CN102569404B - 低导通电阻的横向扩散mos半导体器件 - Google Patents

低导通电阻的横向扩散mos半导体器件 Download PDF

Info

Publication number
CN102569404B
CN102569404B CN201210014741.6A CN201210014741A CN102569404B CN 102569404 B CN102569404 B CN 102569404B CN 201210014741 A CN201210014741 A CN 201210014741A CN 102569404 B CN102569404 B CN 102569404B
Authority
CN
China
Prior art keywords
type
type light
light doping
layer
doping section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210014741.6A
Other languages
English (en)
Other versions
CN102569404A (zh
Inventor
陈伟元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Vocational University
Original Assignee
Suzhou Vocational University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Vocational University filed Critical Suzhou Vocational University
Priority to CN201210014741.6A priority Critical patent/CN102569404B/zh
Publication of CN102569404A publication Critical patent/CN102569404A/zh
Application granted granted Critical
Publication of CN102569404B publication Critical patent/CN102569404B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开一种低导通电阻的横向扩散MOS半导体器件,包括:位于P型的衬底层内的P型阱层和N型轻掺杂层;源极区和N型轻掺杂层之间区域的P型阱层上方设有栅氧层;源极区与N型轻掺杂层之间且位于P型阱层上部开有至少两个凹槽,此凹槽的刻蚀深度为源极区结深的1/4~1/5之间;N型轻掺杂层由第一N型轻掺杂区、第二N型轻掺杂区和P型轻掺杂区组成;所述第一N型轻掺杂区的掺杂浓度高于所述P型轻掺杂区的掺杂浓度,所述P型轻掺杂区的掺杂浓度高于所述第二N型轻掺杂区的掺杂浓度;所述第一N型轻掺杂区与第二N型轻掺杂区的掺杂浓度比例范围为:1.2∶1~1.3∶1。本发明功率MOS半导体器件减小了器件体积,同时改善了器件的响应时间和频率特性,实现了器件性能参数的长时间稳定性。

Description

低导通电阻的横向扩散MOS半导体器件
技术领域
本发明涉及一种MOS器件,具体涉及一种金属氧化物功率MOS半导体器件。
背景技术
金属氧化物功率MOS半导体器件,随着半导体行业的迅猛发展,以大功率半导体器件为代表的电力电子技术迅速发展,应用领域不断扩大,如交流电机的控制,打印机驱动电路。在现今各种功率器件中,横向扩散MOS半导体器件LDMOS具有工作电压高,工艺相对简单,因此LDMOS具有广阔的发展前景。在LDMOS器件设计中,击穿电压和导通电阻一直都是人们设计此类器件时所关注的主要目标,外延层的厚度、掺杂浓度、漂移区的长度是LDMOS最重要的参数。可以通过增加漂移区的长度以提高击穿电压,但是这会增加芯片面积和导通电阻。耐压和导通电阻对于外延层的浓度和厚度的要求是矛盾的。高的击穿电压要求厚的轻掺杂外延层和长的漂移区,而低的导通电阻则要求薄的重掺杂外延层和短的漂移区,因此必须选择最佳外延参数和漂移区长度,以便在满足一定的源漏击穿电压的前提下,得到最小的导通电阻。RESURF(降低表面电场原理)一直被广泛应用于高压器件的设计中,此原理要求漂移区电荷和衬底电荷达到电荷平衡,以做到漂移区完全耗尽时可以承受较高耐压。
随着器件小型化的发展要求,现有的LDMOS设计占有的版图面积较大,这不利于其与其它功能器件集成进一步减小体积,从而扩展应用范围,因此,如何设计一种能有效降低现有的LDMOS的所占硅片的表面积,并能进一步改善器件的性能,成为技术障碍。
发明内容
本发明提供一种低导通电阻的横向扩散MOS半导体器件,此功率MOS半导体器件减小了器件体积,同时改善了器件的响应时间和频率特性,实现了器件性能参数的长时间稳定性。
为达到上述目的,本发明采用的技术方案是:
一种低导通电阻的横向扩散MOS半导体器件,包括:位于P型的衬底层内的P型阱层和N型轻掺杂层,所述P型阱层与N型轻掺杂层在水平方向相邻从而构成一PN结,一源极区位于所述P型阱层,一漏极区位于所述衬底层内,位于所述源极区和N型轻掺杂层之间区域的P型阱层上方设有栅氧层,此栅氧层上方设有一栅极区;所述源极区与N型轻掺杂层之间且位于P型阱层上部开有至少两个凹槽,此凹槽的刻蚀深度为源极区结深的1/4~1/5之间;
所述N型轻掺杂层由第一N型轻掺杂区、第二N型轻掺杂区和P型轻掺杂区组成;所述第一N型轻掺杂区的掺杂浓度高于所述P型轻掺杂区的掺杂浓度,所述P型轻掺杂区的掺杂浓度高于所述第二N型轻掺杂区的掺杂浓度;
所述第一N型轻掺杂区与第二N型轻掺杂区的掺杂浓度比例范围为:1.2∶1~1.3∶1;
所述第一N型轻掺杂区位于所述第二N型轻掺杂区上方;所述P型轻掺杂区在水平方向上位于所述第一N型轻掺杂区的中央区域且此P型轻掺杂区在垂直方向上位于所述第一N型轻掺杂区中央区域的中下部并与所述第二N型轻掺杂区表面接触。
作为优选,所述凹槽的侧墙区和顶墙区的掺杂浓度相等,且为凹槽的底部区杂浓度的86~94%之间。
作为优选,所述第一N型轻掺杂区与P型轻掺杂区的掺杂浓度比例为:1.08∶1。
作为优选,所述P型阱层和N型轻掺杂层的结深比例为2∶1。
作为优选,所述漏极区位于所述N型轻掺杂层内。
作为优选,所述N型轻掺杂层位于所述漏极区与所述P型阱层之间。
由于上述技术方案运用,本发明与现有技术相比具有下列优点和效果:
1、本发明开有至少两个凹槽,增加了沟道密度加倍,提高了栅宽,提高了轻掺杂层掺杂浓度的设计空间,利于器件整体性能的优化及体积减小,从而降低产业成本。
2、本发明凹槽的侧墙区和顶墙区的掺杂浓度相等,可有效避免侧墙区、顶墙区掺杂离子的扩散,实现了器件性能长时间的参数稳定性;其次,侧墙区和顶墙区的掺杂浓小于凹槽的底部区的掺杂浓度,克服了栅宽的影响,保证了器件的开启时间小,减小了高频时导通电阻和开关损耗。
3、本发明P型轻掺杂区在垂直方向上位于所述第一N型轻掺杂区中央区域的中下部并与所述第二N型轻掺杂区接触,经过仿真测试降低了栅漏电容Cgd,截止频率提高了8%左右,形成两条电流支路,进一步降低了比导通电阻。
4、本发明所述第一N型轻掺杂区、P型轻掺杂区和第二N型轻掺杂区的掺杂浓度依次降低,且P型阱层和N型轻掺杂层的结深比例为2∶1,有利于衬底层的垂直方向耗尽区与水平方向耗尽区相互耦合,从而可以抵消沟道区得凹槽设计而带来的本征电容的增加,从而有利于器件的击穿电压和比导通电阻的参数设计。
5、本发明所述P型轻掺杂区两侧的第一N型轻掺杂区和第二N型轻掺杂区各自的掺杂浓度不同,且第一N型轻掺杂区和第二N型轻掺杂区之间的交界面位于P型轻掺杂区下方;有利于在P型轻掺杂区两侧形成垂直方向的耗尽层,可进一步提高器件的耐高压性能。
6、本发明保持高击穿电压的同时,进一步提高N型轻掺杂层的浓度从而降低了器件的整体比导通电阻和器件的开关损耗,且P型轻掺杂区对其N型轻掺杂层内调制的电场更趋于平坦化,有效降低了P型阱层与N型轻掺杂层之间的电场强度。
附图说明
附图1为本发明金属氧化物功率MOS半导体器件结构示意图;
附图2为附图1中A处局部放大图。
以上附图中:1、衬底层;2、P型阱层;3、N型轻掺杂层;4、源极区;5、漏极区;6、P型轻掺杂区;7、栅氧层;8、栅极区;9、第一N型轻掺杂区;10、第二N型轻掺杂区;11、凹槽;12、侧墙区;13、顶墙区;14、底部区。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
实施例:一种低导通电阻的横向扩散MOS半导体器件,包括:位于P型的衬底层1内的P型阱层2和N型轻掺杂层3,所述P型阱层2与N型轻掺杂层3在水平方向相邻从而构成一PN结,一源极区4位于所述P型阱层2,一漏极区5位于所述衬底层1内,位于所述源极区4和N型轻掺杂层3之间区域的P型阱层2上方设有栅氧层7,此栅氧层7上方设有一栅极区8;所述源极区4与N型轻掺杂层3之间且位于P型阱层2上部开有至少两个凹槽11,此凹槽11的刻蚀深度为源极区4结深的1/4~1/5之间;凹槽11的侧墙区12和顶墙区13的掺杂浓度相等,且为凹槽11的底部区14杂浓度的86~94%之间;
所述N型轻掺杂层3由第一N型轻掺杂区9、第二N型轻掺杂区10和P型轻掺杂区6组成;所述第一N型轻掺杂区9的掺杂浓度高于所述P型轻掺杂区6的掺杂浓度,所述P型轻掺杂区6的掺杂浓度高于所述第二N型轻掺杂区10的掺杂浓度;
所述第一N型轻掺杂区9与第二N型轻掺杂区10的掺杂浓度比例范围为:1.2∶1~1.3∶1;
所述第一N型轻掺杂区9位于所述第二N型轻掺杂区10上方;所述P型轻掺杂区6在水平方向上位于所述第一N型轻掺杂区9的中央区域且此P型轻掺杂区6在垂直方向上位于所述第一N型轻掺杂区9中央区域的中下部并与所述第二N型轻掺杂区10表面接触。
上述第一N型轻掺杂区9与P型轻掺杂区6的掺杂浓度比例为:1.08∶1。
上述P型阱层2和N型轻掺杂层3的结深比例为2∶1。
上述漏极区5位于所述N型轻掺杂层3内。
上述N型轻掺杂层3位于所述漏极区5与所述P型阱层2之间。
采用上述低导通电阻的横向扩散MOS半导体器件时,开有至少两个凹槽,增加了沟道密度加倍,提高了栅宽,提高了轻掺杂层掺杂浓度的设计空间,利于器件整体性能的优化及体积减小,从而降低产业成本;其次,本发明凹槽的侧墙区和顶墙区的掺杂浓度相等,可有效避免侧墙区、顶墙区掺杂离子的扩散,实现了器件性能长时间的参数稳定性;其次,侧墙区和顶墙区的掺杂浓度小于凹槽的底部区的掺杂浓度,克服了栅宽的影响,保证了器件的开启时间小,减小了高频时导通电阻和开关损耗;再次,本发明P型轻掺杂区在垂直方向上位于所述第一N型轻掺杂区中央区域的中下部并与所述第二N型轻掺杂区接触,经过仿真测试降低了栅漏电容Cgd,截止频率提高了8%左右,形成两条电流支路,进一步降低了比导通电阻;再次,本发明所述第一N型轻掺杂区、P型轻掺杂区和第二N型轻掺杂区的掺杂浓度依次降低,且P型阱层和N型轻掺杂层的结深比例为2∶1,有利于衬底层的垂直方向耗尽区与水平方向耗尽区相互耦合,从而可以抵消沟道区凹槽设计而带来的本征电容的增加,从而有利于器件的击穿电压和比导通电阻的参数设计。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种低导通电阻的横向扩散MOS半导体器件,包括:位于P型的衬底层(1)内的P型阱层(2)和N型轻掺杂层(3),所述P型阱层(2)与N型轻掺杂层(3)在水平方向相邻从而构成一PN结,一源极区(4)位于所述P型阱层(2),一漏极区(5)位于所述衬底层(1)内,位于所述源极区(4)和N型轻掺杂层(3)之间区域的P型阱层(2)上方设有栅氧层(7),此栅氧层(7)上方设有一栅极区(8);其特征在于:所述源极区(4)与N型轻掺杂层(3)之间且位于P型阱层(2)上部开有至少两个凹槽(11),此凹槽(11)的刻蚀深度为源极区(4)结深的1/4~1/5之间;
所述N型轻掺杂层(3)由第一N型轻掺杂区(9)、第二N型轻掺杂区(10)和P型轻掺杂区(6)组成;所述第一N型轻掺杂区(9)的掺杂浓度高于所述P型轻掺杂区(6)的掺杂浓度,所述P型轻掺杂区(6)的掺杂浓度高于所述第二N型轻掺杂区(10)的掺杂浓度;
所述第一N型轻掺杂区(9)与第二N型轻掺杂区(10)的掺杂浓度比例范围为:1.2∶1~1.3∶1;
所述第一N型轻掺杂区(9)位于所述第二N型轻掺杂区(10)上方;所述P型轻掺杂区(6)在水平方向上位于所述第一N型轻掺杂区(9)的中央区域且此P型轻掺杂区(6)在垂直方向上位于所述第一N型轻掺杂区(9)中央区域的中下部并与所述第二N型轻掺杂区(10)表面接触;
所述凹槽(11)的侧墙区(12)和顶墙区(13)的掺杂浓度相等,且为凹槽(11)的底部区(14)掺杂浓度的86~94%之间;
所述第一N型轻掺杂区(9)与P型轻掺杂区(6)的掺杂浓度比例为:1.08∶1。
2.根据权利要求1所述的MOS半导体器件,其特征在于:所述P型阱层(2)和N型轻掺杂层(3)的结深比例为2∶1。
3.根据权利要求1或2所述的MOS半导体器件,其特征在于:所述漏极区(5)位于所述N型轻掺杂层(3)内。
4.根据权利要求1或2所述的MOS半导体器件,其特征在于:所述N型轻掺杂层(3)位于所述漏极区(5)与所述P型阱层(2)之间。
CN201210014741.6A 2012-01-18 2012-01-18 低导通电阻的横向扩散mos半导体器件 Expired - Fee Related CN102569404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210014741.6A CN102569404B (zh) 2012-01-18 2012-01-18 低导通电阻的横向扩散mos半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210014741.6A CN102569404B (zh) 2012-01-18 2012-01-18 低导通电阻的横向扩散mos半导体器件

Publications (2)

Publication Number Publication Date
CN102569404A CN102569404A (zh) 2012-07-11
CN102569404B true CN102569404B (zh) 2014-11-26

Family

ID=46414363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210014741.6A Expired - Fee Related CN102569404B (zh) 2012-01-18 2012-01-18 低导通电阻的横向扩散mos半导体器件

Country Status (1)

Country Link
CN (1) CN102569404B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280455B (zh) * 2013-04-28 2016-05-18 苏州市职业大学 横向扩散型低导通电阻mos器件
CN103280456B (zh) * 2013-04-28 2016-01-27 苏州市职业大学 平面型功率mos器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263125A (zh) * 2011-08-24 2011-11-30 苏州市职业大学 一种横向扩散金属氧化物功率mos器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134871A (ja) * 1988-11-15 1990-05-23 Mitsubishi Electric Corp 半導体装置
US8236648B2 (en) * 2007-07-27 2012-08-07 Seiko Instruments Inc. Trench MOS transistor and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263125A (zh) * 2011-08-24 2011-11-30 苏州市职业大学 一种横向扩散金属氧化物功率mos器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP平2-134871A 1990.05.23 *

Also Published As

Publication number Publication date
CN102569404A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
CN202695453U (zh) 一种横向晶体管
CN102610643B (zh) 沟槽金属氧化物半导体场效应晶体管器件
US7928505B2 (en) Semiconductor device with vertical trench and lightly doped region
US8441046B2 (en) Topside structures for an insulated gate bipolar transistor (IGBT) device to achieve improved device performances
CN203445130U (zh) 半导体器件
US11211485B2 (en) Trench power transistor
CN104201206A (zh) 一种横向soi功率ldmos器件
JP5833277B1 (ja) 半導体装置
CN107359201B (zh) 沟槽栅超结mosfet
JPWO2014188569A1 (ja) ダイオード内蔵igbt
CN104813452A (zh) 半导体器件
CN105895696A (zh) 功率集成器件、包括其的电子设备以及包括其的电子系统
CN102376762A (zh) 超级结ldmos器件及制造方法
CN102263125B (zh) 一种横向扩散金属氧化物功率mos器件
CN109755238B (zh) 一种分栅结构的超结功率器件
CN104218088A (zh) 基于折叠漂移区的soi耐压结构及功率器件
CN107546274B (zh) 一种具有阶梯型沟槽的ldmos器件
CN102569404B (zh) 低导通电阻的横向扩散mos半导体器件
JP2006261562A (ja) 半導体装置
CN103280455B (zh) 横向扩散型低导通电阻mos器件
CN203707141U (zh) 集成梳状栅纵向沟道soi ldmos单元
CN101777584A (zh) p沟道横向双扩散金属氧化物半导体器件
CN104617139A (zh) Ldmos器件及制造方法
CN203242638U (zh) 横向扩散型低导通电阻mos器件
CN202423297U (zh) 低导通电阻的横向mos器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141126

Termination date: 20160118

EXPY Termination of patent right or utility model