CN102640233A - 分流电阻器及其制造方法 - Google Patents

分流电阻器及其制造方法 Download PDF

Info

Publication number
CN102640233A
CN102640233A CN2010800543154A CN201080054315A CN102640233A CN 102640233 A CN102640233 A CN 102640233A CN 2010800543154 A CN2010800543154 A CN 2010800543154A CN 201080054315 A CN201080054315 A CN 201080054315A CN 102640233 A CN102640233 A CN 102640233A
Authority
CN
China
Prior art keywords
resistive element
mentioned
main electrode
shunt resistor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800543154A
Other languages
English (en)
Other versions
CN102640233B (zh
Inventor
吉冈忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKIAKA CO Ltd
Original Assignee
OKIAKA CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKIAKA CO Ltd filed Critical OKIAKA CO Ltd
Publication of CN102640233A publication Critical patent/CN102640233A/zh
Application granted granted Critical
Publication of CN102640233B publication Critical patent/CN102640233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Resistors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本发明提供一种电流的检测精度优异且能减小温度漂移,而且形成小型紧凑的构造且提高使用便利性的分流电阻器。该分流电阻器包括电阻体(11)、与该电阻体为不同构件的一对主电极(12、12)和与该主电极为不同构件的一对电压检测电极(13、13),使电压检测电极(13)夹设并固定于电阻体(11)和主电极(12)之间。电压检测电极(13)具有与电压检测电路的端子连接的检测端子(13a)。电阻体(11)是圆柱状。在电阻体(11)的长度方向的两端面,电压检测电极(13)与主电极(12)以分别相向的方式被固定。上述各构件通过使各自的接合面抵接,并利用扩散接合、摩擦接合、焊接等而被接合。

Description

分流电阻器及其制造方法
技术领域
本发明涉及电阻器,特别是涉及将电阻合金材料用作电阻体的由金属材料构成的分流电阻器。
背景技术
为了监视电池的充放电的电流,事先防止电池故障而使用分流电阻器。分流电阻器被利用在要求电流检测精度优异、温度漂移小、即使施加大电流也不会过度的发热,1mΩ以下的超低电阻值的领域,提出有各种形状的分流电阻器。(例如,参照日本特开2009-216620号公报)。
上述分流电阻器在电阻体的两侧具有筒状的电流端子(电极),该端子直接连接于电缆,将电压检测端子焊接于上述端子的连接用空间而使用。可是,为了实现超低电阻值、电流的检测精度优异且减小温度漂移,对于上述电阻器的构造未必是充分的。
发明内容
本发明是基于上述的情况而提出的,其目的在于,提供一种电流的检测精度优异,能减小温度漂移,形成小型紧凑的构造,提高使用便利性的分流电阻器及其制造方法。
本发明的分流电阻器的特征在于,包括电阻体、与该电阻体为不同构件的一对主电极和与该主电极为不同构件的一对电压检测电极,使上述电压检测电极夹设并固定于上述电阻体与上述主电极之间。此外,本发明的另一分流电阻器的特征在于,包括棒状的电阻体和与该电阻体为不同构件的一对棒状的主电极,接合上述电阻体和上述主电极的端面。
此外,本发明的分流电阻器的制造方法的特征在于,准备电阻体、与该电阻体为不同构件的一对主电极和与该主电极为不同构件的一对电压检测电极,在上述电阻体的长度方向的两端面,以夹设上述电压检测电极,并使上述电压检测电极的端面与上述主电极的端面分别相向的方式,抵接并固定上述主电极。
根据本发明,容易加工,获得各构成构件高的尺寸精度。此外,由于能实现稳定的电流路径,所以能提供在电气特性方面优异的分流电阻器。此外,通过将具有用于检测电压的检测端子的电压检测电极作为接合件,并被夹持于电阻体与主电极之间,电压检测端子的形成位置的精度提高,因此,电压检测的精度提高,即使在0.1mΩ左右的超低电阻值的电阻器中,也不受主电极材料的电阻部分的影响,能够实现电阻体本身所具有的高精度电阻值且低电阻温度系数的电流检测。
附图说明
图1是本发明的第1实施例的分流电阻器的立体图。
图2是上述电阻器的分解立体图。
图3是本发明的第2实施例的分流电阻器的立体图。
图4A-4G是表示第2实施例的制造工序和组装例的图,图4A是上述电阻器的分解立体图。
图4B是表示接合了上述电阻器的各构件的阶段的立体图。
图4C是表示在端面设有孔的阶段的图。图4C的上段是立体图,下段是包括中心线的截面的立体图。
图4D是表示在主电极上设有扁平部的阶段的立体图。
图4E是表示固定有电压检测端子的阶段的立体图。
图4F是表示进行电阻值调整的例子的立体图。
图4G是表示上述电阻器的组装例的立体图。
图5是第3实施例的分流电阻器的立体图。
图6A是第3实施例的分解立体图。
图6B是表示第3实施例的完成阶段的立体图。
图7是本发明的第4实施例的分流电阻器的立体图。
图8是第4实施例的分流电阻器的分解立体图。
图9是本发明的第5实施例的分流电阻器的立体图。
图10是表示第5实施例的分流电阻器的使用状态的分解立体图。
图11是本发明的第6实施例的分流电阻器的立体图。
图12是表示第6实施例的分流电阻器的使用状态的分解立体图。
图13是关于分流电阻器的电压检测位置的说明图。
图14A是关于上述电压检测位置的电阻值变动率的图表。
图14B是关于上述电压检测位置的电阻温度系数变动率的图表。
具体实施方式
以下,参照图1~图14B,说明本发明的实施方式。另外,在各图中,对相同或相当的构件或要素标注相同的附图标记而进行说明。
图1表示本发明的第1实施例的分流电阻器,图2表示其分解立体图。该分流电阻器10包括:由锰镍铜合金等电阻合金材料构成的圆柱状的电阻体11;与该电阻体为不同构件的一对由铜等高导电率金属材料构成的圆柱状的主电极12、12;以及与该主电极为不同构件的一对由铜等高导电率金属材料构成的板状的电压检测电极13、13。电压检测电极13具有检测端子13a,该检测端子13a从电压检测电极13突出,电压检测电路的端子通过焊接等连接于该检测端子13a。
如图示那样,在电阻体11与主电极12之间夹设电压检测电极13。并且,在圆柱状的电阻体11的长度方向的两端面,以板状的电压检测电极13的端面与圆柱状的主电极12的端面分别相向的方式被固定。在这里,电阻体11与电压检测电极13、以及主电极12与电压检测电极13是通过使各自的接合面抵接的压接法,具体而言是通过扩散接合而接合的,在机械性能上是牢固的,并且在电气性能上是稳定的。
说明各构件的具体的一个例子。电阻体11的直径是φ8mm左右,其长度是10mm左右,获得电阻值0.1mΩ左右,电阻温度系数±50ppm/℃左右的电阻特性。此外,电压检测电极13的厚度是0.7mm左右,检测端子13a的端面构成与电压检测电极13的端面同一面。因而,检测端子13a不会受到主电极的铜材料的电阻部分的影响,能够直接检测出基于电阻体11本身的电阻值以及电阻温度系数的电压。
根据上述分流电阻器10,由于电压检测电极与检测端子是一体的接合件,所以组装工序变得简单。此外,能抑制检测端子13a的固定位置的偏差,能够检测出电阻体11的非常接近位置的电压。关于这一点后述。
此外,由于电压检测电极13成为电极的一部分,所以不会自接合部分脱离,耐久性也优异,电阻值的经时变化也变小。并且,没有电极与电阻体的重叠部分,整体为柱状,电极与电阻体遍及其整个接合面接合,所以获得平滑的电流路径和散热路径,接合强度也高。
本发明的分流电阻器由于两电极间的电流路径是直线状,所以即使不使用有限要素法等模拟方法,也能够通过电阻体11的尺寸来计算电阻值,能容易地制作高精度的电阻器。即,由于通过考虑所求得的电阻值和发热而能确定电阻体和铜电极的尺寸,所以小型分流电阻器的设计变得容易。此外,如后述那样,能够对电极进行扁平部、外螺纹或内螺纹的加工,与端子、线束的结合变得容易,能够形成使用便利性好的分流电阻器。
接着,说明该分流电阻器10的制造方法。首先,准备电阻体11、与该电阻体为不同构件的一对主电极12、12和与该主电极为不同构件的一对电压检测电极13、13。对于电阻体11,通过将锰镍铜合金等长条的圆棒材切断成规定尺寸,形成在两端具有作为切断面的端面的柱状的电阻体11。对于主电极12,也同样通过将铜等长条的圆棒材切断成规定尺寸,形成在两端具有作为切断面的端面的柱状的主电极12。电压检测电极13为具有板状部分和自该板状部分突出的检测端子13a的形状,通过将片状的铜板冲切成该形状等而形成。铜板的加工能够使用压力加工、蚀刻加工。
另外,作为电压检测电极13的材料的一个例子是铜,但是也可以使用在电压检测电极13的表面形成有镍等的金属膜的构件。通过形成有镍膜,扩散接合变得容易,能够在氮中进行接合,生产率提高。向电压检测电极13的表面形成金属膜既可以使用预先形成有金属膜的铜板,并对该铜板进行加工,也可以在加工成电压检测电极13的形状后形成金属膜。金属膜的形成方法有电解或无电解的电镀等方法。
接着,研磨接合面。所谓接合面,是指电阻体11的两端面、主电极12的端面、以及电压检测电极13的与电阻体11和主电极12接合的面。另外,关于电压检测电极13,特别是在由金属膜覆盖表面的情况下,优选在形成金属膜之前预先研磨接合面。通过使用研磨材料研磨,以使接合面成为接近镜面的状态,接合变得更加牢固。并且,分别在电阻体11的长度方向的两端面,在电阻体11与主电极12之间夹设电压检测电极13的板状部分,通过以电阻体11的端面与上述主电极12的端面相向的方式,即以对接的方式抵接、扩散接合等而固定。
说明扩散接合(热压接),配置成主电极12、电压检测电极13、电阻体11、电压检测电极13、主电极12,一边自轴向施加压力,一边以500~900℃进行加热。在对接的金属构件的接合面的大致整体,各金属构件的原子在接合界面相互扩散,所以获得牢固且均质的接合状态。作为其他的接合方法有电阻焊接。在使用电阻焊接的情况下,配置成主电极12、电压检测电极13、电阻体11、电压检测电极13、主电极12,一边自轴向施加规定的压力,一边流过规定的电流,由此,主要利用接合构件间的接触电阻发热而结合接合构件彼此。
电阻体、电压检测电极、主电极的接合优选使用如压接那样的、能够在整个接合面进行结合的方法。除此之外,还可以使用电子束焊接,在该情况下,对各金属材料的接合部分照射电子束。同样,例如也能够使用如YAG激光器那样的激光焊接。另外,在使用了YAG激光器的情况下,能够在接合部的周围对接合部进行焊接,然而,有可能无法谋求充分接合到接合面的中央,所以电流分布有可能产生偏差。
根据以上说明的方法,完成了图1所示的分流电阻器10。电阻值的大部分由电阻体11的尺寸规定,然而在本发明中,通过使用圆柱状的电阻材料,因为能实现高尺寸精度,所以也能以高精度控制电阻值。此外,若能够通过局部切削或研磨电阻体11的表面而进行电阻值调整,则成为更高精度。
根据上述工序,因为能够一次形成分流电阻器的电极和电压检测端子,所以操作容易,使用便利性好,而且能够以简单的制造方法提供高精度的分流电阻器。
另外,在本实施例中,说明了相对于圆柱状的电阻体接合板状的电压检测电极以及圆柱状的主电极的例子,然而,它们的直径也可以不相同。此外,这些构件的一部分或全部也能够做成棱柱状。
图3表示本发明的第2实施例的分流电阻器。该分流电阻器10a是在构成圆柱状的电极12、12的两端形成有扁平部12f、12f的构造。在扁平部12f具有开口14,成为能够使用螺栓和螺母经由开口14连接固定与电池等连接的汇流条的构造。另外,也可以将开口14作为螺纹孔,通过螺纹固定而将汇流条固定于扁平部12f。因为形成有扁平部12f,所以与汇流条、平板状的连接端子配件的连接固定变得容易。
图4A~4F表示第2实施例的制造工序例。如图4A和图4B所示,准备由锰镍铜合金等电阻体用的合金材料构成的电阻体11和与该电阻体为不同构件的由铜等高导电率金属构成的一对主电极12、12。电阻体11和主电极12是大致相同直径的圆柱状的构件。在电阻体11的长度方向的两端面,以电阻体11的端面与主电极12的端面分别相向的方式使主电极12、12抵接并接合。
另外,电阻体11与主电极12的接合能够使用压接法,具体而言,能够使用摩擦压接法(摩擦焊接)。所谓摩擦压接法,是指使要接合的构件高速地相互摩擦,利用由此产生的摩擦热使构件软化的同时,通过施加压力而接合的技术。由此,既能够确保强度,构件的接合状态也良好,能谋求电阻特性的稳定化。具体而言,首先,使用夹具固定电阻体,使用其他的能够旋转的夹具固定主电极材料。一边使主电极材料以3000rpm~6000rpm左右旋转,一边以1kN~10kN左右的压力按压电阻体的端面,使该状态持续0.1秒~10秒,使电阻体的端面与主电极的端面接合。同样,电阻体的另一端面也接合主电极。然后,去除接合部分产生的毛刺。另外,接合方法也能够使用后述的焊接等方法。
接着,如图4C所示,在主电极12、12的端面形成孔12h。孔的深度根据要形成的扁平部的大小而进行调整。也可以不形成孔,但是通过预先形成孔利用压力容易形成扁平部。然后,利用压力压扁形成有孔12h的部分,形成扁平部12f。在扁平部12f形成开口14。如图4D所示,若扁平部12f的形成位置成为电阻器的下侧,则分流电阻器的下表面成为大致平坦,安装时方便。通过以上,获得在电极12、12的两端具有扁平部12f、12f,且在扁平部12f设有开口14的构造。另外,扁平部12f和开口14也可以通过切削加工形成。此外,作为孔12h的其他的利用方法,也能够通过将作为电流路径的导线插入孔12h后压扁孔12h(凿紧),连接固定导线与主电极12。
接着,如图4E所示,将检测端子13a焊接于主电极11。在主电极11的检测端子13a的固定位置预先形成定位用的凹坑即可。根据需要,如图4F所示,使用旋转刀具15,切削电阻体的表面的一部分,调整电阻值。图4G是表示将本实施例的分流电阻器固定到汇流条19上的例子的立体图。将螺栓21穿过形成于扁平部12f的开口14和设于汇流条19的开口,由未图示的螺母紧固而被固定。
图5是本发明的第3实施例的分流电阻器。在该例子中,具有开口14的扁平部12g的位置形成于电阻器的高度的大致中间部分。即,扁平部形成于通过电阻器的截面的中心部分的位置。图6A和图6B表示其制造工序例。首先,与上述的实施例相同,准备作为电阻体的构件、作为电压检测电极的构件、作为主电极的构件,进一步准备焊剂材料。电压检测电极具有检测端子13a。在主电极12的一部分预先形成有扁平部12g。扁平部12g的开口14既可以预先形成,也可以在接合了各构件之后形成。
在第3实施例中,通过焊接进行电阻体11、电压检测电极13和主电极12的接合。所谓焊接,是通过夹设铜、银、金、白金、镍等焊剂材料16并加温而接合的方法。具体而言,首先,如图6A所示,在使上述的焊剂材料16夹设于电阻体11、电压检测电极13和主电极12各自的接合部分的状态下,利用夹具从两侧按压并固定。接着,在间歇式炉内,加热到500℃~900℃左右。此时炉内通过填充如氩、氮那样的非活性气体、氢,或通过抽真空,能够成为防止金属的氧化的气氛。通过该工序,如图6B那样,能够构成接合有各金属构件的分流电阻器。对于焊接,具有以下等工序上的优点,即,不需要压接那样的加压,即使在设有突出于电压检测电极的检测端子的情况下,接合也变得容易。
另外,扁平部12g与上述的扁平部12f相同,在电阻体11的两端面接合了电压检测电极13和主电极12后,也可以与上述的实施例相同,利用压力形成或者通过切削加工形成。在本实施例中也能与图4G相同地将分流电阻器固定于汇流条等上。
图7和图8表示本发明的第4实施例的分流电阻器。在该实施例中,在圆柱状(棒状)的电阻体11的两端面,不夹设上述的电压检测电极,而直接接合圆柱状(棒状)的主电极12、12的端面。接合使用上述的摩擦压接法、扩散接合等压接法、焊接法。在进行焊接的情况下,使焊剂材料夹设在电阻体11与主电极12之间而接合。之后,将检测端子13a焊接于主电极12。检测端子13a尽可能地焊接于与电阻体11的接合界面接近的位置。
该分流电阻器的特征在于是圆柱型的分流电阻器这一点。即,电阻体11和主电极12是圆柱型。对于圆柱状的材料而言,材料收获率优异、廉价,且加工容易,容易获得高的尺寸精度。
此外,该分流电阻器的特征在于是使电阻体11与主电极12的端面彼此对接的构造这一点。接合方法使用扩散接合、摩擦压接法、焊接法等,形成使端面彼此对接的接合构造,由此,能够在整个端面形成均质的接合面,材料费被抑制到最低限度,电流呈直线流动,因此,获得在电气特性方面优越点多,能够设为小型紧凑化且简单的构造。
图9表示本发明的第5实施例的分流电阻器。在该实施例中,除了上述的第4实施例的构造之外,还具有在主电极12的外周面形成有螺纹槽的外螺纹部(螺栓状电极部)12n。图10表示其使用状态。通过将外螺纹部12n插入垫圈18、连接于电缆的汇流条19、垫圈18各自的开口中,紧固螺母20,如图的右侧所示,能够将汇流条19固定到主电极12上。然后,通过在电压检测电极13上固定检测端子13a,能检测在电阻体11的两端产生的电压。
图11表示本发明的第6实施例的分流电阻器。在该实施例中,具有在主电极12的端面12a设置孔,并在其内周面形成有螺纹槽的内螺纹部12x。图12表示其使用状态。通过将与内螺纹部12x螺纹配合的螺栓21插入作为电流路径的汇流条19的未图示的开口中,紧固螺栓21,能够将汇流条19固定到主电极12的端面12a。然后,通过在电压检测电极13上固定检测端子13a,能检测在电阻体11的两端产生的电压。
接着,说明在电阻体的两端面接合有铜电极的情况下的电压检测位置给予的影响。图13表示在棱柱状的0.1mΩ左右的电阻体的两端面接合有相同截面尺寸的棱柱状的铜电极的模型,图14A表示与电压检测位置(距电极内侧的距离X)相对应的电阻值变动率ΔR的模拟结果,图14B表示与假定电阻体本身的电阻温度系数是零时的电压检测位置(距电极内侧的距离X)相对应的电阻温度系数的模拟结果。
如从这些结果可知那样,在0.1mΩ左右的电阻体的情况下,随着距电极内侧的距离X增大,受到电极的铜材料的电阻部分和铜材料的高的电阻温度系数的影响,电压检测位置X的检测电压比电阻体本身的两端面间的电压高,电阻温度系数比电阻体本身的电阻温度系数高。即,可知电压检测位置的偏差对高精度的电压检测产生较大影响。在具有电压检测电极的本发明的分流电阻器中,因为电压检测位置被固定为距电极内侧的距离X大致为零的位置,所以电阻值变动率和电阻温度系数的偏差非常小。
在上述的各实施例中,电阻体、主电极和电压检测电极的各构件的接合方法也可以使用上述的压接法(扩散接合法、摩擦压接法)、焊接、激光焊接法、电子束焊接法中任一种方法。接合条件根据要接合的构件的尺寸、材料等适当变更。到此为止说明了有关本发明的一实施方式,但是本发明不限定于上述的实施方式,当然在其技术思想的范围内可以以各种不同的方式实施。
本发明能够较佳地利用于将电阻合金材料用作电阻体的由金属材料构成的分流电阻器,特别是1mΩ以下的超低电阻值区域的上述电阻器。

Claims (12)

1.一种分流电阻器,包括:
电阻体;
一对主电极,与该电阻体为不同构件;以及
一对电压检测电极,与该主电极为不同构件,
使上述电压检测电极夹设并接合于上述电阻体与上述主电极之间。
2.一种分流电阻器,包括:
棒状的电阻体;以及
一对棒状的主电极,与该电阻体为不同构件,
接合上述电阻体和上述主电极的端面。
3.根据权利要求1或2所述的分流电阻器,
接合是使各自的接合面抵接并进行压接或焊接。
4.根据权利要求1所述的分流电阻器,
上述电压检测电极具有突出部。
5.根据权利要求1所述的分流电阻器,
在上述电阻体的长度方向的两端面,上述电压检测电极与上述主电极以分别相向的方式被固定。
6.根据权利要求1或2所述的分流电阻器,
上述电阻体是圆柱状。
7.根据权利要求1或2所述的分流电阻器,
上述主电极具有扁平部。
8.根据权利要求1或2所述的分流电阻器,
在上述主电极的外周面形成有螺纹槽。
9.一种分流电阻器的制造方法,
准备电阻体、与该电阻体为不同构件的一对主电极和与该主电极为不同构件的一对电压检测电极,
在上述电阻体的长度方向的两端面,以夹设上述电压检测电极,并使上述电压检测电极的端面与上述主电极的端面分别相向的方式,抵接并固定上述主电极。
10.根据权利要求9所述的分流电阻器的制造方法,
上述电阻体是圆柱状。
11.根据权利要求9所述的分流电阻器的制造方法,
通过压接或焊接,将上述电阻体、上述主电极和上述电压检测电极固定到一起。
12.一种分流电阻器的制造方法,
准备棒状的电阻体和与该电阻体为不同构件的一对棒状的主电极,
以上述主电极的端面分别与上述电阻体的长度方向的两端面相向的方式,使上述主电极抵接并固定于该电阻体的长度方向的两端面。
CN201080054315.4A 2009-12-03 2010-12-03 分流电阻器及其制造方法 Active CN102640233B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009275333 2009-12-03
JP2009-275333 2009-12-03
PCT/JP2010/071694 WO2011068205A1 (ja) 2009-12-03 2010-12-03 シャント抵抗器およびその製造方法

Publications (2)

Publication Number Publication Date
CN102640233A true CN102640233A (zh) 2012-08-15
CN102640233B CN102640233B (zh) 2015-09-16

Family

ID=43993037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080054315.4A Active CN102640233B (zh) 2009-12-03 2010-12-03 分流电阻器及其制造方法

Country Status (5)

Country Link
US (1) US8471674B2 (zh)
JP (1) JP5655257B2 (zh)
CN (1) CN102640233B (zh)
DE (2) DE102010051007A1 (zh)
WO (1) WO2011068205A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662428A (zh) * 2012-09-19 2015-05-27 兴亚株式会社 电流检测用电阻器
CN105097188A (zh) * 2014-05-13 2015-11-25 台达电子企业管理(上海)有限公司 电感器及具有该电感器的变换器
CN105683764A (zh) * 2013-10-25 2016-06-15 兴亚株式会社 电流检测装置
CN105874338A (zh) * 2013-11-26 2016-08-17 斯玛特电子公司 分流电阻器以及分流电阻器组件
CN106443119A (zh) * 2015-08-11 2017-02-22 百富(澳门离岸商业服务)有限公司 电力感应器
TWI601961B (zh) * 2015-07-21 2017-10-11 智慧電子股份有限公司 製造電流感測電阻器的方法
CN107533087A (zh) * 2015-04-28 2018-01-02 Koa株式会社 电流检测装置
CN107533086A (zh) * 2015-04-28 2018-01-02 Koa株式会社 电流检测装置
CN107533891A (zh) * 2015-05-19 2018-01-02 Koa株式会社 电流检测装置
CN108565082A (zh) * 2018-04-16 2018-09-21 张照亮 微欧姆电流检测电阻
CN109001518A (zh) * 2017-06-07 2018-12-14 现代自动车株式会社 电流传感器
CN110277209A (zh) * 2018-03-14 2019-09-24 国巨电子(中国)有限公司 分流电阻器的制造方法
CN110912085A (zh) * 2019-12-03 2020-03-24 广州小鹏汽车科技有限公司 一种短路故障保护电路及方法、车辆、存储介质
CN111133321A (zh) * 2018-03-28 2020-05-08 株式会社Lg化学 分流电阻器和包括分流电阻器的用于检测电流的装置
US10818418B2 (en) 2018-03-26 2020-10-27 Yageo Corporation Method for manufacturing shunt resistor
CN112136187A (zh) * 2018-05-17 2020-12-25 Koa株式会社 分流电阻器安装结构
CN112955755A (zh) * 2018-09-14 2021-06-11 Koa株式会社 电流检测装置
CN113614861A (zh) * 2019-04-17 2021-11-05 新确有限公司 分流电阻器

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614806B2 (ja) * 2010-11-19 2014-10-29 コーア株式会社 シャント抵抗装置
WO2013005824A1 (ja) * 2011-07-07 2013-01-10 コーア株式会社 シャント抵抗器およびその製造方法
WO2013015219A1 (ja) * 2011-07-22 2013-01-31 コーア株式会社 シャント抵抗装置
DE102012211749A1 (de) * 2011-09-16 2013-03-21 Robert Bosch Gmbh Messwiderstand für Stromsensor und Stromsensoreinheit
WO2013121872A1 (ja) * 2012-02-14 2013-08-22 コーア株式会社 抵抗器の端子接続構造
JP2013205296A (ja) * 2012-03-29 2013-10-07 Sharp Corp 電力測定器
JP2014053437A (ja) * 2012-09-07 2014-03-20 Koa Corp 電流検出用抵抗器
JP5545334B2 (ja) * 2012-09-13 2014-07-09 ダイキン工業株式会社 電子回路装置
KR101461829B1 (ko) * 2013-11-26 2014-11-13 스마트전자 주식회사 전류측정소자 및 전류측정소자 어셈블리의 제조방법
JP6478459B2 (ja) 2014-02-03 2019-03-06 Koa株式会社 抵抗器および電流検出装置
JP2015184206A (ja) * 2014-03-25 2015-10-22 Koa株式会社 電流検出装置
JP6305816B2 (ja) * 2014-04-11 2018-04-04 Koa株式会社 金属板抵抗器
JP6462233B2 (ja) * 2014-05-07 2019-01-30 古河電気工業株式会社 電流検出構造
CN104122426A (zh) * 2014-07-25 2014-10-29 桐乡市伟达电子有限公司 一种高精度采样分流器及其制备方法
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10365303B2 (en) 2016-04-28 2019-07-30 Texas Instruments Incorporated Shunt strip
JP6764692B2 (ja) * 2016-05-24 2020-10-07 Koa株式会社 シャント抵抗器およびシャント抵抗器の実装構造
JP6854143B2 (ja) * 2017-02-15 2021-04-07 Koa株式会社 シャント抵抗器およびシャント抵抗器を用いた電流検出装置
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
JP7175632B2 (ja) * 2018-05-18 2022-11-21 Koa株式会社 シャント抵抗器およびシャント抵抗器の実装構造
DE102018121486B4 (de) * 2018-09-04 2020-09-24 Isabellenhütte Heusler Gmbh & Co. Kg Strommesswiderstand und zugehöriges Herstellungsverfahren
WO2020048584A1 (de) 2018-09-04 2020-03-12 Isabellenhütte Heusler Gmbh & Co. Kg Strommesswiderstand und zugehöriges herstellungsverfahren
DE102018121902A1 (de) 2018-09-07 2020-03-12 Isabellenhütte Heusler Gmbh & Co. Kg Herstellungsverfahren für ein elektrisches Widerstandselement und entsprechendes Widerstandselement
JP6808767B2 (ja) * 2019-02-05 2021-01-06 Koa株式会社 抵抗器および電流検出装置
US11639967B2 (en) * 2019-11-12 2023-05-02 Samsung Sdi Co., Ltd. Sensor system for a battery module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120401A (ja) * 1984-11-07 1986-06-07 カンタル・アーベー 電気加熱抵抗エレメント用靖子及びその製造方法
JPH0582301A (ja) * 1990-12-25 1993-04-02 Tamura Seisakusho Co Ltd 表面実装用固定抵抗器
JPH06224014A (ja) * 1992-12-21 1994-08-12 Isabellenhuette Heusler Gmbh Kg 電気抵抗の製造方法
JP2000277302A (ja) * 1999-03-29 2000-10-06 Toshiba Corp セラミック素子ユニット及びその製造方法
JP2008047571A (ja) * 2006-08-10 2008-02-28 Matsushita Electric Ind Co Ltd シャント抵抗及びシャント抵抗を用いた電流測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579901U (ja) * 1992-03-31 1993-10-29 日星電気株式会社 電気回路用抵抗体
JP2009216620A (ja) 2008-03-12 2009-09-24 Koa Corp シャント抵抗器
JP5117248B2 (ja) * 2008-03-31 2013-01-16 古河電気工業株式会社 シャント抵抗およびシャント抵抗への端子取付け方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120401A (ja) * 1984-11-07 1986-06-07 カンタル・アーベー 電気加熱抵抗エレメント用靖子及びその製造方法
JPH0582301A (ja) * 1990-12-25 1993-04-02 Tamura Seisakusho Co Ltd 表面実装用固定抵抗器
JPH06224014A (ja) * 1992-12-21 1994-08-12 Isabellenhuette Heusler Gmbh Kg 電気抵抗の製造方法
JP2000277302A (ja) * 1999-03-29 2000-10-06 Toshiba Corp セラミック素子ユニット及びその製造方法
JP2008047571A (ja) * 2006-08-10 2008-02-28 Matsushita Electric Ind Co Ltd シャント抵抗及びシャント抵抗を用いた電流測定装置

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662428A (zh) * 2012-09-19 2015-05-27 兴亚株式会社 电流检测用电阻器
CN105683764A (zh) * 2013-10-25 2016-06-15 兴亚株式会社 电流检测装置
CN105874338A (zh) * 2013-11-26 2016-08-17 斯玛特电子公司 分流电阻器以及分流电阻器组件
CN105097188B (zh) * 2014-05-13 2018-10-09 台达电子企业管理(上海)有限公司 电感器及具有该电感器的变换器
CN105097188A (zh) * 2014-05-13 2015-11-25 台达电子企业管理(上海)有限公司 电感器及具有该电感器的变换器
US9875842B2 (en) 2014-05-13 2018-01-23 Delta Electronics (Shanghai) Co., Ltd Inductor and converter having the same
CN107533087A (zh) * 2015-04-28 2018-01-02 Koa株式会社 电流检测装置
CN107533086A (zh) * 2015-04-28 2018-01-02 Koa株式会社 电流检测装置
CN107533891B (zh) * 2015-05-19 2019-12-17 Koa株式会社 电流检测装置
CN107533891A (zh) * 2015-05-19 2018-01-02 Koa株式会社 电流检测装置
TWI601961B (zh) * 2015-07-21 2017-10-11 智慧電子股份有限公司 製造電流感測電阻器的方法
CN106443119B (zh) * 2015-08-11 2019-10-18 百富(澳门离岸商业服务)有限公司 电力感应器
US10541063B2 (en) 2015-08-11 2020-01-21 Bel Fuse (Macao Commercial Offshore) Limited Power inductor
CN106443119A (zh) * 2015-08-11 2017-02-22 百富(澳门离岸商业服务)有限公司 电力感应器
CN109001518B (zh) * 2017-06-07 2022-08-05 现代自动车株式会社 电流传感器
CN109001518A (zh) * 2017-06-07 2018-12-14 现代自动车株式会社 电流传感器
US10839991B2 (en) 2018-03-14 2020-11-17 Yageo Corporation Method for manufacturing shunt resistor
CN110277209B (zh) * 2018-03-14 2021-06-29 国巨电子(中国)有限公司 分流电阻器的制造方法
CN110277209A (zh) * 2018-03-14 2019-09-24 国巨电子(中国)有限公司 分流电阻器的制造方法
US10818418B2 (en) 2018-03-26 2020-10-27 Yageo Corporation Method for manufacturing shunt resistor
CN111133321B (zh) * 2018-03-28 2022-06-14 株式会社Lg新能源 分流电阻器和包括分流电阻器的用于检测电流的装置
US11320490B2 (en) 2018-03-28 2022-05-03 Lg Energy Solution, Ltd. Shunt resistor and apparatus for detecting current including the same
CN111133321A (zh) * 2018-03-28 2020-05-08 株式会社Lg化学 分流电阻器和包括分流电阻器的用于检测电流的装置
CN108565082A (zh) * 2018-04-16 2018-09-21 张照亮 微欧姆电流检测电阻
CN112136187A (zh) * 2018-05-17 2020-12-25 Koa株式会社 分流电阻器安装结构
CN112136187B (zh) * 2018-05-17 2022-09-30 Koa株式会社 分流电阻器安装结构
CN112955755A (zh) * 2018-09-14 2021-06-11 Koa株式会社 电流检测装置
CN112955755B (zh) * 2018-09-14 2024-02-20 Koa株式会社 电流检测装置
CN113614861A (zh) * 2019-04-17 2021-11-05 新确有限公司 分流电阻器
CN110912085A (zh) * 2019-12-03 2020-03-24 广州小鹏汽车科技有限公司 一种短路故障保护电路及方法、车辆、存储介质

Also Published As

Publication number Publication date
WO2011068205A1 (ja) 2011-06-09
JPWO2011068205A1 (ja) 2013-04-18
JP5655257B2 (ja) 2015-01-21
US8471674B2 (en) 2013-06-25
US20120229247A1 (en) 2012-09-13
DE112010004668T5 (de) 2013-01-10
DE102010051007A1 (de) 2011-06-16
CN102640233B (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
CN102640233A (zh) 分流电阻器及其制造方法
US9625494B2 (en) Current detection resistor
JP6795879B2 (ja) 抵抗器及びその製造方法
US8822807B2 (en) Method for producing a thermoelectric component and thermoelectric component
TWI505522B (zh) Method for manufacturing thermoelectric conversion module
US20140102785A1 (en) Electric wire with terminal and manufacturing method thereof
JP6606548B2 (ja) 電気部品を製造するための複合材料ストリップ、製造方法、電気部品、およびバスバー装置
WO2018173264A1 (ja) センサ素子、及び、センサ素子の製造方法
CN104518308A (zh) 电线与端子的接合结构、电阻焊接电极以及电线与端子的接合方法
JP6636719B2 (ja) 電線接続用端子および電線接続用端子と電線の接合方法
WO2009096386A1 (ja) 抵抗器およびその製造方法
JP5219913B2 (ja) ターミナル、モータ及び電気機器
JP2014157716A (ja) 端子と電線の接合方法および電線接続用の端子
CN112643162B (zh) 一种工业用插头插座触头组件的焊接方法
JP5860639B2 (ja) 低抵抗金属固定抵抗器の製造方法
WO2018229816A1 (ja) パワーモジュールの製造方法
JP2015128104A (ja) 抵抗器の製造方法
JP2008142722A (ja) 金属薄板と金属箔の抵抗溶接方法およびこれを用いた非水系二次電池の製造方法
JP6536932B2 (ja) 端子金具付き電線の製造方法
US20100012374A1 (en) Welding method and welding structure of conductive terminals
JP2023127033A (ja) 抵抗素子の製造方法およびそれによって得られた抵抗素子
JP2008294006A (ja) スパークプラグ
JP2005244177A (ja) 固体電解コンデンサ及びその製造方法
JP3116445B2 (ja) 積層型圧電体の製造方法
JP3055431B2 (ja) 電子部品の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant