WO2018173264A1 - センサ素子、及び、センサ素子の製造方法 - Google Patents

センサ素子、及び、センサ素子の製造方法 Download PDF

Info

Publication number
WO2018173264A1
WO2018173264A1 PCT/JP2017/012057 JP2017012057W WO2018173264A1 WO 2018173264 A1 WO2018173264 A1 WO 2018173264A1 JP 2017012057 W JP2017012057 W JP 2017012057W WO 2018173264 A1 WO2018173264 A1 WO 2018173264A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
wire
compacting
sensor element
joining
Prior art date
Application number
PCT/JP2017/012057
Other languages
English (en)
French (fr)
Inventor
竜行 鈴木
尚幹 常田
涼平 ▲高▼田
Original Assignee
株式会社芝浦電子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社芝浦電子 filed Critical 株式会社芝浦電子
Priority to CN201780009074.3A priority Critical patent/CN108934178B/zh
Priority to US16/076,823 priority patent/US10505286B2/en
Priority to PCT/JP2017/012057 priority patent/WO2018173264A1/ja
Priority to EP17894666.1A priority patent/EP3415886B1/en
Priority to JP2017556267A priority patent/JP6352557B1/ja
Publication of WO2018173264A1 publication Critical patent/WO2018173264A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/029Welded connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • B23K11/0026Welding of thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • B23K11/166Welding of coated materials of galvanized or tinned materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/34Preliminary treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/021Soldered or welded connections between two or more cables or wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/021Soldered or welded connections between two or more cables or wires
    • H01R4/022Soldered or welded connections between two or more cables or wires comprising preapplied solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/028Soldered or welded connections comprising means for preventing flowing or wicking of solder or flux in parts not desired
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0214Resistance welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/28Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for wire processing before connecting to contact members, not provided for in groups H01R43/02 - H01R43/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/32Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors

Definitions

  • the present invention relates to a sensor element in which, for example, a lead wire drawn from a temperature sensitive element and a conductive wire made of a stranded wire are joined by welding.
  • Patent Document 1 a plurality of core wires constituting a stranded wire are fused and integrated by first resistance welding, and then the lead wire and the stranded wire are overlapped in the axial direction to obtain a second resistance.
  • a lead wire and a stranded wire can be joined easily and reliably.
  • Patent Document 2 proposes a method of joining a lead wire and a stranded wire by welding more easily and surely.
  • the stranded wire has a first welded portion in which a plurality of core wires are integrated in the axial direction by welding, and the lead wire and the stranded wire are joined by the second welded portion.
  • the part is formed only at a position overlapping the first weld in the axial direction.
  • JP 2013-68610 A Japanese Patent Laying-Open No. 2015-232552
  • the stranded wire is typically composed of a plurality of core wires made of copper or a copper alloy whose surface is tin-plated. Tin plating is provided to improve the corrosion resistance of the core wire.
  • tin has a low melting point of about 232 ° C.
  • the first resistance welding is performed as in Patent Document 1, and the first is performed as in Patent Document 2. Since the heating exceeding melting
  • Tin plating is provided for the purpose of imparting corrosion resistance, but plays an important role in welding lead wires and stranded wires.
  • tin since tin has a higher electrical resistance than copper constituting the core wire, when the lead wire and the stranded wire are joined by resistance welding, the tin-plated portion mainly generates heat due to Joule heat and welding is realized.
  • copper is not suitable for resistance welding because it has low electrical resistance. Therefore, as in Patent Document 1 and Patent Document 2, when welding is performed in two stages, tin that contributes to welding is insufficient in the second stage of welding, so that a high joint strength can be stably obtained. Can not.
  • an object of the present invention is to provide a joint structure that can stably obtain a high joint strength in a sensor element in which a lead wire and a stranded wire are welded.
  • the sensor element of the present invention includes an element main body, a pair of lead wires drawn out from the element main body, and a twisted wire in which a plurality of core wires are twisted to be joined to each of the pair of lead wires by welding.
  • the joining structure in the present invention includes a main joining region provided in a predetermined region in the axial direction thereof, and a sub joining region adjacent to the main joining region, and the joining strength between the lead wire and the stranded wire is higher than that of the sub joining region.
  • the main junction region is higher.
  • the sub-joining region can be provided on one side or both sides in the axial direction across the main joining region.
  • the sub-joining region can include a first sub-joining region and a second sub-joining region provided both in the axial direction across the main joining region.
  • the temperature sensor element of this invention can provide a 1st subjoining area
  • a plating layer made of tin is formed on the surface of the core wire made of copper, and the tin concentration in the main joining region is higher than the tin concentration in the sub joining region. Is preferably high.
  • the lead wire is typically made of copper.
  • the temperature sensor element of the present invention comprises a twisted wire, a joined structure, a front surface to which a lead wire is joined, and a back surface facing the front surface, the back surface being an outer shape in a cross section. Is preferably arcuate.
  • the manufacturing method of the sensor element of the present invention includes an element body, a pair of lead wires drawn out from the element body, and a twisted wire in which a plurality of core wires are joined to each of the pair of lead wires by welding. And a method for manufacturing a sensor element.
  • the manufacturing method of the present invention includes a compacting process, an electric wire installation process, and a joining process.
  • the compacting step forms a compacting region by pressurizing and heating a predetermined region in the axial direction of the stranded wire, is adjacent to the compacting region, and is a projection region relatively taller than the compacting region, Form.
  • the electric wire installation process the lead wire and the stranded wire are overlapped over the compacting region and the projection region.
  • welding is performed by pressurizing and heating the lead wire and the stranded wire over the compacting region and the projection region.
  • the compacting region and the projection region can be formed by welding the core wires in a predetermined region and reducing the thickness.
  • the projection region and the lead wire can be welded while the compacting region supports the lead wire.
  • the bonding strength between the lead wire and the stranded wire after the bonding step can be higher in the projection region than in the compacting region.
  • the compacting area in the present invention can be provided on one side or both sides in the axial direction across the projection area.
  • the compacting region can include a first compacting region and a second compacting region that are provided both in the axial direction across the projection region.
  • the first compacting region can be provided in a predetermined range from the tip of the stranded wire.
  • the concentration of tin in the projection region is more than the concentration of tin in the compacting region. It is preferable to increase the height.
  • the lead wire used in the method for manufacturing a sensor element of the present invention is typically made of copper.
  • the stranded wire includes a front surface to which the lead wire is joined and a back surface facing the front surface.
  • the back surface has a cross-sectional shape. It is preferable to apply an arc-shaped electrode.
  • the joining structure includes the main joining region and the sub joining region, and the joining strength of the lead wire and the stranded wire is made higher in the main joining region than in the sub joining region. That is, according to the present invention, it is possible to provide a joint structure that can stably obtain high joint strength by concentrating heat generation in a specific region in the joint structure by welding.
  • the sensor element which concerns on this embodiment is shown, (a) is a top view, (b) is a side view, (c) is a cross-sectional structure of a lead wire, (d) is a figure which shows the cross-sectional structure of the core wire of a twisted wire. . It is the elements on larger scale which show the welding part of the sensor element of FIG. 1, (a) is a top view, (b) is a side view, (c) is a graph which shows the characteristic of a welding part.
  • FIG. 1 It is a side view which shows the joining procedure of the lead wire which concerns on this embodiment, and a stranded wire, (a) shows the stranded wire before joining as a single-piece
  • FIG. 4 shows a state of compacting a stranded wire
  • (a) is a cross-sectional view taken along the arrow IVa-IVa in (b)
  • (b) is a cross-sectional view taken along the arrow IVb-IVb in (a)
  • (c) is taken as (b)
  • FIG. 2 shows a state where a lead wire and a stranded wire are joined by welding
  • (a) is a cross-sectional view taken along the line Va-Va in (b)
  • (b) is a cross-sectional view taken along the line Vb-Vb in (a)
  • (c) is a cross-sectional view.
  • (a) shows the example which compacted only the front end side
  • (b) shows the example which compacted only the root side.
  • the sensor element 10 is used for a temperature sensor. As shown in FIGS. 1A and 1B, an element main body 11 whose electric resistance changes in response to a change in ambient temperature, and an element main body 11 A pair of lead wires 15 and 15 led out from the wire, and a stranded wire 19 and 19 joined to each of the pair of lead wires 15 and 15.
  • the sensor element 10 is characterized in that the strength of the joint structure 30 formed by welding the lead wire 15 and the stranded wire 19 is stable and high.
  • the element body 11 includes a temperature sensor 12 having a temperature characteristic in electrical resistance, a sealing glass 13 that covers the periphery of the temperature sensor 12, and a sealing glass 13. And a ceramic protective tube 14 provided on the rear end side.
  • the temperature sensing element 12 is made of a material having a temperature characteristic in electrical resistance, such as a thermistor.
  • the sealing glass 13 is provided to prevent the temperature sensing body 12 from undergoing chemical and physical changes based on environmental conditions by sealing the temperature sensing body 12 and keeping it airtight. .
  • the sealing glass 13 either amorphous glass or crystalline glass can be used, and amorphous glass and crystalline glass can be mixed and used so as to have a desired linear expansion coefficient. it can.
  • the ceramic protective tube 14 is bonded to the rear end portion of the sealing glass 13 from which the lead wires 15 are pulled out, thereby mechanically sealing the sealing glass 13.
  • the ceramic protective tube 14 is made of a sintered body having higher mechanical strength than the sealing glass 13 such as alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), or the like.
  • the ceramic protective tube 14 has a through hole (not shown) through which each of the two lead wires 15 and 15 is inserted along the axial direction L. Note that the ceramic protective tube 14 is not necessary for applications requiring low mechanical strength.
  • the lead wire 15 drawn out from the element body 11 is constituted by a Dumet wire.
  • the jumet line is composed of an inner layer 16 and an outer layer 17 provided around the inner layer 16.
  • the inner layer 16 is made of an iron-nickel alloy having a thermal expansion coefficient close to that of glass
  • the outer layer 17 is a composite wire clad with copper or a copper alloy having a high conductivity.
  • “made of copper” has a concept including copper and a copper alloy.
  • the iron-nickel alloy iron-42 mass% nickel, iron-47 mass% nickel or the like is used.
  • the lead wire 15 has a diameter of about 0.1 to 1.0 mm.
  • the stranded wire 19 includes a plurality of core wires 21 and an insulating coating 25 made of an electrically insulating resin material that covers the plurality of core wires 21.
  • the stranded wire 19 is a stranded wire in which a plurality of core wires 21 are twisted.
  • the core wire 21 consists of the wire main body 22 and the plating layer 23 which covers the circumference
  • the wire body 22 is made of copper or a copper alloy having high conductivity, and the plating layer 23 is made of tin plating having better corrosion resistance than the core wire 21.
  • tin constituting the plating layer 23 has a low melting point of about 232 ° C.
  • the composition of tin plating there is no limitation in the composition of tin plating, and it has the concept containing tin and a tin alloy.
  • the wire body 22 has a diameter of about 0.5 to 2.0 mm
  • the plating layer 23 made of tin has a thickness of about 0.5 to 2.0 ⁇ m.
  • the joining structure 30 by welding of the lead wire 15 and the twisted wire 19 which is the characteristic of the sensor element 10 is demonstrated.
  • the joining structure 30 includes a first sub joining region 33, a main joining region 31 adjacent to the first sub joining region 33, and a first joining region 31 adjacent to the main joining region 31 from the tip side of the stranded wire 19.
  • a second sub-joining region 35 The first sub-joining region 33 and the second sub-joining region 35 are provided in both the axial direction L with the main joint region 31 interposed therebetween.
  • the role of the main junction region 31 and the roles of the first sub-join region 33 and the second sub-join region 35 are as follows.
  • the joint structure 30 is joined by welding the lead wire 15 and the stranded wire 19 in the main joint region 31, the first sub-joint region 33, and the second sub-joint region 35. This is the main junction region 31.
  • the first sub-joining region 33 and the second sub-joining region 35 indirectly contribute to the improvement of the joint strength of the main joint region 31, but the joint strength of the first sub-joint region 33 and the second sub-joint region 35 is small compared to the main joint region 31.
  • the first sub-joining region 33 and the second sub-joining region 35 support the lead wire 15 from both sides of the main joining region 31 when the lead wire 15 and the stranded wire 19 are welded, so that the lead wire 15 has a plurality of core wires 21. And dive between the core wire 21.
  • the regions corresponding to the first sub-joining region 33 and the second sub-joining region 35 are a kind of welding prior to the joining step by welding the lead wire 15 and the stranded wire 19, and are compact with pressurization and heating. Ting is given. By this compacting, the adjacent core wires 21 and 21 are melted and joined to each other, so that even if the lead wire 15 is pressed against the twisted wire 19 during welding, it can be prevented that the lead wires 15 and 21 fall into the core wires 21 and 21.
  • the tin forming the plating layer 23 of the core wire 21 located on the surface layer portion of the stranded wire 19 sublimates and at least a part of it disappears, so that the core wire 21 made of copper is exposed. There is a part.
  • the region corresponding to the main joint region 31 between the first sub-joint region 33 and the second sub-joint region 35 is not subjected to compacting, so that the plating layer 23 on the surface of the core wire 21 is left as it is.
  • the region corresponding to the main joining region 31 has a plating layer 23 made of tin on the surface of the core wire 21, whereas In the regions corresponding to the first sub-joining region 33 and the second sub-joining region 35, tin has disappeared or only a small amount is left.
  • FIG. 2C shows the bonding strength between the lead wire 15 and the stranded wire 19 and the concentration of tin constituting the plating layer 23 (Sn concentration) in the main bonding region 31, the first sub bonding region 33, and the second sub bonding region 35.
  • the bond strength is related to the tin concentration. That is, the main bonding region 31 having a high tin concentration has a high bonding strength.
  • the joint structure 30 is obtained by resistance welding the lead wire 15 and the stranded wire 19 after compacting the region of the stranded wire 19 corresponding to the first sub-joined region 33 and the second sub-joined region 35.
  • a procedure for obtaining the joint structure 30 will be described with reference to FIGS. 3 and 4.
  • the insulating coating 25 is peeled off and the exposed core wire 21 is compacted.
  • Compacting is performed on the first compacting region 34 corresponding to the first sub-joining region 33 and the second compacting region 36 corresponding to the second sub-joining region 35.
  • the compacting process is performed by resistance welding.
  • the bonding process is the same.
  • Compacting is a process in which the adjacent core wires 21 and 21 are melted and joined by heating while applying pressure. It is the plating layer 23 formed on the surface of the core wire 21 that melts.
  • the first compacting region 34 and the second compacting region 36 that have been subjected to compacting have a smaller dimension, that is, a thickness in the direction in which the pressure is applied compared to the other portions. For this reason, the portion that is sandwiched between the first compaction region 34 and the second compaction region 36 and is not pressurized and heated is relatively smaller than the first compaction region 34 and the second compaction region 36. Thus, the tall projection region 32 is formed.
  • the first compacting region 34 is provided in a predetermined range from the tip of the stranded wire 19, and the second compacting region 36 is disposed symmetrically with the first compacting region 34 with the projection region 32 in between.
  • region 34 has an effect which prevents that the twisted wire 19 disperses in a subsequent process.
  • compacting is performed by sandwiching the first compacting region 34 between the pair of first upper electrode 41A and first lower electrode 41B, and the second compacting region 36.
  • a pair of second upper electrode 43A and second lower electrode 43B are sandwiched.
  • the first upper electrode 41A and the second upper electrode 43A may be an integrated upper electrode
  • the first lower electrode 41B and the second lower electrode 43B may be an integrated lower electrode.
  • the first upper electrode 41A, the first lower electrode 41B, the second upper electrode 43A, and the second lower electrode 43B are made of, for example, an iron-based metal material that is a magnetic material.
  • the first upper electrode 41A and the second upper electrode 43A have flat surfaces on which the stranded wire 19 is pressed, and the first lower electrode 41B and the second lower electrode 43B are accommodation grooves in which the stranded wire 19 is disposed. 42,44.
  • the wire body 22 made of copper has a smaller electrical resistance than the plated layer 23 made of tin. Therefore, the current I due to compacting suppresses the generation of Joule heat in the wire body 22 which is a good conductor, while Joule heat is generated in the plating layer 23 having a large electric resistance, and welding is promoted. That is, in the welding of the stranded wire 19, the plating layer 23 having a large electric resistance plays a main role. However, the plating layer 23 of the core wire 21 exposed on the surface layer of the stranded wire 19 is heated to a temperature exceeding the melting point of about 232 ° C., for example, about 600 to 700 ° C. by Joule heat. If not, only a small amount remains.
  • the first compacting region 34 and the second compacting region 36 are joined by melting and solidifying the plating layer 23 made of tin in the adjacent core wire 21, so that the surface layer portions are integrated.
  • the surface layer portions of the integrated first compacting region 34 and second compacting region 36 are left with a small amount even if the plating layer 23 that plays a leading role in resistance welding has disappeared or does not disappear.
  • the lead wire 15 In the initial stage of welding the lead wire 15 and the stranded wire 19, as shown in FIG. 3C, the lead wire 15 is in contact with the tall projection region 32, while the first compacting region 34 and the second compacting region. No contact with 36. That is, the lead wire 15 contacts only a part of the range of the joint structure 30 and welding starts. In resistance welding, the smaller the contact area between the objects to be welded, the greater the temperature rise due to Joule heat. In this embodiment, heat is concentrated between the lead wire 15 and the projection region 32. In addition, since the plating layer 23 made of tin that plays a main role in welding is left in the projection region 32, heat generation is further promoted.
  • the welded portion is the main joint region 31 having a high joint strength.
  • a load F in the compression direction is applied between the lead wire 15 and the stranded wire 19.
  • the projection region 32 is independent without the individual core wires 21 being integrated at the stage where welding starts, the lead wire 15 to which the load F is applied dives between the adjacent core wires 21 and 21. Try to include.
  • the first compacting region 34 and the second compacting region 36 are provided in both the axial directions L of the projection region 32. Accordingly, when welding progresses and the thickness of the projection region 32 decreases, the lead wire 15 contacts the first compacting region 34 and the second compacting region 36 in which the surface layer portions are integrated. Accordingly, the first compacting region 34 and the second compacting region 36 restrain the lead wire 15 from entering between the adjacent core wires 21 and 21 in the projection region 32. As described above, by providing the first compacting region 34 and the second compacting region 36, the lead wire 15 and the stranded wire 19 can be in a stable posture through a joining process by welding.
  • the main joining region 31 is relatively rough, and the first sub-joining region 33, It was confirmed that the second sub-joining region 35 has a dense structure. That is, the first sub-joining region 33 and the second sub-joining region 35 are pressed and heated twice in the compacting process and the joining process, so that welding between the adjacent core wires 21 and 21 proceeds and becomes dense. Structure.
  • the sensor element 10 having the configuration described above has the following effects.
  • the sensor element 10 includes a main bonding region 31, a first sub bonding region 33, and a second sub bonding region 35, and the main bonding region 31 is in contact with the lead wire 15 only in a selected narrow region called a projection region 32. This is a welded part where heat generation is concentrated.
  • the plating layer 23 in which heat generation is promoted remains in the projection region 32, heat generation is further promoted. Therefore, the bonding strength between the lead wire 15 having the main bonding region 31 and the stranded wire 19 is high.
  • the joint structure of the present embodiment can obtain a joint strength that is about twice that of the structure in which the lead wire 15 and the stranded wire 19 are welded without performing compacting.
  • the first compacting region 34 and the second compacting region 36 provided on both sides of the projection region 32 in the axial direction L are embedded in the lead wire 15 between the core wires 21 and 21 in the projection region 32.
  • the posture of the lead wire 15 with respect to the stranded wire 19 in each sensor element 10 is stabilized, so that variations in bonding strength can be suppressed.
  • the lead wire 15 is supported by the first compacting region 34 and the second compacting region 36 provided on both sides of the projection region 32 in the axial direction L, so that the effect of preventing intrusion is great.
  • the lead wire 15 is to be welded without applying compacting to the stranded wire 19
  • a load F is applied along with the welding, so that the lead wire 15 sinks between the core wires 21 and 21. If the state of sinking is constant, variation in bonding strength can be suppressed. However, since the way of contact between the lead wire 15 placed on the stranded wire 19 and the core wire 21 varies, the state of sinking varies. Therefore, the heat generation at the welded portion varies and the bonding strength varies.
  • the compacting is performed in two regions separated in the axial direction L.
  • the region 37 may be formed, or one compacting region 37 may be formed only on the root side of the stranded wire 19. Even in one compacting region 37, the lead wire 15 can be restrained from entering the projection region 32 between the core wires 21 and 21, so that a high bonding strength can be stably obtained in the main bonding region 31. .
  • the form of the electrodes used in the compacting process and the joining process is arbitrary.
  • the shape of the cross section of the accommodation groove 42 of the first lower electrode 41B can be an arc.
  • the current I between the electrode and the stranded wire 19 tends to be uniform. Regardless, it becomes uniform.
  • the current I between the electrode and the stranded wire 19 tends to be nonuniform based on the fact that the accommodation groove 42 has corners.
  • the stranded wire 19 may be welded to the electrode where the current I is locally high.
  • the current I is uniform, the stranded wire 19 is difficult to weld to the electrode.
  • the stranded wire 19 compacted using the first lower electrode 41B of FIG. 4C has the following cross-sectional structure because the receiving groove 42 has an arc shape. That is, in FIG.5 (c), the twisted wire 19 is provided with the front surface 19A to which the lead wire 15 is joined, and the back surface 19B which opposes the front surface 19A, The cross section of the back surface 19B The outer shape at is an arc.
  • this embodiment demonstrated the temperature sensing element which consists of a thermistor as an example of the sensor element used for a temperature sensor, this invention is applied to the various sensor elements which join a lead wire and a twisted wire by welding especially resistance welding. Applicable.
  • the lead wire 15 when the joining process is completed, the lead wire 15 is connected to the main joining region 31, the first sub joining region 33, and the second sub joining region 35 as shown in FIGS. 2 (b) and 3 (d).
  • the lead wire 15 cannot be observed from the side because it is embedded in the (joining structure 30).
  • the present invention is not limited to this, and the lead wire 15 may protrude from the surface of the bonding structure 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

本発明のセンサ素子10は、例えばサーミスタからなる素子本体(11)と、素子本体(11)から引き出される一対のリード線(15,15)と、一対のリード線(15,15)のそれぞれに溶接領域において接合される、複数の芯線(21)が撚られた撚線(19)と、を備える。溶接領域は、その軸線方向の所定箇所に設けられる主接合領域(31)と、主接合領域(31)に隣接する副接合領域(33,35)と、を備え、リード線(15)と撚線(19)の接合強度が、副接合領域(33)よりも主接合領域(31)の方が高いことを特徴とする。

Description

センサ素子、及び、センサ素子の製造方法
 本発明は、例えば感温素子から引き出されるリード線と撚線からなる導電線とが溶接により接合されたセンサ素子に関する。
 特許文献1は、第1の抵抗溶接によって、撚線を構成する複数の芯線同士を溶融接合して一体化し、その後、リード線と撚線とを、軸方向に重ね合わせて、第2の抵抗溶接により接合することを提案する。特許文献1によれば、容易に且つ確実に、リード線と撚線とを接合することができる。
 特許文献2は、より一層容易にかつ確実にリード線と撚線とを溶接により接合する手法を提案する。この提案は、撚線が、複数の芯線が溶接により軸方向に一体化された第1の溶接部を有し、リード線と撚線とが第2の溶接部により接合され、第2の溶接部は、軸方向における第1の溶接部と重なる位置にのみに形成されている。
特開2013-68610号公報 特開2015-232552号公報
 ところで、撚線は、典型的には、表面に錫めっきが施されている銅又は銅合金からなる複数の芯線からなる。錫めっきは芯線の耐食性を向上するために設けられるが、錫は融点が約232℃と低いため、特許文献1のように第1の抵抗溶接を行い、また、特許文献2のように第1の溶接部を設けると、融点を超える加熱が加えられるので、めっきを構成する錫が昇華する。
 錫めっきは耐食性付与を目的に設けられるが、リード線と撚線との溶接にとって重要な役割を施す。つまり、錫は芯線を構成する銅に比べて電気抵抗が高いので、リード線と撚線とを抵抗溶接により接合する際には、主に錫めっき部分がジュール熱により発熱して溶接が実現される。一方で、銅は電気抵抗が低いため、そもそも抵抗溶接には向いていない。したがって、特許文献1及び特許文献2のように、2段階で溶接を行うと、2段階目の溶接の際に溶接に寄与する錫が不足するために、安定して高い接合強度を得ることができない。
 そこで本発明は、リード線と撚線とが溶接されたセンサ素子において、安定して高い接合強度が得られる接合構造を提供することを目的とする。
 本発明のセンサ素子は、素子本体と、素子本体から引き出される一対のリード線と、一対のリード線のそれぞれに溶接による接合構造において接合される、複数の芯線が撚られた撚線と、を備える。
 本発明における接合構造は、その軸線方向の所定領域に設けられる主接合領域と、主接合領域に隣接する副接合領域と、を備え、リード線と撚線の接合強度が、副接合領域よりも主接合領域の方が高い、ことを特徴とする。
 本発明の温度センサ素子は、副接合領域を、主接合領域を挟んで軸線方向の一方の側又は両側に設けることができる。
 本発明の温度センサ素子は、副接合領域は、主接合領域を挟んで軸線方向の双方に設けられる第一副接合領域と第二副接合領域を備えることができる。
 本発明の温度センサ素子は、第一副接合領域を、撚線の先端から所定の範囲に設けることができる。
 本発明の温度センサ素子は、典型的には、撚線は、銅からなる芯線の表面に錫からなるめっき層が形成され、主接合領域における錫の濃度が、副接合領域における錫の濃度よりも高いことが好ましい。
 本発明の温度センサ素子は、典型的には、リード線は、銅からなる。
 本発明の温度センサ素子は、撚線が、接合構造に、リード線が接合されるおもて面と、おもて面に対向するうら面と、を備え、うら面は、横断面における外形が円弧状をなすことが好ましい。
 次に、本発明のセンサ素子の製造方法は、素子本体と、素子本体から引き出される一対のリード線と、一対のリード線のそれぞれに溶接により接合される、複数の芯線が撚られた撚線と、を備えるセンサ素子の製造方法である。
 本発明の製造方法は、コンパクティング工程と、電線設置工程と、接合工程とを備える。
 コンパクティング工程は、撚線の軸線方向の所定領域を加圧及び加熱することによりコンパクティング領域を形成するとともに、コンパクティング領域に隣接し、コンパクティング領域よりも相対的に背の高いプロジェクション領域、を形成する。
 電線設置工程は、コンパクティング領域とプロジェクション領域とに亘り、リード線と撚線を重ねる。
 接合工程は、コンパクティング領域とプロジェクション領域とに亘り、リード線と撚線を加圧及び加熱することで溶接する。
 本発明のコンパクティング工程において、所定領域の芯線同士を溶接するとともに、厚さを薄くすることで、コンパクティング領域とプロジェクション領域を形成する、ことができる。
 また、本発明の接合工程において、コンパクティング領域がリード線を支持しながら、プロジェクション領域とリード線の溶接を行うことができる。
 本発明のセンサ素子の製造方法において、接合工程の後における、リード線と撚線の接合強度が、コンパクティング領域よりもプロジェクション領域の方を高くできる。
 本発明におけるコンパクティング領域は、プロジェクション領域を挟んで軸線方向の一方の側又は両側に設けることができる。
 また、このコンパクティング領域は、プロジェクション領域を挟んで軸線方向の双方に設けられる第一コンパクティング領域と第二コンパクティング領域を備えることができる。この第一コンパクティング領域は、撚線の先端から所定の範囲に設けることができる。
 本発明のセンサ素子の製造方法に供される撚線は、銅からなる芯線の表面に錫からなるめっき層が形成されると、プロジェクション領域における錫の濃度を、コンパクティング領域における錫の濃度よりも高くすることが好ましい。
 本発明のセンサ素子の製造方法に供されるリード線は、典型的には銅からなる。
 本発明の接合工程において、撚線は、リード線が接合されるおもて面と、おもて面に対向するうら面と、を備え、接合工程において、うら面は、横断面の形状が円弧状をなす電極があてがわれる、ことが好ましい。
 本発明のセンサ素子によれば、接合構造が主接合領域と副接合領域を備え、リード線と撚線の接合強度を、副接合領域よりも主接合領域を高くする。つまり、本発明によれば、溶接による接合構造の中で特定の領域に発熱を集中させることで、安定して高い接合強度が得られる接合構造を提供できる。
本実施形態に係るセンサ素子を示し、(a)は平面図、(b)は側面図、(c)はリード線の断面構造、(d)は撚線の芯線の断面構造を示す図である。 図1のセンサ素子の溶接部分を示す部分拡大図であり、(a)は平面図、(b)は側面図、(c)は溶接部分の特性を示すグラフである。 本実施形態に係るリード線と撚線の接合手順を示す側面図であり、(a)は接合前の撚線を単体で示し、(b)はコンパクティングが施された撚線を単体で示し、(c)はコンパクティングが施された撚線とリード線の溶接前を示し、(d)は溶接後の撚線とリード線を示す。 撚線をコンパクティングする様子を示し、(a)は(b)のIVa-IVa矢視断面図、(b)は(a)のIVb-IVb矢視断面図、(c)は(b)とは電極の形態を変えた例を示す断面図である。 リード線と撚線を溶接により接合する様子を示し、(a)は(b)のVa-Va矢視断面図、(b)は(a)のVb-Vb矢視断面図、(c)は(a)のVc-Vc矢視断面図である。 本実施形態の変形例を示す図であり、(a)は先端側だけをコンパクティングした例を、(b)は根本側だけをコンパクティングした例を示す。
 以下、本発明の実施形態に係るセンサ素子10及びその製造方法を説明する。
 センサ素子10は、温度センサに用いられるものであり、図1(a),(b)に示すように、周囲の温度の変化に対応して電気抵抗が変化する素子本体11と、素子本体11から引き出される一対のリード線15,15と、一対のリード線15,15のそれぞれに接合される撚線19,19と、を備えている。センサ素子10は、リード線15と撚線19の溶接による接合構造30の強度が安定して高いことを特徴とする。
[センサ素子10の構成]
 素子本体11は、図1(a),(b)に示すように、電気抵抗に温度特性を有する感温体12と、感温体12の周囲を覆う封止ガラス13と、封止ガラス13の後端側に設けられるセラミックス保護管14と、を備える円筒状の部材である。
 感温体12は、例えば、サーミスタのように電気抵抗に温度特性を有する素材から構成される。
 封止ガラス13は、感温体12を封止して気密状態に維持することによって、環境条件に基づく化学的な変化及び物理的な変化が感温体12に生ずるのを避けるために設けられる。封止ガラス13には、非晶質ガラス及び結晶質ガラスのいずれをも用いることができるし、所望の線膨張係数を有するように非晶質ガラスと結晶質ガラスとを混合して用いることもできる。
 セラミックス保護管14は、図1(a),(b)に示すように、リード線15,15が引き出される封止ガラス13の後端部分と接合されることで、封止ガラス13を機械的に補強し、電気的絶縁性と機械的強度を向上させる。
 セラミックス保護管14は、例えばアルミナ(Al)、窒化ケイ素(Si)等の封止ガラス13よりも機械的強度の高い焼結体から構成される。セラミックス保護管14は、軸線方向Lに沿って、二つのリード線15,15のそれぞれが挿通される図示を省略する貫通孔が形成されている。
 なお、要求される機械的強度が低い用途には、セラミックス保護管14は不要である。
 素子本体11から引出されるリード線15は、ジュメット(Dumet)線により構成される。ジュメット線は、図1(c)に示すように、内層16と内層16の周囲に設けられる外層17とからなる。内層16はガラスと熱膨張係数が近い鉄-ニッケル合金からなり、外層17は導電率の高い銅又は銅合金をクラッドした複合線である。なお、本発明における「銅からなる」とは、銅及び銅合金を含む概念を有している。鉄-ニッケル合金としては、鉄-42質量%ニッケル、鉄-47質量%ニッケルなどが用いられる。
 リード線15は、一例として0.1~1.0mm程度の直径を有している。
 撚線19は、図1及び図2に示すように、複数の芯線21と、複数の芯線21を覆う電気絶縁性の樹脂材料からなる絶縁被覆25と、からなる。
 撚線19は、複数の芯線21が撚られている撚線である。また、芯線21は、図1(d)に示すように、線本体22と、線本体22の周囲を覆うめっき層23と、からなる。線本体22は導電率の高い銅又は銅合金からなり、めっき層23は芯線21よりも耐食性のよい錫めっきからなる。めっき層23を構成する錫は、前述したように、融点が232℃程度と低い。なお、錫めっきの組成に限定はなく、錫及び錫合金を含む概念を有している。
 線本体22は、一例として0.5~2.0mm程度の直径を有し、錫からなるめっき層23は0.5~2.0μm程度の厚さを有している。
[接合構造30]
 次に、センサ素子10の特徴であるリード線15と撚線19の溶接による接合構造30を説明する。
 接合構造30は、図2に示すように、撚線19の先端側から第一副接合領域33と、第一副接合領域33と隣接する主接合領域31と、主接合領域31と隣接する第二副接合領域35と、を有する。第一副接合領域33と第二副接合領域35は、主接合領域31を挟んで軸線方向Lの双方に設けられる。主接合領域31の役割、第一副接合領域33及び第二副接合領域35の役割は、以下の通りである。
 接合構造30は、主接合領域31と第一副接合領域33及び第二副接合領域35とでリード線15と撚線19の溶接による接合が行われるが、溶接による接合強度を専ら担うのは主接合領域31である。
 第一副接合領域33及び第二副接合領域35は、主接合領域31の接合強度の向上に間接的に貢献するが、それ自体の接合強度は主接合領域31に比べると小さい。第一副接合領域33及び第二副接合領域35は、リード線15と撚線19の溶接時に、主接合領域31の両側からリード線15を支持することにより、リード線15が複数の芯線21と芯線21の間に潜り込むのを防止する。
 第一副接合領域33及び第二副接合領域35のそれぞれに対応する領域は、リード線15と撚線19の溶接による接合工程に先立って、溶接の一種であり、加圧及び加熱を伴うコンパクティングが施される。このコンパクティングにより、隣接する芯線21,21同士が溶融し接合されるので、溶接の際にリード線15が撚線19に押し付けられても芯線21,21の間に潜り込むのを防止できる。
 撚線19にコンパクティングが施されると、撚線19の表層部に位置する芯線21のめっき層23をなす錫は昇華して少なくとも一部は消失するので、銅からなる芯線21がむき出しになる部分がある。一方、第一副接合領域33と第二副接合領域35の間の主接合領域31に対応する領域は、コンパクティングに供されないので、芯線21の表面のめっき層23はそのまま残されている。
 以上の通りであり、リード線15と撚線19を溶接により接合する前は、主接合領域31に対応する領域は芯線21の表面に錫からなるめっき層23が存在するのに対して、第一副接合領域33及び第二副接合領域35に対応する領域は錫が消失しているか、小量しか残されていない。
 主接合領域31、第一副接合領域33及び第二副接合領域35におけるリード線15と撚線19の接合強度及びめっき層23を構成する錫の濃度(Sn濃度)を図2(c)に示すが、接合強度は錫の濃度と関連する。つまり、錫の濃度が高い主接合領域31は、接合強度も高い。
[接合手順]
 接合構造30は、第一副接合領域33及び第二副接合領域35に対応する撚線19の領域にコンパクティングを施した後に、リード線15と撚線19を抵抗溶接により得られる。
 以下、接合構造30を得る手順について、図3及び図4を参照して説明する。
[コンパクティング工程]
 はじめに、図3(a),(b)に示すように、絶縁被覆25が剥がされてむき出しの芯線21にコンパクティングを施す。コンパクティングは、第一副接合領域33に対応する第一コンパクティング領域34と第二副接合領域35に対応する第二コンパクティング領域36に対して行われる。コンパクティング工程は、抵抗溶接にて行われる。接合工程も同様である。
 コンパクティングは加圧しながら加熱して隣接する芯線21,21を溶融して接合するプロセスである。溶融するのは、芯線21の表面に形成されるめっき層23である。コンパクティングが施された第一コンパクティング領域34と第二コンパクティング領域36は、他の部分に比べて加圧された方向の寸法、つまり厚さが薄くなる。このために、第一コンパクティング領域34と第二コンパクティング領域36の間に挟まれる、加圧及び加熱されていない部分は、第一コンパクティング領域34と第二コンパクティング領域36に比べて相対的に背の高いプロジェクション領域32を形成することとになる。
 第一コンパクティング領域34は、撚線19の先端から所定の範囲に設けられ、第二コンパクティング領域36は、プロジェクション領域32を挟んで、第一コンパクティング領域34と対称に配置される。第一コンパクティング領域34は、以降の工程において撚線19がばらけるのを防止する効果を奏する。
 コンパクティングは、図4(a),(b)に示すように、第一コンパクティング領域34を一対の第一上電極41Aと第一下電極41Bで挟み込み、また、第二コンパクティング領域36を一対の第二上電極43Aと第二下電極43Bで挟み込む。
 なお、第一上電極41Aと第二上電極43Aを一体の上電極とし、第一下電極41Bと第二下電極43Bを一体の下電極としてもよい。
 第一上電極41A、第一下電極41B、第二上電極43A及び第二下電極43Bは、磁性体である例えば鉄系の金属材料で構成される。
 第一上電極41Aと第二上電極43Aは、撚線19を加圧する面が平坦面をなしており、第一下電極41Bと第二下電極43Bは、撚線19が配置される収容溝42,44を備えている。
 第一上電極41Aと第一下電極41Bの間及び第二上電極43Aと第二下電極43Bの間のそれぞれに電流Iを流して、ジュール熱を発生させて芯線21の特に錫からなるめっき層23を溶かして溶接する。このとき、第一上電極41Aと第一下電極41Bにより第一コンパクティング領域34を圧縮する荷重Fを加え、また、第二上電極43Aと第二下電極43Bにより第二コンパクティング領域36に圧縮する荷重Fを加える。
 コンパクティングが施される撚線19は、銅からなる線本体22は錫からなるめっき層23に比べて、電気抵抗が一けた程度小さい。したがって、コンパクティングによる電流Iは良導電体である線本体22ではジュール熱の発生が抑えられる一方、電気抵抗の大きいめっき層23ではジュール熱が発生し溶接が促進される。つまり、撚線19の溶接においては、電気抵抗の大きいめっき層23が主役を担う。ただし、撚線19の表層に露出する芯線21のめっき層23は、ジュール熱により、約232℃という融点を超える温度、例えば600~700℃程度まで加熱されるので、消失してしまうか、消失しないとしても少量しか残らない。
 コンパクティングを終えると、第一コンパクティング領域34及び第二コンパクティング領域36は、隣接する芯線21が錫からなるめっき層23の溶融、凝固により接合されるので、表層部が一体化される。一方で、この一体化された第一コンパクティング領域34及び第二コンパクティング領域36の表層部は、抵抗溶接の主役を担うめっき層23が消失しているか、消失しないとしても少量しか残らない。
[電線設置工程及び接合工程]
 コンパクティング工程を終えると、図3(c)に示すようにリード線15を撚線19の上に重ねる。このとき、リード線15は、プロジェクション領域32と第一コンパクティング領域34、第二コンパクティング領域36とに亘って撚線19に重ねられる。
 次いで、図5(a),(b)に示すように、プロジェクション領域32、第一コンパクティング領域34及び第二コンパクティング領域36の全域を一対の上電極47Aと下電極47Bで挟み込む。このとき、リード線15は、主にプロジェクション領域32と接触し、プロジェクション領域32を挟む第一コンパクティング領域34と第二コンパクティング領域36とは接触しないか、接触したとしても微小な面積である。
 上電極47Aと下電極47Bの間に電流Iを流し、ジュール熱を発生させて芯線21の特にめっき層23を溶かして溶接する。このとき、上電極47Aと下電極47Bを介してリード線15と撚線19に圧縮する荷重Fを加える。
 リード線15と撚線19の溶接の初期段階では、図3(c)に示すように、リード線15は背の高いプロジェクション領域32に接する一方、第一コンパクティング領域34及び第二コンパクティング領域36には接しない。つまり、リード線15は接合構造30の範囲の中の一部だけに接して溶接が始まる。抵抗溶接において、溶接対象同士の接触面積が小さいほどジュール熱による昇温が大きくなるので、本実施形態は、リード線15とプロジェクション領域32の間に発熱が集中する。しかも、プロジェクション領域32は、溶接の主役を担う錫からなるめっき層23が残されているので、発熱がさらに促進される。こうして溶接された部分が、接合強度の高い主接合領域31である。
 リード線15と撚線19の間には圧縮方向の荷重Fが加えられる。一方で、プロジェクション領域32は、溶接が始まる段階では個々の芯線21が一体化されることなく独立しているので、荷重Fが加えられたリード線15は隣接する芯線21,21の間に潜り込もうとする。
 ところが、プロジェクション領域32の軸線方向Lの双方に第一コンパクティング領域34及び第二コンパクティング領域36が設けられている。したがって、溶接が進みプロジェクション領域32の厚さが薄くなると、リード線15は表層部が一体化された第一コンパクティング領域34及び第二コンパクティング領域36に接する。これにより、第一コンパクティング領域34及び第二コンパクティング領域36は、リード線15がプロジェクション領域32において隣接する芯線21,21の間に潜り込むのを拘束する。
 以上のように、第一コンパクティング領域34と第二コンパクティング領域36を設けることにより、溶接による接合工程を通じて、リード線15と撚線19が安定した姿勢で接することができる。
 接合工程を経た主接合領域31と、第一副接合領域33、第二副接合領域35との横断面を観察したところ、相対的に主接合領域31が粗であり第一副接合領域33、第二副接合領域35の方が密な構造を有していることが確認された。つまり、第一副接合領域33及び第二副接合領域35は、コンパクティング工程と接合工程の二度にわたって加圧及び加熱が施されるため、隣接する芯線21,21の間の溶接が進み密な構造となる。
[効 果]
 以上説明した構成を備えるセンサ素子10は、以下の効果を備える。
 センサ素子10は、主接合領域31と第一副接合領域33、第二副接合領域35とを備え、主接合領域31は、プロジェクション領域32という選択された狭い領域だけでリード線15が接することで、発熱が集中した溶接部分である。しかも、プロジェクション領域32は、発熱が促進されるめっき層23が残されているので、発熱がさらに促進される。したがって、主接合領域31を有するリード線15と撚線19の接合強度は高い。
 本発明者らの測定によれば、本実施形態の接合構造はコンパクティングを行わずにリード線15と撚線19を溶接した構造の2倍程度の接合強度を得ることができる。
 また、センサ素子10は、プロジェクション領域32の軸線方向Lの両側に設けられる第一コンパクティング領域34及び第二コンパクティング領域36が、プロジェクション領域32において芯線21,21の間にリード線15が潜り込むのを防止する。したがって、複数のセンサ素子10を製造する際に、それぞれのセンサ素子10におけるリード線15の撚線19に対する姿勢が安定するので、接合強度のばらつきを抑えることができる。
 特に、本実施形態は、プロジェクション領域32の軸線方向Lの両側に設けられる第一コンパクティング領域34及び第二コンパクティング領域36でリード線15を支持するので、潜り込み防止の効果が大きい。
 ここで、撚線19にコンパクティングを施さないでリード線15を溶接しようとすると、溶接に伴って荷重Fが加えられるので、リード線15は芯線21,21の間に潜り込む。潜り込む状態が一定であれば接合強度のばらつきを抑えることができるが、撚線19に載せられるリード線15と芯線21の接し方はまちまちであるから、潜り込みの状態がまちまちである。したがって、溶接部分の発熱にばらつきが生じ、接合強度がばらついてしまう。
 以上、本発明の好適な実施形態を説明したが、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
 例えば、本実施形態は、コンパクティングを軸線方向Lに離れた二つの領域で行ったが、図6(a),(b)に示すように、撚線19の先端側のみに一つのコンパクティング領域37を形成してもよいし、撚線19の根本側のみに一つのコンパクティング領域37を形成してもよい。一つのコンパクティング領域37であっても、プロジェクション領域32にリード線15が芯線21,21の間に潜り込むのを拘束できるので、主接合領域31において、安定して高い接合強度を得ることができる。
 また、コンパクティング工程及び接合工程に用いた電極の形態は任意である。例えば、図4(c)に示すように、第一下電極41Bの収容溝42の横断面の形状を円弧状にすることができる。図4(c)に示す円弧状断面の電極が撚線19にあてがわれると、当該電極と撚線19の間の電流Iを均一になりやすいので、撚線19の発熱も電極の部位に関わらず均一になる。図4(b)に示される矩形の収容溝42の場合、収容溝42に角部があることに基づいて、当該電極と撚線19の間の電流Iが不均一になりやすい。そうすると、局部的に電流Iが高いところでは、撚線19が電極に溶着することがある。これに対して電流Iが均一であれば、撚線19は電極に溶着しにくい。
 図4(c)の第一下電極41Bを用いてコンパクティングされた撚線19は、収容溝42が円弧状をなしているので、以下の横断面の構造を有する。つまり、図5(c)において、撚線19は、リード線15が接合されるおもて面19Aと、おもて面19Aに対向するうら面19Bと、を備え、うら面19Bの横断面における外形が円弧状をなすことになる。
 また、本実施形態は温度センサに用いられるセンサ素子の一例としてサーミスタからなる感温体を説明したが、本発明はリード線と撚線とを溶接、特に抵抗溶接により接合する種々のセンサ素子に適用できる。
 本実施形態においては、接合工程を終えると、図2(b)、図3(d)に示すように、リード線15は主接合領域31、第一副接合領域33及び第二副接合領域35(接合構造30)の内部に埋め込まれ、側方からはリード線15を観察できない。リード線15が埋め込まれることは、接合強度の観点から好ましいが、本発明はこれに限定されず、接合構造30の表面からリード線15がはみ出ていてもよい。
10  センサ素子
11  素子本体
12  感温体
13  封止ガラス
14  セラミックス保護管
15  リード線
16  内層
17  外層
19  撚線
19A おもて面
19B うら面
21  芯線
22  線本体
23  めっき層
25  絶縁被覆
30  接合構造
31  主接合領域
32  プロジェクション領域
33  第一副接合領域
34  第一コンパクティング領域
35  第二副接合領域
36  第二コンパクティング領域
41A 第一上電極
41B 第一下電極
42,44 収容溝
43A 第二上電極
43B 第二下電極
47A 上電極
47B 下電極
F   荷重
I   電流
L   軸線方向

Claims (17)

  1.  素子本体と、
     前記素子本体から引き出される一対のリード線と、
     一対の前記リード線のそれぞれに溶接による接合構造において接合される、複数の芯線が撚られた撚線と、を備え、
     前記接合構造は、
     その軸線方向の所定領域に設けられる主接合領域と、
     前記主接合領域に隣接する副接合領域と、を備え、
     前記リード線と前記撚線の接合強度が、前記副接合領域よりも前記主接合領域の方が高い、
    ことを特徴とするセンサ素子。
  2.  前記副接合領域は、
     前記主接合領域を挟んで前記軸線方向の一方の側又は両側に設けられる、
    請求項1に記載のセンサ素子。
  3.  前記副接合領域は、
     前記主接合領域を挟んで前記軸線方向の双方に設けられる第一副接合領域と第二副接合領域を備える、
    請求項1に記載のセンサ素子。
  4.  前記第一副接合領域は、
     前記撚線の先端から所定の範囲に設けられる、
    請求項3に記載のセンサ素子。
  5.  前記撚線は、銅からなる前記芯線の表面に錫からなるめっき層が形成され、
     前記主接合領域における錫の濃度が、前記副接合領域における錫の濃度よりも高い、
    請求項1又は請求項2に記載のセンサ素子。
  6.  前記リード線は、銅からなる
    請求項5に記載のセンサ素子。
  7.  前記撚線は、
     前記接合構造に、前記リード線が接合されるおもて面と、前記おもて面に対向するうら面と、を備え、
     前記うら面は、
     横断面における外形が円弧状をなす、
    請求項1に記載のセンサ素子。
  8.  素子本体と、
     前記素子本体から引き出される一対のリード線と、
     一対の前記リード線のそれぞれに溶接により接合される、複数の芯線が撚られた撚線と、を備えるセンサ素子の製造方法であって、
     前記撚線の軸線方向の所定領域を加圧及び加熱することによりコンパクティング領域を形成するとともに、前記コンパクティング領域に隣接し、前記コンパクティング領域よりも相対的に背の高いプロジェクション領域を形成するコンパクティング工程と、
     前記コンパクティング領域とプロジェクション領域とに亘り、前記リード線と前記撚線を重ねる電線設置工程と、
     前記コンパクティング領域とプロジェクション領域とに亘り、前記リード線と前記撚線を加圧及び加熱することで溶接する接合工程と、
    を備えることを特徴とするセンサ素子の製造方法。
  9.  前記コンパクティング工程において、
     前記所定領域の前記芯線同士を溶接するとともに、厚さを薄くすることで、前記コンパクティング領域と前記プロジェクション領域を形成する、
    請求項8に記載のセンサ素子の製造方法。
  10.  前記接合工程において、
     前記コンパクティング領域が前記リード線を支持しながら、前記プロジェクション領域と前記リード線の溶接が行われる、
    請求項9に記載のセンサ素子の製造方法。
  11.  前記接合工程の後における、前記リード線と前記撚線の接合強度が、前記コンパクティング領域よりも前記プロジェクション領域の方が高い、
    請求項8に記載のセンサ素子の製造方法。
  12.  前記コンパクティング領域は、
     前記プロジェクション領域を挟んで前記軸線方向の一方の側又は両側に設けられる、
    請求項8に記載のセンサ素子の製造方法。
  13.  前記コンパクティング領域は、
     前記プロジェクション領域を挟んで前記軸線方向の双方に設けられる第一コンパクティング領域と第二コンパクティング領域を備える、
    請求項8に記載のセンサ素子の製造方法。
  14.  前記第一コンパクティング領域は、
     前記撚線の先端から所定の範囲に設けられる、
    請求項13に記載のセンサ素子の製造方法。
  15.  前記撚線は、銅からなる前記芯線の表面に錫からなるめっき層が形成され、
     前記プロジェクション領域における錫の濃度が、前記コンパクティング領域における錫の濃度よりも高い、
    請求項8に記載のセンサ素子の製造方法。
  16.  前記リード線は、銅からなる
    請求項15に記載のセンサ素子の製造方法。
  17.  前記撚線は、
     前記リード線が接合されるおもて面と、前記おもて面に対向するうら面と、を備え、
     前記接合工程において、前記うら面は、横断面の形状が円弧状をなす電極があてがわれる、
    請求項8に記載のセンサ素子の製造方法。
PCT/JP2017/012057 2017-03-24 2017-03-24 センサ素子、及び、センサ素子の製造方法 WO2018173264A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780009074.3A CN108934178B (zh) 2017-03-24 2017-03-24 传感器元件及传感器元件的制造方法
US16/076,823 US10505286B2 (en) 2017-03-24 2017-03-24 Sensor element and manufacturing method of sensor element
PCT/JP2017/012057 WO2018173264A1 (ja) 2017-03-24 2017-03-24 センサ素子、及び、センサ素子の製造方法
EP17894666.1A EP3415886B1 (en) 2017-03-24 2017-03-24 Sensor element and sensor element manufacturing method
JP2017556267A JP6352557B1 (ja) 2017-03-24 2017-03-24 センサ素子、及び、センサ素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012057 WO2018173264A1 (ja) 2017-03-24 2017-03-24 センサ素子、及び、センサ素子の製造方法

Publications (1)

Publication Number Publication Date
WO2018173264A1 true WO2018173264A1 (ja) 2018-09-27

Family

ID=62779937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012057 WO2018173264A1 (ja) 2017-03-24 2017-03-24 センサ素子、及び、センサ素子の製造方法

Country Status (5)

Country Link
US (1) US10505286B2 (ja)
EP (1) EP3415886B1 (ja)
JP (1) JP6352557B1 (ja)
CN (1) CN108934178B (ja)
WO (1) WO2018173264A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021000628T5 (de) 2020-03-31 2022-11-24 Semitec Corporation Elektronisches bauteil, leitungsteil-verbindungsstruktur und leitungsteil-verbindungsverfahren

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099921B2 (ja) * 2018-09-19 2022-07-12 日本特殊陶業株式会社 温度センサ及びその製造方法
KR101998056B1 (ko) * 2019-02-13 2019-07-09 신형균 토크센서 제조 장치
EP3919219B1 (en) * 2020-06-04 2024-04-10 TE Connectivity Germany GmbH Welding method for connecting a first connector to a second connector, the use of the welding method, and the welding connection
EP3984682B1 (en) * 2020-10-19 2024-05-22 TE Connectivity Germany GmbH Device and method for compact embedded wire welding using a shape-forming electrode
DE102021125134B3 (de) * 2021-09-28 2023-02-02 Strunk Connect automated solutions GmbH & Co. KG Verfahren zum Verschweißen einer elektrischen Aluminiumleitung mit einem Anschlusselement aus einem artfremden Metallmaterial
DE102023000851A1 (de) 2023-03-07 2024-09-12 Mercedes-Benz Group AG Verfahren zur Herstellung eines Bündels von elektrischen Leitungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176880A (ja) * 2009-01-27 2010-08-12 Autonetworks Technologies Ltd 端子金具付き電線
JP2013068610A (ja) 2011-09-07 2013-04-18 Ngk Spark Plug Co Ltd センサ及びその製造方法
JP2014089176A (ja) * 2012-10-01 2014-05-15 Ngk Spark Plug Co Ltd 温度センサ
JP2015232552A (ja) 2014-05-12 2015-12-24 日本特殊陶業株式会社 センサ及びその製造方法
JP2016046070A (ja) * 2014-08-22 2016-04-04 住友電装株式会社 端子金具付き電線

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2723202B1 (fr) * 1994-07-28 1996-10-25 Magneti Marelli France Sa Capteur de grandeur physique, notamment un capteurde temperature
JP2006040624A (ja) * 2004-07-23 2006-02-09 Sumitomo Wiring Syst Ltd 異種電線間の接続構造
DE102006060648A1 (de) * 2006-12-21 2008-06-26 Wabco Gmbh Vorrichtung mit einem Sensor und Koppelmitteln
JP2010032493A (ja) * 2008-06-25 2010-02-12 Ngk Spark Plug Co Ltd 温度センサ
JP4541436B2 (ja) * 2008-11-27 2010-09-08 日本特殊陶業株式会社 温度センサ
JP5743922B2 (ja) * 2012-02-21 2015-07-01 日立オートモティブシステムズ株式会社 熱式空気流量測定装置
JP5561292B2 (ja) * 2012-03-06 2014-07-30 株式会社デンソー 温度センサ
DE102012207762A1 (de) * 2012-05-09 2013-11-14 Robert Bosch Gmbh Abgassensor
JP6301753B2 (ja) * 2014-06-25 2018-03-28 日本特殊陶業株式会社 温度センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176880A (ja) * 2009-01-27 2010-08-12 Autonetworks Technologies Ltd 端子金具付き電線
JP2013068610A (ja) 2011-09-07 2013-04-18 Ngk Spark Plug Co Ltd センサ及びその製造方法
JP2014089176A (ja) * 2012-10-01 2014-05-15 Ngk Spark Plug Co Ltd 温度センサ
JP2015232552A (ja) 2014-05-12 2015-12-24 日本特殊陶業株式会社 センサ及びその製造方法
JP2016046070A (ja) * 2014-08-22 2016-04-04 住友電装株式会社 端子金具付き電線

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021000628T5 (de) 2020-03-31 2022-11-24 Semitec Corporation Elektronisches bauteil, leitungsteil-verbindungsstruktur und leitungsteil-verbindungsverfahren

Also Published As

Publication number Publication date
JPWO2018173264A1 (ja) 2019-03-28
US10505286B2 (en) 2019-12-10
US20190267723A1 (en) 2019-08-29
EP3415886A4 (en) 2019-04-24
CN108934178B (zh) 2020-09-22
CN108934178A (zh) 2018-12-04
EP3415886B1 (en) 2020-02-26
EP3415886A1 (en) 2018-12-19
JP6352557B1 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6352557B1 (ja) センサ素子、及び、センサ素子の製造方法
JP4868264B2 (ja) リード線付き温度センサ
TWI505522B (zh) Method for manufacturing thermoelectric conversion module
US9508519B2 (en) Fuse and manufacturing method thereof
WO2009148072A1 (ja) チップインダクタおよびその製造方法
KR19980070688A (ko) 세라믹 부재와 전력 공급용 커넥터의 접합 구조체
CN101635394A (zh) 带有压接端子的电缆及其制造方法
KR20160041980A (ko) 열식 질량 유량계 및 질량 유량 제어 장치
WO2009096386A1 (ja) 抵抗器およびその製造方法
US10777911B2 (en) Electric cable connecting terminal and method for connecting together electric cable connecting terminal and electric cable
US7173510B2 (en) Thermal fuse and method of manufacturing fuse
JP5369294B2 (ja) チップインダクタおよびその製造方法
US7969278B2 (en) Thermistor
JP4887973B2 (ja) 面実装型電流ヒューズの製造方法
JP7128381B2 (ja) 電子部品、リード部の接続構造及びリード部の接続方法
JP6382950B2 (ja) 電気的に導通した機械的結合部の生成のための固定構造および方法
JP2013182750A (ja) 温度ヒューズおよびその製造方法
JP2001307901A (ja) 耐サージ薄型抵抗器および抵抗器における抵抗線と外部接続端子の接続構造
JP2019079734A (ja) アルミ電線圧着方法およびアルミ電線圧着構造
JP2024526875A (ja) Ntcセンサ及びntcセンサの製造方法
JP2017224641A (ja) 抵抗器及びヒータ
JP5396304B2 (ja) 抵抗付き温度ヒューズの製造方法
JP5433455B2 (ja) 抵抗付き温度ヒューズの製造方法
KR200294326Y1 (ko) 미세용접기의 용접전극
JP2013214519A (ja) 接合部構造の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017556267

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017894666

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017894666

Country of ref document: EP

Effective date: 20180912

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE