及其制备方法和应用
Zhang et al. Non-metal group doped g-C3N4 combining with BiF3: Yb3+, Er3+ upconversion nanoparticles for photocatalysis in UV–Vis–NIR region
Qu et al. A new visible-light-induced Z-scheme photocatalytic system: Er3+: Y3Al5O12/(MoS2/NiGa2O4)-(BiVO4/PdS) for refractory pollutant degradation with simultaneous hydrogen evolution
Ali et al. Structural and optical behavior of SnS 2/NiFe 2 O 4 NCs prepared via novel two-step synthesis approach for MB and RhB dye degradation under sun light irradiation
Li et al. Embedding defective tin oxide quantum dots into flake Bi4O5I2 for antibacterial and degradation by LED light irradiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20070829