CN103280456B - 平面型功率mos器件 - Google Patents

平面型功率mos器件 Download PDF

Info

Publication number
CN103280456B
CN103280456B CN201310153946.7A CN201310153946A CN103280456B CN 103280456 B CN103280456 B CN 103280456B CN 201310153946 A CN201310153946 A CN 201310153946A CN 103280456 B CN103280456 B CN 103280456B
Authority
CN
China
Prior art keywords
layer
type
doped layer
source area
type lightly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310153946.7A
Other languages
English (en)
Other versions
CN103280456A (zh
Inventor
陈伟元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Vocational University
Original Assignee
Suzhou Vocational University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Vocational University filed Critical Suzhou Vocational University
Priority to CN201310153946.7A priority Critical patent/CN103280456B/zh
Publication of CN103280456A publication Critical patent/CN103280456A/zh
Application granted granted Critical
Publication of CN103280456B publication Critical patent/CN103280456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种平面型功率MOS器件,包括位于P型的衬底层内的P型阱层和N型轻掺杂层,所述P型阱层与N型轻掺杂层在水平方向相邻从而构成一PN结,一源极区位于所述P型阱层,一漏极区位于所述衬底层内,位于所述源极区和N型轻掺杂层之间区域的P型阱层上方设有栅氧层,此栅氧层上方设有一栅极区;其特征在于:所述源极区与N型轻掺杂层之间且位于P型阱层上部开有至少两个凹槽,靠近源极区的凹槽刻蚀深度小于靠近所述N型轻掺杂层的凹槽刻蚀深度,且若干个所述凹槽的刻蚀深度由源极区至N型轻掺杂层方向依次增加。通过上述方式,本发明能够提高耐击穿电压降低了器件比导通电阻,改善响应时间和频率特性,优化整体性能,减小体积。

Description

平面型功率MOS器件
技术领域
本发明涉及一种MOS器件,特别是涉及一种平面型功率MOS器件。
背景技术
金属氧化物功率MOS半导体器件,随着半导体行业的迅猛发展,以大功率半导体器件为代表的电力电子技术迅速发展,应用领域不断扩大,如交流电机的控制,打印机驱动电路。在现今各种功率器件中,横向扩散MOS半导体器件LDMOS具有工作电压高,工艺相对简单,因此LDMOS具有广阔的发展前景。在LDMOS器件设计中,击穿电压和导通电阻一直都是人们设计此类器件时所关注的主要目标,外延层的厚度、掺杂浓度、漂移区的长度是LDMOS最重要的参数。可以通过增加漂移区的长度以提高击穿电压,但是这会增加芯片面积和导通电阻。耐压和导通电阻对于外延层的浓度和厚度的要求是矛盾的。高的击穿电压要求厚的轻掺杂外延层和长的漂移区,而低的导通电阻则要求薄的重掺杂外延层和短的漂移区,因此必须选择最佳外延参数和漂移区长度,以便在满足一定的源漏击穿电压的前提下,得到最小的导通电阻。RESURF(降低表面电场原理)一直被广泛应用于高压器件的设计中,此原理要求漂移区电荷和衬底电荷达到电荷平衡,以做到漂移区完全耗尽时可以承受较高耐压。
随着器件小型化的发展要求,现有的LDMOS设计占有的版图面积较大,这不利于其与其它功能器件集成进一步减小体积,从而扩展应用范围,因此,如何设计一种能有效降低现有的LDMOS所占硅片的表面积,并能进一步改善器件的性能,成为技术障碍。
发明内容
本发明主要解决的技术问题是提供一种平面型功率MOS器件,能够提高耐击穿电压并降低了器件比导通电阻,同时大大改善了器件的响应时间和频率特性,利于器件整体性能的优化及体积减小。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种平面型功率MOS器件,包括位于P型的衬底层内的P型阱层和N型轻掺杂层,所述P型阱层与N型轻掺杂层在水平方向相邻从而构成一PN结,一源极区位于所述P型阱层,一漏极区位于所述衬底层内,位于所述源极区和N型轻掺杂层之间区域的P型阱层上方设有栅氧层,此栅氧层上方设有一栅极区;其特征在于:所述源极区与N型轻掺杂层之间且位于P型阱层上部开有至少两个凹槽,靠近源极区的凹槽刻蚀深度小于靠近所述N型轻掺杂层的凹槽刻蚀深度,且若干个所述凹槽的刻蚀深度由源极区至N型轻掺杂层方向依次增加;
优选的是,所述凹槽的刻蚀深度为源极区结深的1/3~1/4之间,靠近所述源极区的凹槽刻蚀深度为源极区结深的1/3.5~1/4,靠近所述N型轻掺杂层的凹槽刻蚀深度为源极区结深的1/3~1/3.5;
优选的是,所述N型轻掺杂层(3)与P型轻掺杂区(6)的掺杂浓度比例为:1:0.8~0.9;
优选的是,所述P型阱层(2)和N型轻掺杂层(3)的结深比例为2:1;
优选的是,所述漏极区位于所述N型轻掺杂层内。
本发明的有益效果是:1、本发明沟道区开有至少两个凹槽,增加了沟道密度加倍,提高了栅宽,提高了击穿电压并降低了器件的比导通电阻,提高了轻掺杂层掺杂浓度的设计空间,利于器件整体性能的优化及体积减小。
2、本发明沟道区若干个凹槽中源极区与N型轻掺杂层之间且位于P型阱层上部开有至少两个凹槽,靠近源极区的凹槽刻蚀深度小于靠近所述N型轻掺杂层的凹槽刻蚀深度,且若干个所述凹槽的刻蚀深度由源极区至N型轻掺杂层方向依次增加,既改善了器件的响应时间和频率特性同时,也可提高沟道区P型阱层的浓度,降低了导通电阻和器件关态的功耗。
3、本发明凹槽的侧墙区和顶墙区的掺杂浓度相等,可有效避免侧墙区、顶墙区掺杂离子的扩散,实现了器件性能长时间的参数稳定性;其次,侧墙区和顶墙区的掺杂浓小于凹槽的底部区的掺杂浓度,克服了栅宽的影响,保证了器件的开启时间小,减小了高频时导通电阻和开关损耗。
附图说明
图1是本发明平面型功率MOS器件的结构示意图一;
图2是本发明平面型功率MOS器件的局部放大图;
图3是本发明平面型功率MOS器件的结构示意图二。
具体实施方式
下面结合附图对本发明较佳实施例进行详细阐述,以使发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
请参阅图1至图3,本发明实施例包括:
实施例1:一种平面型功率MOS器件,包括:位于P型的衬底层1内的P型阱层2和N型轻掺杂层3,所述P型阱层2与N型轻掺杂层3在水平方向相邻从而构成一PN结,一源极区4位于所述P型阱层2,一漏极区5位于所述衬底层1内,位于所述源极区4和N型轻掺杂层3之间区域的P型阱层2上方设有栅氧层7,此栅氧层7上方设有一栅极区8;所述源极区4与N型轻掺杂层3之间且位于P型阱层2上部开有至少两个凹槽,靠近源极区4的凹槽刻蚀深度小于靠近所述N型轻掺杂层3的凹槽刻蚀深度,且若干个所述凹槽的刻蚀深度由源极区4至N型轻掺杂层3方向依次增加;
所述凹槽的侧墙区10和顶墙区11的掺杂浓度相等,且为凹槽的底部区杂浓度的83~84%之间。
上述凹槽的刻蚀深度为源极区4结深的1/3.5左右,靠近所述源极区4的凹槽刻蚀深度为源极区4结深的1/3.8,靠近所述N型轻掺杂层3的凹槽刻蚀深度为源极区4结深的1/3.2。
上述N型轻掺杂层3与P型轻掺杂区的掺杂浓度比例为:1:0.82。
上述P型阱层2和N型轻掺杂层3的结深比例为2:1;上述N型轻掺杂层3位于所述漏极区5与所述P型阱层2之间。
实施例2:一种平面型功率MOS器件,包括:位于P型的衬底层1内的P型阱层2和N型轻掺杂层3,所述P型阱层2与N型轻掺杂层3在水平方向相邻从而构成一PN结,一源极区4位于所述P型阱层2,一漏极区5位于所述衬底层1内,位于所述源极区4和N型轻掺杂层3之间区域的P型阱层2上方设有栅氧层7,此栅氧层7上方设有一栅极区8;所述源极区4与N型轻掺杂层3之间且位于P型阱层2上部开有至少两个凹槽,靠近源极区4的凹槽刻蚀深度小于靠近所述N型轻掺杂层3的凹槽刻蚀深度,且若干个所述凹槽的刻蚀深度由源极区4至N型轻掺杂层3方向依次增加;
所述凹槽的侧墙区10和顶墙区11的掺杂浓度相等,且为凹槽的底部区6杂浓度的88~89%之间。
上述凹槽的刻蚀深度为源极区4结深的1/3.8左右,靠近所述源极区4的凹槽刻蚀深度为源极区4结深的1/3.6,靠近所述N型轻掺杂层3的凹槽刻蚀深度为源极区4结深的1/3.4。
上述N型轻掺杂层3与P型轻掺杂区的掺杂浓度比例为:1:0.88。
上述P型阱层2和N型轻掺杂层3的结深比例为2:1;上述漏极区5位于所述N型轻掺杂层3内。
本发明平面型功率MOS器件,沟道区开有至少两个凹槽,使沟道密度加倍,提高了栅宽,能够提高耐击穿电压并降低了器件比导通电阻,同时大大改善了器件的响应时间和频率特性,利于器件整体性能的优化及体积减小。
其沟道区若干个凹槽中源极区与N型轻掺杂层之间且位于P型阱层上部开有至少两个凹槽,靠近源极区的凹槽刻蚀深度小于靠近所述N型轻掺杂层的凹槽刻蚀深度,且若干个所述凹槽的刻蚀深度由源极区至N型轻掺杂层方向依次增加,既改善了器件的响应时间和频率特性同时,也可提高沟道区P型阱层的浓度,降低了导通电阻和器件在关闭状态的功耗。
其凹槽的侧墙区和顶墙区的掺杂浓度相等,可有效避免侧墙区、顶墙区掺杂离子的扩散,实现了器件性能长时间的参数稳定性;其次,侧墙区和顶墙区的掺杂浓度小于凹槽的底部区的掺杂浓度,克服了栅宽的影响,保证了器件的小开启时间,减小了高频时的导通电阻和开关损耗。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

1.一种平面型功率MOS器件,包括位于P型的衬底层内的P型阱层和N型轻掺杂层,所述P型阱层与N型轻掺杂层在水平方向相邻从而构成一PN结,一源极区位于所述P型阱层,一漏极区位于所述衬底层内,位于所述源极区和N型轻掺杂层之间区域的P型阱层上方设有栅氧层,此栅氧层上方设有一栅极区;其特征在于:所述源极区与N型轻掺杂层之间且位于P型阱层上部开有至少两个凹槽,靠近源极区的凹槽刻蚀深度小于靠近所述N型轻掺杂层的凹槽刻蚀深度,且若干个所述凹槽的刻蚀深度由源极区至N型轻掺杂层方向依次增加;所述凹槽的侧墙区和顶墙区的掺杂浓度相等,且为凹槽的底部区掺杂浓度的82~90%之间。
2.根据权利要求1所述的平面型功率MOS器件,其特征在于:所述凹槽的刻蚀深度为源极区结深的1/3~1/4之间,靠近所述源极区的凹槽刻蚀深度为源极区结深的1/3.5~1/4,靠近所述N型轻掺杂层的凹槽刻蚀深度为源极区结深的1/3~1/3.5。
3.根据权利要求1所述的平面型功率MOS器件,其特征在于:所述N型轻掺杂层(3)与P型轻掺杂区(6)的掺杂浓度比例为:1:0.8~0.9。
4.根据权利要求1所述的平面型功率MOS器件,其特征在于:所述P型阱层(2)和N型轻掺杂层(3)的结深比例为2:1。
5.根据权利要求1所述的平面型功率MOS器件,其特征在于:所述漏极区位于所述N型轻掺杂层内。
CN201310153946.7A 2013-04-28 2013-04-28 平面型功率mos器件 Active CN103280456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310153946.7A CN103280456B (zh) 2013-04-28 2013-04-28 平面型功率mos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310153946.7A CN103280456B (zh) 2013-04-28 2013-04-28 平面型功率mos器件

Publications (2)

Publication Number Publication Date
CN103280456A CN103280456A (zh) 2013-09-04
CN103280456B true CN103280456B (zh) 2016-01-27

Family

ID=49062940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310153946.7A Active CN103280456B (zh) 2013-04-28 2013-04-28 平面型功率mos器件

Country Status (1)

Country Link
CN (1) CN103280456B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452231B1 (en) * 1997-07-31 2002-09-17 Kabushiki Kaisha Toshiba Semiconductor device
TW201225298A (en) * 2005-08-12 2012-06-16 Ciclon Semiconductor Device Corp Power LDMOS transistor
CN102569404A (zh) * 2012-01-18 2012-07-11 苏州市职业大学 低导通电阻的横向扩散mos半导体器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006046853B4 (de) * 2006-10-02 2010-01-07 Infineon Technologies Austria Ag Randkonstruktion für ein Halbleiterbauelement und Verfahren zur Herstellung derselben

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452231B1 (en) * 1997-07-31 2002-09-17 Kabushiki Kaisha Toshiba Semiconductor device
TW201225298A (en) * 2005-08-12 2012-06-16 Ciclon Semiconductor Device Corp Power LDMOS transistor
CN102569404A (zh) * 2012-01-18 2012-07-11 苏州市职业大学 低导通电阻的横向扩散mos半导体器件

Also Published As

Publication number Publication date
CN103280456A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
CN102610643B (zh) 沟槽金属氧化物半导体场效应晶体管器件
CN202695453U (zh) 一种横向晶体管
US11211485B2 (en) Trench power transistor
CN105070759A (zh) Nldmos器件及其制造方法
CN103219386B (zh) 一种具有高k绝缘区的横向功率器件
CN103441148A (zh) 一种集成肖特基二极管的槽栅vdmos器件
CN103165678A (zh) 一种超结ldmos器件
CN108198857A (zh) 一种集成凸块状肖特基二极管的碳化硅mosfet器件元胞结构
CN103117302A (zh) Fs型igbt器件的背面结构
CN102263125B (zh) 一种横向扩散金属氧化物功率mos器件
TWI550883B (zh) 橫向雙擴散金氧半導體元件及減少表面電場的結構
CN104103522B (zh) 一种高耐压超结终端结构的制备方法
CN103855208A (zh) 一种高压ldmos集成器件
CN112447822A (zh) 一种半导体功率器件
CN107546274B (zh) 一种具有阶梯型沟槽的ldmos器件
CN108110057B (zh) 超结金属氧化物场效应晶体管
CN104218088A (zh) 基于折叠漂移区的soi耐压结构及功率器件
CN103280455B (zh) 横向扩散型低导通电阻mos器件
CN102569404B (zh) 低导通电阻的横向扩散mos半导体器件
CN107359194B (zh) 一种消除高电场的器件
CN103280456B (zh) 平面型功率mos器件
CN115332340A (zh) 一种调节动态特性的超结vdmos器件及制备方法
CN203242638U (zh) 横向扩散型低导通电阻mos器件
CN103151386A (zh) 横向扩散金属氧化物半导体器件及其制造方法
CN104518021A (zh) 一种vdmos器件元胞结构及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant