WO2018229816A1 - パワーモジュールの製造方法 - Google Patents

パワーモジュールの製造方法 Download PDF

Info

Publication number
WO2018229816A1
WO2018229816A1 PCT/JP2017/021606 JP2017021606W WO2018229816A1 WO 2018229816 A1 WO2018229816 A1 WO 2018229816A1 JP 2017021606 W JP2017021606 W JP 2017021606W WO 2018229816 A1 WO2018229816 A1 WO 2018229816A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
resistance component
power module
leads
component
Prior art date
Application number
PCT/JP2017/021606
Other languages
English (en)
French (fr)
Inventor
貴大 及川
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to PCT/JP2017/021606 priority Critical patent/WO2018229816A1/ja
Publication of WO2018229816A1 publication Critical patent/WO2018229816A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to a method for manufacturing a power module.
  • Patent Document 1 discloses a semiconductor device in which a resistance wire (resistance component) as a shunt resistor for detecting a current flowing in a circuit (semiconductor element) is joined to two strip-shaped inner leads by welding. Yes.
  • the lead frame itself has a resistance value, and the resistance value of the resistance component varies depending on the bonding state of the resistance component. Therefore, the substantial resistance value of the resistance component in the power module may be different from the resistance value of the resistance value alone. Therefore, it is required to set the substantial resistance value of the resistance component to a desired value.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a method for manufacturing a power module capable of setting a substantial resistance value of a resistance component to be joined to a desired value.
  • a method of manufacturing a power module according to the present invention is a method of manufacturing a power module that is configured by mounting electronic components on a lead frame having a plurality of leads and performs power control, and is in a direction perpendicular to the plate thickness direction.
  • a joining step of electrically connecting the two leads by the resistive component by joining the resistive component to the two leads arranged at intervals, and a resistance value for adjusting the resistance value of the joined resistive component An adjustment step.
  • the manufacturing method of the power module which can make the substantial resistance value of the resistance components joined to a desired value can be provided.
  • the power module 100 performs various types of power control. As shown in FIG. 1, the power module 100 includes a lead frame 3 having a plurality of leads 1 and 2, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a resistance component 5. Prepare. FIG. 1 shows only the resistance component 5 and leads 1 and 2 to be joined to the resistance component 5 of the lead frame 3. The electronic component 4 and the part of the lead frame 3 on which the electronic component 4 is mounted are shown in FIG. It is omitted.
  • the lead frame 3 is obtained, for example, by subjecting a conductive plate material having conductivity, such as a copper plate, to press processing.
  • Each lead 1, 2 of the lead frame 3 is formed in a plate shape.
  • the plurality of leads 1 and 2 are arranged at intervals from each other in a direction orthogonal to the plate thickness direction (Z-axis direction) of the lead frame 3.
  • the plurality of leads 1 and 2 are electrically connected to the electronic component 4 and the resistor component 5, thereby constituting a circuit of the power module 100 together with the electronic component 4 and the resistor component 5.
  • the resistance component 5 is electrically connected to the leads 1 and 2 by being joined to the leads 1 and 2.
  • the resistance component 5 includes a resistance element and a terminal connected to the electrode of the resistance element.
  • the resistance element and the terminal may be directly connected, for example, or may be connected via a connector such as a wire.
  • a portion of the resistance component 5 that is joined to the leads 1 and 2 is a terminal of the resistance component 5.
  • the terminals of the resistor component 5 are provided at both ends in a predetermined linear direction (hereinafter referred to as “terminal arrangement direction”).
  • the resistance component 5 may be a resistance element having no terminal. In that case, the resistance component 5 and the leads 1 and 2 are joined by joining the electrodes of the resistance element to the leads 1 and 2.
  • the shape of the resistor component 5 may be arbitrary, such as a block shape, but the resistor component 5 of the present embodiment is formed in a plate shape.
  • the electronic component 4 includes main surfaces 11 and 21 of a plurality of leads 1 and 2 (main surfaces of the lead frame 3; surfaces orthogonal to the plate thickness direction of the leads 1 and 2 and the lead frame 3). As a result, the lead frame 3 is mounted.
  • the specific configuration of the electronic component 4 may be arbitrary.
  • the electronic component 4 illustrated in FIG. 7 includes a built-in electronic element 41 having a predetermined electrical function and a terminal 42 connected to the electrode of the built-in electronic element 41.
  • the built-in electronic element 41 may be the same as the resistor component 5 described above, for example, but is not limited thereto.
  • the built-in electronic element 41 and the terminal 42 may be directly connected, for example, or may be connected via a connector such as a wire.
  • the electronic component 4 may include a resin 43 that seals the built-in electronic element 41 and the terminal 42.
  • the built-in electronic element 41 may be buried in the resin 43 and the terminal 42 may be exposed to the outside of the resin 43.
  • the terminal 42 may protrude from the resin 43 as shown in FIG. 7, for example, but may not protrude, for example.
  • the electronic component 4 is mounted on the lead frame 3 by, for example, joining the terminal 42 to the main surfaces 11 and 21 of the leads 1 and 2.
  • the resistance component 5 is a main surface of two leads (first lead 1 and second lead 2) spaced apart from each other in a direction orthogonal to the plate thickness direction (X-axis direction). By being placed on top of 11 and 21, the lead frame 3 is mounted.
  • the two leads 1 and 2 are each formed in a strip shape extending in a direction orthogonal to the thickness direction of the lead frame 3.
  • the two leads 1 and 2 may extend in different directions, for example, but extend in the same direction in this embodiment.
  • the two leads 1 and 2 may extend in a direction that coincides with the arrangement direction (X-axis direction) of the two leads 1 and 2.
  • the two leads 1 and 2 extend in a direction (Y-axis direction) orthogonal to the arrangement direction (X-axis direction) of the two leads 1 and 2.
  • the resistance component 5 may be joined to a midway portion in the longitudinal direction (Y-axis direction) of the leads 1 and 2.
  • the resistance component 5 is joined to the longitudinal ends of the leads 1 and 2.
  • the two terminals of the resistance component 5 have a first joint surface 51 joined to the main surface 11 of the first lead 1 and a second joint surface 52 joined to the main surface 21 of the second lead 2.
  • the first bonding surface 51 and the second bonding surface 52 are provided on the bottom surfaces that are surfaces orthogonal to the plate thickness direction of the resistance component 5 at both ends in the terminal arrangement direction.
  • Resistor component 5 is arranged so that the terminal arrangement direction coincides with the X-axis direction. Further, the main surface 11 of the first lead and the first bonding surface 51 are bonded, and the main surface 21 of the second lead and the second bonding surface 52 are bonded, so that the resistance component 5 is connected to the first lead 1.
  • the second lead 2 is electrically joined.
  • the resistance component 5 is formed with a shaving groove 6 that is shaved in the Y-axis direction at the center in the terminal arrangement direction where the resistance elements are arranged.
  • the cross-sectional area of the resistance element of the resistance component 5 in the terminal arrangement direction is smaller in the portion where the shaving groove 6 of the resistance component 5 is formed than in the portion where the shaving groove 6 is not formed. Therefore, the resistance component 5 has a higher resistance value than the resistance component in which the shaving groove 6 is not formed.
  • the shaving groove 6 can reduce the cross-sectional area of the resistance element of the resistance component 5 in the terminal arrangement direction, and can further increase the resistance value.
  • Resistive component 5 is joined to main surfaces 11 and 21 of two leads 1 and 2 that are spaced apart from each other in the direction orthogonal to the plate thickness direction (X-axis direction). , 2 are electrically connected (joining process).
  • the main surface 11 and the first joint surface 51 of the first lead, and the main surface 21 and the second joint surface 52 of the second lead are joined by soldering or welding. Joining by welding can increase joining durability compared to joining by soldering. Therefore, joining by welding is suitable as a constituent circuit of a power module used at high voltage and high current.
  • the substantial resistance value of the resistance component 5 after being joined to the power module 100 is a desired resistance value depending on the accuracy individual difference of the resistance component 5 and the joining condition between the two leads 1 and 2 and the resistance component 5. May be different.
  • the resistance value of the joined resistance component 5 is different from a desired resistance value, the resistance value is adjusted.
  • the shaving groove 6 is formed by scraping from the end of the resistance component 5 in the orthogonal direction (Y-axis direction) orthogonal to the arrangement direction (X-axis direction) of the two leads 1 and 2.
  • the shaving groove 6 ⁇ / b> B may be formed in the Z-axis direction along the thickness direction of the resistance component 5.
  • a plurality of the cutting grooves 6 and 6B may be formed in the resistance component 5.
  • a known machining technique such as end milling can be used for the groove forming process for forming the groove 6.
  • the method of adjusting the resistance value is not limited to the method of cutting the resistance component 5.
  • the resistance value of the resistance component 5 may be adjusted by cutting a part of the resistance component 5 or performing trimming with a laser. If the method can change the cross-sectional area and the shape of the resistive element 5 in the terminal arrangement direction, the resistance value of the resistive component 5 can be adjusted by that method.
  • the substantial resistance value of the resistance component 5 joined to the power module 100 is measured again. If the substantial resistance value is different from the desired resistance value, the resistance value adjusting step is performed again. By repeating these steps, the substantial resistance value of the resistance component 5 after being joined is matched with a desired resistance value.
  • the resistance value adjustment process is performed after the bonding process, so that the resistance value of the lead frame 3, the bonding status of the resistance components, and individual differences
  • the resistance value of the resistance component can be adjusted.
  • the substantial resistance value of the resistance component 5 in the power module 100 can be set to a desired value.
  • the resistance value can be easily increased by reducing the cross-sectional area of the current path in the resistor component 5.
  • the cutting grooves 6 and 6B are formed horizontally with the thickness direction of the resistance component 5, but the shape of the cutting grooves is not limited to this.
  • the shaving groove may not be formed horizontally with the thickness direction of the resistance component 5. If the cutting groove can change the cross-sectional area in the terminal arrangement direction of the resistance element of the resistance component 5, the resistance value of the resistance component 5 can be adjusted by the cutting groove.
  • the power module 100B includes a lead frame 3 having a plurality of leads 1 and 2, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a resistance component 5B. 3 and 4 show only the resistance component 5B and the leads 1 and 2 to be joined to the resistance component 5B among the lead frame 3, and the electronic component 4 and the lead frame 3 on which the electronic component 4 is mounted. The part of is omitted.
  • the resistance component 5 ⁇ / b> B has two leads (first lead 1 and second lead 2) spaced apart from each other in the direction orthogonal to the plate thickness direction (X-axis direction). It is sandwiched and joined by the side part.
  • the two leads 1 and 2 are each formed in a strip shape extending in a direction orthogonal to the thickness direction of the lead frame 3.
  • the two leads 1 and 2 may extend in different directions, for example, but extend in the same direction in this embodiment.
  • the two leads 1 and 2 may extend in a direction that coincides with the arrangement direction (X-axis direction) of the two leads 1 and 2.
  • the resistance component 5B is joined to a side portion of the two leads 1 and 2 that extends in the short direction (X-axis direction in FIG. 3).
  • the two leads 1 and 2 extend in a direction (Y-axis direction) orthogonal to the arrangement direction of the two leads 1 and 2.
  • the resistance component 5B is joined to the side portions 10 and 20 extending in the longitudinal direction (Y-axis direction) of the two leads 1 and 2.
  • the resistance component 5B may be joined to a midway portion of the side portions 10 and 20 of the leads 1 and 2 in the longitudinal direction (Y-axis direction) of the leads 1 and 2.
  • the resistance component 5B is joined to the longitudinal ends of the leads 1 and 2 of the side portions 10 and 20 of the leads 1 and 2.
  • the two terminals of the resistor component 5B are a first joint surface 51B which is a side surface joined to the side portion 10 of the first lead 1 and a second joint surface which is a side surface joined to the side portion 20 of the second lead 2. 52B.
  • the first bonding surface 51 ⁇ / b> B and the second bonding surface 52 ⁇ / b> B are planes provided at both ends in the terminal arrangement direction, and the normal direction coincides with the terminal arrangement direction.
  • the resistance component 5B is arranged in a space between the side portion 10 of the first lead and the side portion 20 of the second lead so that the terminal arrangement direction coincides with the X-axis direction. Further, the side part 10 of the first lead and the first joint surface 51B are joined, and the side part 20 of the second lead and the second joint surface 52B are joined, so that the resistance component 5B is connected to the first lead 1.
  • the second lead 2 is electrically joined.
  • the resistance component 5B is not joined to one main surface 11 orthogonal to the Z-axis direction of the first lead 1.
  • the resistance component 5B is not bonded to one main surface 21 orthogonal to the Z-axis direction of the second lead 2.
  • the main surface (11, 21) of the lead can be effectively used for mounting other electric parts and electronic parts.
  • the resistance component 5 ⁇ / b> B is joined to form the same flat surface together with the other main surface 12 of the first lead 1 and the other main surface 22 of the second lead 2.
  • the power module 100B is accommodated in a case formed of, for example, a metal plate having a heat radiating member. By bringing the same flat surface of the power module 100 into contact with the surface of the case where the heat dissipation member is formed, the power module 100B can be mounted on the heat dissipation member of the case without any gap.
  • the resistance component 5B As shown in FIG. 3, shaving grooves 6C, 6D, and 6E are formed in the Y-axis direction at the center portion in the terminal arrangement direction where the resistance elements are arranged.
  • the cross-sectional area of the resistance element of the resistance component 5B in the terminal arrangement direction is smaller in the portion where the cutting grooves 6C, 6D and 6E of the resistance component 5B are formed than in the portion where the cutting groove 6 is not formed. Therefore, the resistance value of the resistance component 5B is higher than that of the resistance component in which the shaving grooves 6C, 6D, and 6E are not formed.
  • the shaving grooves 6C, 6D, and 6E can form a deeper groove along the Y-axis direction, thereby reducing the cross-sectional area of the resistance element of the resistance component 5B in the terminal arrangement direction and increasing the resistance value. .
  • the resistance component 5B is joined to the side portions 10 and 20 of the two leads 1 and 2 that are spaced apart from each other in the direction orthogonal to the plate thickness direction (X-axis direction), and the two leads 1 are connected by the resistance component 5B. , 2 are electrically connected (joining process).
  • the resistance component 5B is joined by soldering or welding as in the first embodiment.
  • the substantial resistance value of the resistive component 5B joined to the power module 100B is measured. If the substantial resistance value is different from the desired resistance value, a resistance value adjusting step is performed. By repeating these steps, the substantial resistance value of the resistance component 5B after being joined is matched with a desired resistance value.
  • the power module 100B takes into account the resistance value of the lead frame 3, the bonding status of individual resistance components, individual differences, and the like by performing a resistance value adjusting process after the bonding process.
  • the resistance value of the resistance component 5B can be adjusted.
  • the substantial resistance value of the resistance component 5B in the power module 100B can be set to a desired value.
  • the resistance value can be easily increased by reducing the cross-sectional area of the current path in the resistor component 5B.
  • the power module 100B since the resistance component 5B is not mounted on the main surfaces 11 and 21 of the leads, the main surfaces 11 and 21 of the leads can be effectively used for mounting other electrical components and electronic components. Thereby, size reduction of the power module 100B can be achieved.
  • the power module 100B can set the protruding height of the resistive component 5B protruding from the main surfaces 11 and 21 of the lead to be lower than that when the resistive component 5B is mounted on the main surfaces 11 and 21 of the lead. Thereby, thickness reduction of the power module 100B can also be achieved.
  • the power module 100B can also make the resistance component 5B contact the same heat radiating member as a lead. Thereby, the heat generated in the resistance component 5B due to energization can be efficiently released to the outside. It can suppress suitably that the resistance value of resistance component 5B changes by suppressing the temperature change of resistance component 5B.
  • the cutting grooves 6C, 6D, and 6E are formed in the same direction along the Y-axis direction.
  • the aspect of the shaving groove is not limited to this.
  • the shaving groove may be an aspect like a shaving groove 6F formed in a power module 100C which is a modification of the power module 100B shown in FIG.
  • a plurality of the cutting grooves 6F are arranged at intervals in the X-axis direction, and a pair of the cutting grooves 6F adjacent in the X-axis direction extend in opposite directions from the ends of the different resistance components 5B, and a pair of the cutting grooves 6F
  • the front end portions in the extending direction of 6F overlap each other when viewed from the X-axis direction.
  • the shaving groove 6F has the effect of increasing the path of the current flowing through the resistance component 5B.
  • the resistance value of 5B can be suitably increased.
  • the power module 100D includes a lead frame 3 having a plurality of leads 1 and 2, various electronic components 4 (see FIG. 7) mounted on the lead frame 3, and a resistance component 5C. 6 shows only the resistance component 5C and the leads 1 and 2 to be joined to the resistance component 5C of the lead frame 3, and the electronic component 4 and the portion of the lead frame 3 on which the electronic component 4 is mounted are shown. It is omitted.
  • the resistance component 5 ⁇ / b> C includes two leads (first lead) spaced apart from each other in the direction orthogonal to the plate thickness direction (X-axis direction), like the resistance component 5 of the first embodiment.
  • the first and second leads 2) are mounted on the lead frame 3 by being placed on the main surfaces 11 and 21 of the second lead 2).
  • the resistance component 5C is provided with a scale (index) 7 indicating the relationship between the amount of cutting and the resistance value of the resistance component 5C.
  • the scale 7 is provided in an orthogonal direction (Y-axis direction) orthogonal to the arrangement direction (X-axis direction) of the two leads 1 and 2.
  • the scale 7 is provided so that the end of the resistance component 5C in the Y-axis direction indicates zero.
  • the shaving groove 6 is formed along the scale 7 formed in the Y-axis direction from the end of the resistance component 5C where the scale 7 indicates zero.
  • the scale 7 indicates the amount of cutting (percentage) of the cross-sectional area of the resistance component 5C, and the adjusted resistance value of the resistance component 5C can be calculated from the amount of cutting using a predetermined mathematical formula. it can.
  • the manufacturing method of the power module 100D performs the resistance value adjusting process after the bonding process, thereby the resistance value of the lead frame 3, the bonding status of the resistance component 5C, and the individual
  • the resistance value of the resistance component 5C can be adjusted in consideration of the difference and the like.
  • the substantial resistance value of the resistance component 5C in the power module 100D can be set to a desired value.
  • the resistance value can be easily increased by reducing the cross-sectional area of the current path in the resistor component 5C.
  • the scale 7 provided on the resistance component 5C can accurately grasp the resistance value that changes by cutting the resistance component 5C, and can adjust the resistance value more accurately.
  • the scale 7 indicates the amount of cutting (percentage) of the cross-sectional area of the resistance component 5C, but the aspect of the scale 7 is not limited to this.
  • the scale may indicate a resistance value after adjustment. The resistance value of the resistance component can be adjusted to the resistance value indicated by the scale by forming the cutting groove up to the location indicated by the scale on the resistance component.
  • Power module 1 First lead 2 Second lead 10, 20 Side portion 11, 21 Main surface 3 Lead frame 4 Electronic component 41 Built-in electronic element 42 Terminal 43 Resin 5, 5B, 5C Resistive component 51, 51B First joint surface 52, 52B Second joint surface 6, 6B, 6C, 6D, 6E, 6F Groove 7 Scale (index)

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Details Of Resistors (AREA)

Abstract

パワーモジュールの製造方法は、複数のリードを有するリードフレームに電子部品を実装して構成され、電力制御を行うパワーモジュールの製造方法であって、板厚方向に直交する方向に互いに間隔をあけて配された二つのリードに、抵抗部品を接合することで、前記抵抗部品により二つの前記リードを電気接続する接合工程と、接合された前記抵抗部品の抵抗値を調整する抵抗値調整工程とを備える。

Description

パワーモジュールの製造方法
 本発明は、パワーモジュールの製造方法に関する。
近年、パワーモジュールにおいては、リードフレームを利用して回路用の配線を構成することが考えられている。特許文献1には、回路(半導体素子)に流れる電流を検出するためのシャント抵抗としての抵抗線(抵抗部品)を、溶接によって帯板状の二つのインナーリードに接合した半導体装置が開示されている。
特開平6―181277号公報
 しかし、この種のパワーモジュールでは、リードフレーム自体が抵抗値を有しており、また、抵抗部品の接合状態により抵抗部品の抵抗値は変動する。そのため、パワーモジュールにおける抵抗部品の実質的な抵抗値が、抵抗値単体での抵抗値と異なってしまうことがある。そのため、抵抗部品の実質的な抵抗値を所望の値とすることが求められている。
本発明は、上述した事情に鑑みたものであって、接合される抵抗部品の実質的な抵抗値を所望の値とすることができるパワーモジュールの製造方法を提供することを目的とする。
 本発明に係るパワーモジュールの製造方法は、複数のリードを有するリードフレームに電子部品を実装して構成され、電力制御を行うパワーモジュールの製造方法であって、板厚方向に直交する方向に互いに間隔をあけて配された二つのリードに、抵抗部品を接合することで、前記抵抗部品により二つの前記リードを電気接続する接合工程と、接合された前記抵抗部品の抵抗値を調整する抵抗値調整工程と、を備える。
本発明によれば、接合される抵抗部品の実質的な抵抗値を所望の値とすることができるパワーモジュールの製造方法を提供することができる。
本発明の第一実施形態に係るパワーモジュールの要部の全体構成を示す斜視図である。 本発明の第一実施形態に係るパワーモジュールの要部の全体構成を示す斜視図である。 本発明の第二実施形態に係るパワーモジュールの要部の平面図である。 本発明の第二実施形態に係るパワーモジュールの要部の側面図である 本発明の第二実施形態に係るパワーモジュールの要部の変形例の平面図である。 本発明の第三実施形態に係るパワーモジュールの要部の全体構成を示す斜視図である。 本発明の第一実施形態に係るパワーモジュールの要部の側面図である。
〔第一実施形態〕
以下、本発明に係るパワーモジュール100の製造方法の第一実施形態を、図1および図2を参照しながら説明する。なお、図面を見やすくするため、各構成要素の厚さや寸法の比率は適宜調整されている。
パワーモジュール100は、各種の電力制御を行うものである。図1に示すように、パワーモジュール100は、複数のリード1,2を有するリードフレーム3と、リードフレーム3に実装される各種の電子部品4(図7参照)と、抵抗部品5と、を備える。図1には、抵抗部品5、及び、リードフレーム3のうち抵抗部品5と接合されるリード1,2だけが図示され、電子部品4や、電子部品4が実装されるリードフレーム3の部位は省略されている。
リードフレーム3は、例えば、銅板等のように導電性を有する導電性板材に、プレス加工等を施すことで得られる。
リードフレーム3の各リード1,2は、板状に形成されている。複数のリード1,2は、リードフレーム3の板厚方向(Z軸方向)に直交する方向に、互いに間隔をあけて配列されている。複数のリード1,2は、電子部品4や抵抗部品5と電気的に接続されることで、電子部品4や抵抗部品5と共にパワーモジュール100の回路を構成する。
抵抗部品5は、リード1,2に接合されることでリード1,2と電気的に接続される。抵抗部品5は、抵抗素子と、抵抗素子の電極に接続された端子と、を備える。抵抗素子と端子とは、例えば直接接続されてもよいし、例えばワイヤ等の接続子を介して接続されてもよい。
抵抗部品5のうちリード1,2に接合される部分は、抵抗部品5の端子である。本実施形態において、抵抗部品5の端子は、所定の直線方向(以降、「端子配列方向」と称す)の両端部に設けられている。
 なお、抵抗部品5は、端子を有さない抵抗素子であってもよい。その場合、抵抗素子の電極がリード1,2に接合されることで、抵抗部品5とリード1,2とは接合される。
抵抗部品5の形状は、ブロック状など任意であってよいが、本実施形態の抵抗部品5は、板状に形成されている。
図7に例示するように、電子部品4は、複数のリード1,2の主面11,21(リードフレーム3の主面;リード1,2やリードフレーム3の板厚方向に直交する面)に重ねて配されることで、リードフレーム3に実装される。
電子部品4の具体的な構成は任意であってよい。図7に例示する電子部品4は、所定の電気的な機能を有する内蔵電子素子41と、内蔵電子素子41の電極に接続された端子42と、を備える。内蔵電子素子41は、例えば前述した抵抗部品5と同じであってもよいが、これに限ることはない。内蔵電子素子41と端子42とは、例えば直接接続されてもよいし、例えばワイヤ等の接続子を介して接続されてもよい。
電子部品4は、これら内蔵電子素子41及び端子42を封止する樹脂43を備えてもよい。この場合、内蔵電子素子41は樹脂43の内部に埋められ、端子42は樹脂43の外部に露出していればよい。端子42は、例えば図7のように樹脂43から突出してもよいが、例えば突出しなくてもよい。電子部品4は、例えば端子42をリード1,2の主面11,21に接合することで、リードフレーム3に実装される。
図1に示すように、抵抗部品5は、板厚方向に直交する方向(X軸方向)に互いに間隔をあけて配された二つのリード(第一リード1および第二リード2)の主面11,21に重ねて配されることで、リードフレーム3に実装される。
本実施形態において、二つのリード1,2は、それぞれリードフレーム3の板厚方向に直交する方向に延びる帯板状に形成されている。二つのリード1,2は、例えば互いに異なる方向に延びていてもよいが、本実施形態では互いに同じ方向に延びている。
二つのリード1,2は、例えば二つのリード1,2の配列方向(X軸方向)に一致する方向に延びてもよい。
本実施形態において、二つのリード1,2は、二つのリード1,2の配列方向(X軸方向)に直交する方向(Y軸方向)に延びている。
抵抗部品5は、例えばリード1,2の長手方向(Y軸方向)の中途部に接合されてもよい。本実施形態において、抵抗部品5は、リード1,2の長手方向の端部に接合されている。
抵抗部品5の二つの端子は、第一リード1の主面11と接合される第一接合面51と、第二リード2の主面21と接合される第二接合面52と、を有する。
第一接合面51および第二接合面52は、図1に示すように、端子配列方向の両端部で、抵抗部品5の板厚方向に直交する面である底面に設けられている。
 抵抗部品5は、端子配列方向をX軸方向に一致させるように配置される。また、第一リードの主面11と第一接合面51とが接合され、第二リードの主面21と第二接合面52とが接合されることで、抵抗部品5は第一リード1と第二リード2とを電気的に接合する。
 抵抗部品5には、図1に示すように、抵抗素子が配置される端子配列方向の中央部分に、Y軸方向に削られた削り溝6が形成されている。抵抗部品5の削り溝6が形成された部分は、削り溝6が形成されていない部分と比べて、端子配列方向における抵抗部品5の抵抗素子の断面積が小さい。そのため、抵抗部品5は、削り溝6が形成されていない抵抗部品と比較して、抵抗値が高くなる。
 削り溝6は、Y軸方向に沿ってより深く溝を形成することで、端子配列方向における抵抗部品5の抵抗素子の断面積をより小さくでき、より抵抗値を高めることができる。
次に、パワーモジュール100の製造方法について説明する。
板厚方向に直交する方向(X軸方向)に互いに間隔をあけて配された二つのリード1,2の主面11,21に、抵抗部品5を接合し、抵抗部品5により二つのリード1,2を電気接続する(接合工程)。
 第一リードの主面11と第一接合面51、および第二リードの主面21と第二接合面52とは、半田付けや溶接により接合される。溶接による接合は、半田付けによる接合と比較して、接合耐久性を高くすることができる。そのため、溶接による接合は、高圧高電流で使用されるパワーモジュールの構成回路として好適である。
 次に、パワーモジュール100に接合された抵抗部品5の抵抗値を測定する。パワーモジュール100に接合された後の抵抗部品5の実質的な抵抗値は、抵抗部品5の精度個体差や二つのリード1,2と抵抗部品5との接合状況等により、所望の抵抗値と異なる場合がある。接合された抵抗部品5の抵抗値が、所望の抵抗値と異なっている場合、その抵抗値の調整を行う。
次に、接合された抵抗部品5を削り、削り溝6を形成し、抵抗部品5の抵抗値を調整する(抵抗値調整工程)。削り溝6は、二つのリード1,2の配列方向(X軸方向)に直交する直交方向(Y軸方向)における抵抗部品5の端部から削られることで形成される。図2に示すように、削り溝6Bは、抵抗部品5の板厚方向に沿ってZ軸方向に形成されていてもよい。削り溝6,6Bの形成により、抵抗部品5の抵抗素子の端子配列方向の断面積を変更させ、抵抗部品5の抵抗値を調整する。削り溝6,6Bは、抵抗部品5に複数形成してもよい。
削り溝6の形成のために溝形成加工には、エンドミル加工などの公知の機械加工の手法を用いることができる。
なお、抵抗値を調整する方法は抵抗部品5を削る方法に限られない。例えば、抵抗部品5の一部を切断したり、レーザーによるトリミングを行ったりすることで、抵抗部品5の抵抗値を調整してもよい。抵抗部品5の抵抗素子の端子配列方向の断面積や形状を変更させることができる方法であれば、その方法により抵抗部品5の抵抗値の調整が可能である。
 抵抗部品5の抵抗値を調整後、再度、パワーモジュール100に接合された抵抗部品5の実質的な抵抗値を測定する。実質的な抵抗値が所望の抵抗値と異なっている場合は、再度、抵抗値調整工程を行う。これらの工程を繰り返すことで、接合された後の抵抗部品5の実質的な抵抗値を、所望の抵抗値と一致させる。
 以上のように構成された本実施形態に係るパワーモジュール100の製造方法は、接合工程の後に抵抗値調整工程を実施することで、リードフレーム3の抵抗値や、抵抗部品の接合状況や個体差等を考慮したうえで、抵抗部品の抵抗値を調整できる。これにより、パワーモジュール100における抵抗部品5の実質的な抵抗値を所望の値とすることができる。例えば、抵抗部品5における電流経路の断面積を小さくすることで抵抗値を簡単に高めることができる。
(変形例)
以上、本発明の第一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の第一実施形態および以下で示す変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
例えば、上記実施形態においては、削り溝6,6Bは、抵抗部品5の板厚方向と水平に形成されていたが、削り溝の態様はこれに限定されない。例えば、削り溝は、抵抗部品5の板厚方向と水平に形成されていなくてもよい。削り溝が抵抗部品5の抵抗素子の端子配列方向の断面積を変更させることができれば、削り溝により抵抗部品5の抵抗値の調整が可能である。
〔第二実施形態〕
 次に本発明の第二実施形態について、図3から図5を参照して説明する。なお、以降の説明において、すでに説明したものと共通する構成等については、同一の符号を付して重複する説明を省略する。
パワーモジュール100Bは、複数のリード1,2を有するリードフレーム3と、リードフレーム3に実装される各種の電子部品4(図7参照)と、抵抗部品5Bと、を備える。図3および図4には、抵抗部品5B、及び、リードフレーム3のうち抵抗部品5Bと接合されるリード1,2だけが図示され、電子部品4や、電子部品4が実装されるリードフレーム3の部位は省略されている。
図3および図4に示すように、抵抗部品5Bは、板厚方向に直交する方向(X軸方向)に互いに間隔をあけて配された二つのリード(第一リード1および第二リード2)の側部に挟まれて接合されている。
本実施形態において、二つのリード1,2は、それぞれリードフレーム3の板厚方向に直交する方向に延びる帯板状に形成されている。二つのリード1,2は、例えば互いに異なる方向に延びていてもよいが、本実施形態では互いに同じ方向に延びている。
二つのリード1,2は、例えば二つのリード1,2の配列方向(X軸方向)に一致する方向に延びてもよい。この場合、抵抗部品5Bは、二つのリード1,2のうち短手方向(図3においてX軸方向)に延びる側部に接合される。
本実施形態において、二つのリード1,2は、二つのリード1,2の配列方向に直交する方向(Y軸方向)に延びている。このため、抵抗部品5Bは、二つのリード1,2のうち長手方向(Y軸方向)に延びる側部10,20に接合される。
抵抗部品5Bは、例えばリード1,2の側部10,20のうちリード1,2の長手方向(Y軸方向)の中途部に接合されてもよい。本実施形態において、抵抗部品5Bは、リード1,2の側部10,20のうちリード1,2の長手方向の端部に接合されている。
抵抗部品5Bの二つの端子は、第一リード1の側部10と接合される側面である第一接合面51Bと、第二リード2の側部20と接合される側面である第二接合面52Bと、を有する。第一接合面51Bおよび第二接合面52Bは、図3および図4に示すように、端子配列方向の両端部に設けられた平面であり、法線方向は端子配列方向と一致している。第一接合面51Bおよび第二接合面52Bがリードと接合されることで、抵抗部品5Bはリードと電気的に接続される。
 抵抗部品5Bは、第一リードの側部10と第二リードの側部20とに挟まれた空間に、端子配列方向をX軸方向に一致させるように配置される。また、第一リードの側部10と第一接合面51Bとが接合され、第二リードの側部20と第二接合面52Bとが接合されることで、抵抗部品5Bは第一リード1と第二リード2とを電気的に接合する。
 図3および図4に示すように、第一リード1のZ軸方向に対して直交する一方の主面11には、抵抗部品5Bは接合されない。また、第二リード2のZ軸方向に対して直交する一方の主面21には、抵抗部品5Bは接合されない。リードの主面(11、21)を他の電気部品や電子部品の搭載などに有効に活用できる。
 図4に示すように、抵抗部品5Bは、第一リード1の他方の主面12と第二リード2の他方の主面22と共に同一の平坦面をなすように接合されている。パワーモジュール100Bは、例えば、放熱部材を有する金属板等で形成されたケースに収容される。パワーモジュール100の同一の平坦面を、ケースの放熱部材が形成された面と接触させることで、隙間なくケースの放熱部材にパワーモジュール100Bを装着することができる。
 抵抗部品5Bには、図3に示すように、抵抗素子が配置される端子配列方向の中央部分に、Y軸方向に削り溝6C,6D、6Eが形成されている。抵抗部品5Bの削り溝6C,6D、6Eが形成された部分は、削り溝6が形成されていない部分と比べて、端子配列方向における抵抗部品5Bの抵抗素子の断面積が小さい。そのため、抵抗部品5Bは、削り溝6C,6D、6Eが形成されていない抵抗部品と比較して、抵抗値が高くなる。
 削り溝6C,6D、6Eは、Y軸方向に沿ってより深く溝を形成することで、端子配列方向における抵抗部品5Bの抵抗素子の断面積をより小さくでき、より抵抗値を高めることができる。
次に、パワーモジュール100Bの製造方法について説明する。
板厚方向に直交する方向(X軸方向)に互いに間隔をあけて配された二つのリード1,2の側部10,20に、抵抗部品5Bを接合し、抵抗部品5Bにより二つのリード1,2を電気接続する(接合工程)。抵抗部品5Bは第一実施形態同様、半田付けや溶接等により接合される。
 次に、第一実施形態同様、パワーモジュール100Bに接合された抵抗部品5Bの実質的な抵抗値を測定する。実質的な抵抗値が所望の抵抗値と異なっている場合は、抵抗値調整工程を行う。これらの工程を繰り返すことで、接合された後の抵抗部品5Bの実質的な抵抗値を、所望の抵抗値と一致させる。
 以上のように構成された本実施形態に係るパワーモジュール100Bは、接合工程の後に抵抗値調整工程を実施することで、リードフレーム3の抵抗値や、抵抗部品の接合状況や個体差等を考慮したうえで、抵抗部品5Bの抵抗値を調整できる。これにより、パワーモジュール100Bにおける抵抗部品5Bの実質的な抵抗値を所望の値とすることができる。例えば、抵抗部品5Bにおける電流経路の断面積を小さくすることで抵抗値を簡単に高めることができる。
また、パワーモジュール100Bは、抵抗部品5Bがリードの主面11,21に搭載されないので、リードの主面11,21を他の電気部品や電子部品の搭載などに有効に活用できる。これにより、パワーモジュール100Bの小型化を図ることができる。
 また、パワーモジュール100Bは、抵抗部品5Bをリードの主面11,21に搭載する場合と比較して、リードの主面11,21から突出する抵抗部品5Bの突出高さを低く設定できる。これにより、パワーモジュール100Bの薄型化も図ることができる。また、パワーモジュール100Bは、抵抗部品5Bをリードと同じ放熱部材に接触させることもできる。これにより、通電により抵抗部品5Bで生じる熱を効率よく外部に逃がすことができる。抵抗部品5Bの温度変化を抑えて抵抗部品5Bの抵抗値が変化することを好適に抑制できる。
(変形例)
以上、本発明の第二実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の第二実施形態および以下で示す変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
例えば、上記実施形態において、削り溝6C,6D、6Eは、Y軸方向に沿って同じ方向に形成されていた。しかしながら、削り溝の態様はこれに限定されない。例えば、削り溝は、図5に示すパワーモジュール100Bの変形例であるパワーモジュール100Cに形成された削り溝6Fのような態様であってもよい。削り溝6Fは、X軸方向に互いに間隔をあけて複数配列され、X軸方向に隣り合う一対の削り溝6Fは、互いに異なる抵抗部品5Bの端部から互いに逆向きに延び、一対の削り溝6Fの延長方向の先端部が、X軸方向から見て互いに重なっている。
削り溝6Fは、削り溝6C,6D、6Eにおける、端子配列方向における抵抗部品5Bの抵抗素子の断面積を小さくする効果に加え、抵抗部品5Bを流れる電流の経路を長くする効果によって、抵抗部品5Bの抵抗値を好適に高くすることができる。
〔第三実施形態〕
 次に本発明の第三実施形態について、図6を参照して説明する。なお、以降の説明において、すでに説明したものと共通する構成等については、同一の符号を付して重複する説明を省略する。
パワーモジュール100Dは、複数のリード1,2を有するリードフレーム3と、リードフレーム3に実装される各種の電子部品4(図7参照)と、抵抗部品5Cと、を備える。図6には、抵抗部品5C、及び、リードフレーム3のうち抵抗部品5Cと接合されるリード1,2だけが図示され、電子部品4や、電子部品4が実装されるリードフレーム3の部位は省略されている。
図6に示すように、抵抗部品5Cは、第一実施形態の抵抗部品5同様、板厚方向に直交する方向(X軸方向)に互いに間隔をあけて配された二つのリード(第一リード1および第二リード2)の主面11,21に重ねて配されることで、リードフレーム3に実装される。
抵抗部品5Cには、削り量と抵抗部品5Cの抵抗値の関係を示す目盛(指標)7が設けられている。目盛7は、二つのリード1,2の配列方向(X軸方向)に直交する直交方向(Y軸方向)に設けられている。また、目盛7は、抵抗部品5CのY軸方向の端部がゼロを示すように設けられている。
本実施形態において、接合工程後の抵抗値調整工程において、目盛7がゼロを示す抵抗部品5Cの端部から、Y軸方向に形成された目盛7に沿うように削り溝6を形成する。本実施形態において、目盛7は、抵抗部品5Cの断面積の削り量(パーセンテージ)を示しており、削り量から所定の数式を用いて、抵抗部品5Cの調整後の抵抗値を算出することができる。
目盛7に沿うように削り溝6を形成することで、抵抗部品5Cを削ることで変化する抵抗値を正確に把握できる。
 以上のように構成された本実施形態に係るパワーモジュール100Dの製造方法は、接合工程の後に抵抗値調整工程を実施することで、リードフレーム3の抵抗値や、抵抗部品5Cの接合状況や個体差等を考慮したうえで、抵抗部品5Cの抵抗値を調整できる。これにより、パワーモジュール100Dにおける抵抗部品5Cの実質的な抵抗値を所望の値とすることができる。例えば、抵抗部品5Cにおける電流経路の断面積を小さくすることで抵抗値を簡単に高めることができる。
 さらに、抵抗部品5Cに設けられた目盛7により、抵抗部品5Cを削ることで変化する抵抗値を正確に把握でき、より正確に抵抗値調整を行うことができる。
(変形例)
以上、本発明の第三実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述の第三実施形態および以下に示す変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
例えば、上記実施形態では、目盛7は、抵抗部品5Cの断面積の削り量(パーセンテージ)を示していたが、目盛7の態様はこれに限られない。例えば、目盛は調整後の抵抗値を示すものであってもよい。抵抗部品に目盛が指し示す箇所まで削り溝を形成することで、抵抗部品の抵抗値を、その目盛が指し示す抵抗値に調整することができる。
 100、100B、100C、100D パワーモジュール
1 第一リード
2 第二リード
10、20 側部
11、21 主面
3 リードフレーム
4 電子部品
41 内蔵電子素子
42 端子
43 樹脂
5、5B、5C 抵抗部品
51、51B 第一接合面
52、52B 第二接合面
6、6B、6C、6D、6E、6F 溝
7 目盛(指標)

Claims (7)

  1.  複数のリードを有するリードフレームに電子部品を実装して構成され、電力制御を行うパワーモジュールの製造方法であって、
    板厚方向に直交する方向に互いに間隔をあけて配された二つのリードに、抵抗部品を接合することで、前記抵抗部品により二つの前記リードを電気接続する接合工程と、
     接合された前記抵抗部品の抵抗値を調整する抵抗値調整工程と、
     を備えるパワーモジュールの製造方法。
  2. 前記抵抗値調整工程において、二つの前記リードの配列方向に直交する直交方向における前記抵抗部品の端部から削る、
     請求項1に記載のパワーモジュールの製造方法。
  3.  前記抵抗値調整工程において、前記抵抗部品を削ることで前記抵抗部品に前記直交方向に延びる削り溝を形成し、
     前記削り溝は、前記配列方向に互いに間隔をあけて複数配列され、
     前記配列方向に隣り合う一対の前記削り溝は、互いに異なる前記抵抗部品の端部から互いに逆向きに延び、
     一対の前記削り溝の延長方向の先端部が、前記配列方向から見て互いに重なる
     請求項2に記載のパワーモジュールの製造方法。
  4.  前記接合工程において、二つの前記リードの側部に前記抵抗部品を接合する、
    請求項1から請求項3のいずれか一項に記載のパワーモジュールの製造方法。
  5. 前記接合工程において、前記抵抗部品が、前記リードの少なくとも一方の主面と共に同一の平坦面をなすように、二つの前記リードの側部に接合する、
    請求項4に記載のパワーモジュールの製造方法。
  6.  前記抵抗値調整工程において、前記抵抗部品に削り量と前記抵抗部品の抵抗値の関係を示す指標が形成されている、
    請求項1から請求項5のいずれか一項に記載のパワーモジュールの製造方法。
  7.  前記接合工程において、前記リードと前記抵抗部品とは溶接により接合する、
    請求項1から請求項6のいずれか一項に記載のパワーモジュールの製造方法。
PCT/JP2017/021606 2017-06-12 2017-06-12 パワーモジュールの製造方法 WO2018229816A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021606 WO2018229816A1 (ja) 2017-06-12 2017-06-12 パワーモジュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021606 WO2018229816A1 (ja) 2017-06-12 2017-06-12 パワーモジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2018229816A1 true WO2018229816A1 (ja) 2018-12-20

Family

ID=64660910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021606 WO2018229816A1 (ja) 2017-06-12 2017-06-12 パワーモジュールの製造方法

Country Status (1)

Country Link
WO (1) WO2018229816A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956263B1 (ja) * 2019-11-18 2021-11-02 サンコール株式会社 シャント抵抗器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553236U (ja) * 1991-12-20 1993-07-13 株式会社村田製作所 リボン端子付き電子部品
JPH06181277A (ja) * 1992-12-11 1994-06-28 Mitsubishi Electric Corp 樹脂封止型半導体装置及びその抵抗線を備えたリードフレームの製造方法
JP2003100501A (ja) * 2001-09-20 2003-04-04 Hokuriku Electric Ind Co Ltd 表面実装用抵抗器及びその製造方法
JP2009231559A (ja) * 2008-03-24 2009-10-08 Denso Corp 抵抗体の組み付け方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553236U (ja) * 1991-12-20 1993-07-13 株式会社村田製作所 リボン端子付き電子部品
JPH06181277A (ja) * 1992-12-11 1994-06-28 Mitsubishi Electric Corp 樹脂封止型半導体装置及びその抵抗線を備えたリードフレームの製造方法
JP2003100501A (ja) * 2001-09-20 2003-04-04 Hokuriku Electric Ind Co Ltd 表面実装用抵抗器及びその製造方法
JP2009231559A (ja) * 2008-03-24 2009-10-08 Denso Corp 抵抗体の組み付け方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956263B1 (ja) * 2019-11-18 2021-11-02 サンコール株式会社 シャント抵抗器

Similar Documents

Publication Publication Date Title
JP5655257B2 (ja) シャント抵抗器およびその製造方法
KR102181276B1 (ko) 전류 검출 장치
US9625494B2 (en) Current detection resistor
US8363420B2 (en) Electronic control apparatus
CN107710349A (zh) 电阻器及其制造方法
US20170212148A1 (en) Resistor, in particular low-resistance current measuring resistor
JPH06224014A (ja) 電気抵抗の製造方法
JP2009244065A (ja) シャント抵抗およびシャント抵抗への端子取付け方法
WO2021220526A1 (ja) シャント抵抗器、シャント抵抗器の製造方法、および電流検出装置
JP2011018759A (ja) シャント抵抗器
WO2018229816A1 (ja) パワーモジュールの製造方法
JP5713526B2 (ja) 熱電変換モジュールならびに冷却装置、発電装置および温度調節装置
WO2018229820A1 (ja) パワーモジュール
WO2018229817A1 (ja) パワーモジュール
CN106031307B (zh) 用于生产功率印制电路的工艺和通过此工艺获得的功率印制电路
JP4189005B2 (ja) チップ抵抗器
JP4787749B2 (ja) コンデンサモジュールおよびその製造方法
WO2018229822A1 (ja) パワーモジュール
EP3550618A1 (en) Thermoelectric module
JP7567261B2 (ja) 電流検出装置
US10236430B2 (en) Thermoelectric module
JP2019091824A (ja) シャント抵抗器
JP6899246B2 (ja) 電子部品
EP3703139A1 (en) Thermoelectric module
JP6236553B1 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP