CN102467954A - 切换向平面外的磁性隧道结单元的方法 - Google Patents

切换向平面外的磁性隧道结单元的方法 Download PDF

Info

Publication number
CN102467954A
CN102467954A CN2011103830195A CN201110383019A CN102467954A CN 102467954 A CN102467954 A CN 102467954A CN 2011103830195 A CN2011103830195 A CN 2011103830195A CN 201110383019 A CN201110383019 A CN 201110383019A CN 102467954 A CN102467954 A CN 102467954A
Authority
CN
China
Prior art keywords
ferromagnetic
free layer
tunneling junction
magnetic tunneling
ferromagnetic free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103830195A
Other languages
English (en)
Other versions
CN102467954B (zh
Inventor
I·金
王小斌
Y·陆
习海文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of CN102467954A publication Critical patent/CN102467954A/zh
Application granted granted Critical
Publication of CN102467954B publication Critical patent/CN102467954B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • H01F10/3259Spin-exchange-coupled multilayers comprising at least a nanooxide layer [NOL], e.g. with a NOL spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明提供了一种切换向平面外的磁性隧道结单元的铁磁自由层的磁化方向的方法,该方法包括:使交流切换电流流经向平面外的磁性隧道结单元,其中交流切换电流切换铁磁自由层的磁化方向。

Description

切换向平面外的磁性隧道结单元的方法
技术领域
本发明涉及切换向平面外的磁性隧道结单元的方法。
背景技术
新型存储器已展现出与常用形式的存储器相媲美的显著可能性。例如,非易失性自旋转移(spin-transfer)扭矩随机存取存储器(此处称为ST-RAM)作为“通用”存储器已被讨论过。磁性隧道结(MTJ)单元由于其高速、相对高的密度和低功耗而在ST-RAM的应用中引起了很多关注。
大多数活动已集中在具有向平面内的(in-plane)磁各向异性的MTJ单元。预测具有向平面外的(out-plane)磁化方向的MTJ单元能够实现比具有相同磁各向异性场的向平面内的MTJ单元小的切换电流。因此,向平面外的磁化方向MTJ单元以及使用它们的方法引起了极大的关注。
发明内容
本公开涉及经常被称为磁性隧道结单元的磁性自旋扭矩存储单元以及使用它们的方法,这些磁性自旋扭矩存储器单元具有与晶片平面垂直对准的、或“向平面外的”关联铁磁层的磁各向异性(即,磁化方向)。
本公开的一个特定实施例是切换向平面外的磁性隧道结单元的铁磁自由层的磁化方向的方法,该方法包括:使交流切换电流流经向平面外的磁性隧道结单元,其中交流切换电流切换铁磁自由层的磁化方向。
本公开的另一特定实施例是磁性存储系统,该磁性存储系统包括:具有铁磁自由层、阻挡层和铁磁基准层的磁性隧道结单元,其中阻挡层定位在铁磁基准层和铁磁自由层之间,并且铁磁自由层和铁磁基准层的磁化方向是向平面外;以及电连接到磁性隧道结单元的交流电流源。
本公开的又一特定实施例是电存储数据的方法,该方法包括:设置向平面外的磁性隧道结存储器单元,向平面外的磁性隧道结存储器单元包括铁磁自由层、阻挡层和铁磁基准层,其中阻挡层定位在铁磁基准层和铁磁自由层之间,并且铁磁自由层和铁磁基准层的磁化方向是向平面外的;并且使交流切换电流流经向平面外的磁性隧道结单元,其中交流切换电流切换铁磁自由层的磁化方向,由此存储数据位。
通过阅读以下详细描述,这些以及各个其他特征和优点将是显而易见的。
附图说明
考虑以下结合附图对本公开的各个实施例的详细描述,可更完整地理解本公开,在附图中:
图1A是说明性MTJ单元的示意图;图1B是包括可任选钉扎层的说明性MTJ单元的示意图;图1C是在低电阻状态下具有向平面外的磁化方向的说明性MTJ单元的示意图;图1D是高电阻状态下的说明性磁性隧道结存储单元的示意侧视图;
图2A是示出直流(DC)切换电流对磁化方向的旋磁驰豫的影响的示意图;而图2B是示出交流(AC)切换电流对磁化方向的旋磁驰豫的影响的示意图;
图3是包括MTJ单元和晶体管的说明性存储单元的示意图;
图4是说明性存储器阵列的示意图;以及
图5是说明性存储系统的示意图。
这些附图不一定按比例示出。附图中所使用的相同数字表示相同部件。然而,应当理解,在给定附图中使用数字表示部件并不旨在限制在另一附图中用相同数字标记的部件。
具体实施方式
本公开涉及具有磁各向异性的磁性隧道结(MTJ)单元的各个实施例,磁各向异性导致关联铁磁层的磁化方向是与晶片平面垂直对准的、或“向平面外的”。
在以下描述中,参考形成本说明书一部分的一组附图,其中通过图示示出了若干具体实施例。应当理解,构想并可作出其他实施例而不背离本公开的范围或精神。因此,以下详细描述不采取限制性含义。本文中所提供的任何定义用于方便理解本文中频繁使用的某些术语,而不旨在限制本公开的范围。
除非另外指出,否则在说明书和权利要求书中使用的表示特征大小、量和物理性质的所有数字应当理解为在任何情况下均由术语“约”修饰。因此,除非相反地指出,否则在上述说明书和所附权利要求中阐明的数值参数是近似值,这些近似值可利用本文中公开的教示根据本领域技术人员所寻求获得的期望性质而变化。
如本说明书和所附权利要求书中所使用的,单数形式“一”、“一个”和“该”涵盖具有复数引用物的实施例,除非该内容另外明确地指出。如本说明书和所附权利要求书中所使用的,术语“或”一般以包括“和/或”的含义来使用,除非该内容另外明确地指出。
尽管本公开不限于此,但通过讨论以下所提供的示例将获得对本公开的各个方面的理解。
图1A示出具有向平面外的磁化方向的说明性MTJ单元100。MTJ单元100包括相对柔软的铁磁自由层110、铁磁基准(例如,固定)层140和氧化物阻挡层130。铁磁自由层110和铁磁基准层140被氧化阻挡层130或非磁性隧道阻挡层分隔开。MTJ单元100还可被描述为具有定位在铁磁基准层和铁磁自由层之间的氧化物阻挡层。
自由层110和基准层140各自具有相关联的磁化方向。层110和140的磁化方向不平行于层延伸和其上形成有MTJ单元100的晶片衬底的平面取向。在一些实施例中,层110和140的磁化方向可被称为“向平面外的”。在一些实施例中,层110和140的磁化方向可被称为“至少基本垂直的”。在一些实施例中,层110和140的磁化方向可被称为“垂直的”。自由层110的磁化方向比基准层140的磁化方向容易切换。诸如籽晶层、覆盖层、或其他层之类的其他可任选层可包括在MTJ单元100中,即使它们未在这些附图中示出。
自由层110和基准层140可独立地由诸如例如Fe、Co、或Ni及其合金(诸如NiFe和CoFe)等任何有用铁磁(FM)材料制成。自由层110和基准层140中的一个或两个都可以是单层或多层。组成自由层和固定层的材料的具体示例可包括:具有诸如TbCoFe、GdCoFe和FePt之类的垂直各向异性的单层;诸如Co/Pt Co/Ni多层之类的叠层;以及用诸如Co/Fe和CoFeB合金之类的高自旋极化铁磁材料层叠的垂直各向异性材料。在一些实施例中,自由层110可包括诸如Co之类的高自旋极化层和诸如GdFeCo之类的稀土过渡性金属合金层。在一些实施例中,基准层140可包括诸如Co之类的高自旋极化层和诸如TbFeCo之类的稀土过渡性金属合金层。
阻挡层130可由诸如例如氧化物材料(例如,A12O3、TiOx或MgOx)等电绝缘材料或半导体材料制成。阻挡层130可以是单层、或者可以是与另一氧化物或金属(例如,Mg/MgO双层)层叠的层。可取决于工艺可行性和设备可靠性,用自由层110或基准层140可任选地图案化阻挡层130。
图1B示出MTJ单元的另一示例性实施例。该MTJ单元101包括设置成逼近或毗邻基准层140的可任选钉扎层150。钉扎层150(如果存在的话)则钉扎基准层140的磁化方向。在一些实施例中,这种钉扎层150可具有零磁化,但仍然可钉扎基准层140的磁化方向。钉扎层(如果存在的话)可以是诸如PtMn、IrMn及其他的反铁磁性有序材料(AFM)。
图1C示出低电阻状态下的磁性隧道结存储单元105,其中自由层110的磁化方向与基准层140的磁化方向处于相同方向。在图1D中,磁性隧道结单元106处于高电阻状态下,其中自由层110的磁化方向处于自由层140的磁化方向的相反方向。在一些实施例中,低电阻状态可以是“0”数据状态、高电阻状态可以是“1”数据状态,然而在其他实施例中,低电阻状态可以是“1”、高电阻状态可以是“0”。
当流经磁性隧道结单元的磁性层的切换电流变成自旋极化的并且将自旋扭矩施加到自由层110上时,经由自旋转移而发生切换电阻状态并且因此切换磁性隧道结单元的数据状态。当将足够的自旋扭矩施加到自由层110时,自由层110的磁化方向可在两个相反方向之间切换,并且因此,磁性隧道结单元可在低电阻状态和高电阻状态之间切换。
此处公开了切换向平面外的磁性隧道结单元的铁磁自由层的磁化方向,该切换包括使交流切换电流流经MTJ单元的步骤。此处也可被称为“AC”的交流电流是电荷(或电子)的移动周期性地反向的电流。流经MTJ单元的交流切换电流的施加(经由如上所讨论的自旋扭矩)使自由层的磁化方向得以切换。在所公开的实施例中,旋磁驰豫也有助于切换自由层的磁化方向。这可提供较低切换电流的使用以用来将数据写入MTJ单元,由此允许较少的功耗。
磁场的旋磁驰豫可由等式1描述:
τ ~ g = ( M ~ × H ~ ) (等式1)
其中
Figure BSA00000622663200052
是自由层的磁化饱和,而
Figure BSA00000622663200053
是电流所生成的磁场。相反地,阻尼驰豫可由等式2描述:
τ ~ d = α M ~ × ( M ~ × H ~ ) (等式2)
其中
Figure BSA00000622663200055
Figure BSA00000622663200056
如上给出,并且α约为0.01。由于幅度为α,因此在任何给定系统中旋磁驰豫比阻尼驰豫高至少约100倍。因此,如果旋磁驰豫可用于帮助切换铁磁自由层的磁化方向,则可降低总切换电流。
在图2A中示意性地示出直流电流对旋磁驰豫的影响。如图2A中可见,直流切换电流在所有方向上将自由层的磁化方向同等地拉(由实线箭头所示)离中心,由此有效地消除旋磁驰豫的影响。相反地,在图2B中示出交流切换电流的影响。如图2B中可见,此情况下的旋磁驰豫本身并未消除并且因此帮助切换自由层的磁化方向。在使用交流切换电流的实施例中,交流切换电流可感生绕开(circumnavigate)磁性隧道结单元的磁场,如图2B中可见。所感生的磁场可在铁磁自由层的磁化方向上诱发旋磁驰豫。这种旋磁驰豫可有助于切换铁磁自由层。由于旋磁驰豫对切换的贡献,可使用较低的切换电流,这可提供可在较低隔离要求的情况下运行的存储器。
在一些实施例中,交流切换电流的频率可与铁磁自由层的旋磁频率相匹配。自由层的旋磁频率是自由层的磁性质和自由层的几何结构的函数。旋磁频率一般处于GHz频率范围内。
交流切换电流可经由阻挡层从自由层流到基准层;或经由阻挡层从基准层流到自由层。
所公开的方法还可任选地包括读取或感测MTJ单元的电阻状态或数据。可通过使读取电流流经MTJ单元来确定MTJ单元的电阻状态。在一些实施例中,读取电流可以是直流读取电流。所测量或感测的电阻(或电压)可与基准电阻(或电压)进行比较。在一些实施例中,读取电流的振幅可小于切换电流的振幅。在一些实施例中,振幅比交流切换电流小的直流读取电流可用于读取或感测MTJ单元的电阻。
此处还公开了电存储数据的方法,该方法包括设置所公开的MTJ单元。设置可包括制造、购买、配置用于电存储数据的系统内的MTJ单元、或其他动作。该方法还可包括如上所述的使交流切换电流流经MTJ单元来切换铁磁自由层的磁化方向。切换铁磁自由层的磁化方向可用来存储数据位,0(例如,如果自由层与基准层平行)或1(例如,如果自由层与基准层相反)。交流切换电流流经MTJ的方向将指示0或1被存储在MTJ中。
这种方法还可包括使读取电流流经MTJ单元来测量或感测MTJ单元的电阻。在读取电流可流经MTJ单元之前、之后或两者,第二(和后续)交流切换电流(在相同或不同的方向上)还可流经MTJ单元。
图3是说明性存储单元300的示意图,存储单元300包括经由导电元件340电连接到晶体管320(诸如基于半导体的晶体管)的MTJ单元310。MTJ单元310可以是本文中所描述的任何MTJ单元。晶体管320可包括具有掺杂区(例如,示为n掺杂区)以及掺杂区之间的沟道区(例如,示为p掺杂沟道区)的半导体衬底350。晶体管320可包括栅极360,栅极360电耦合到字线(WL)以允许选择并且允许电流从位线(BL)流到MTJ单元310。
还可利用半导体制造技术在半导体衬底上形成可编程金属化存储部件的阵列。图4是说明性存储器阵列400的示意性电路图。此处描述的多个存储部件450可被排列在阵列中以形成存储器阵列400。存储器阵列400可包括多条平行的导电位线410。存储器阵列400还可包括多条平行的导电字线420,导电字线420一般与位线410正交。字线420和位线410可形成交叉点阵列,其中存储部件450可被设置在每个交叉点处。可使用常规的半导体制造技术来形成存储部件450和存储器阵列400。
此处还公开了存储系统。所公开的存储系统可包括MTJ单元和交流电流源。在图5中示意性地示出示例性系统。如上所讨论的,磁性存储系统500可包括MTJ单元505,MTJ单元505包括自由层510、阻挡层530和基准层540。系统500还可包括电连接到MTJ单元505的交流电流源501。虽然此处未示出,但是晶体管还可任选地电耦合到MTJ单元505。这些系统还可任选地包括例如构成阵列的多个MTJ单元。在这种实施例中,多个MTJ单元中的每一个可电连接到交流电流源。这些系统还可任选地包括直流电流源502,直流电流源502电连接到MTJ单元505(或多个MTJ单元中的每一个)。直流电流源可用于读取或感测MTJ单元(或多个MTJ单元)的电阻。
如本文中所公开的MTJ单元可使用各种技术来制造,包括例如等离子体气相沉积(PVD)、蒸镀和分子束外延(MBE)。
如本文中所公开的切换MTJ单元的方法、存储数据的方法以及存储系统可用于MRAM应用中。
由此,公开了“切换向平面外的磁性隧道结单元的方法”的各个实施例。上述实现及其他实现在以下权利要求书的范围内。本领域技术人员应当理解,本公开可用除所公开的实施例以外的实施例来实施。所公开的实施例出于说明而非限制的目的而呈现,并且本公开仅由所附权利要求书来限定。

Claims (20)

1.一种切换向平面外的磁性隧道结单元的铁磁自由层的磁化方向的方法,所述方法包括:
使交流切换电流流经向平面外的磁性隧道结单元,其中所述交流切换电流切换所述铁磁自由层的磁化方向。
2.如权利要求1所述的方法,其特征在于,所述交流切换电流的频率与所述铁磁自由层的旋磁频率相匹配。
3.如权利要求2所述的方法,其特征在于,所述交流切换电流感生绕开所述磁性隧道结单元的磁场。
4.如权利要求3所述的方法,其特征在于,所述磁场在所述铁磁自由层的磁化方向上诱发旋磁驰豫。
5.如权利要求1所述的方法,其特征在于,所述磁性隧道结单元包括铁磁自由层、阻挡层和铁磁基准层,其中所述阻挡层定位在所述铁磁自由层和铁磁基准层之间,并且其中所述交流切换电流从所述铁磁基准层流到所述铁磁自由层。
6.如权利要求1所述的方法,其特征在于,所述磁性隧道结单元包括铁磁自由层、阻挡层和铁磁基准层,其中所述阻挡层定位在所述铁磁自由层和铁磁基准层之间,并且其中所述交流切换电流从所述铁磁自由层流到所述铁磁基准层。
7.如权利要求1所述的方法,还包括:使直流读取电流流经所述磁性隧道结单元,以及感测所述磁性隧道结单元的电阻。
8.如权利要求7所述的方法,其特征在于,所述直流读取电流的振幅比所述交流切换电流的振幅小。
9.一种磁性存储系统,包括:
具有铁磁自由层、阻挡层和铁磁基准层的磁性隧道结单元,其中所述阻挡层定位在所述铁磁基准层和铁磁自由层之间,并且所述铁磁自由层和铁磁基准层的磁化方向是向平面外的;以及
电连接到所述磁性隧道结单元的交流电源。
10.如权利要求9所述的磁性存储系统,其特征在于,所述铁磁自由层和铁磁基准层的磁化方向是至少基本垂直的。
11.如权利要求9所述的磁性存储系统,其特征在于,所述铁磁自由层和铁磁基准层的磁化方向是垂直的。
12.如权利要求9所述的磁性存储系统,其特征在于,还包括构成阵列的多个磁性隧道结单元。
13.如权利要求9所述的磁性存储系统,其特征在于,还包括电连接到所述磁性隧道结单元的直流电源。
14.如权利要求9所述的磁性存储系统,还包括:构成阵列的多个磁性隧道结单元,其中所述多个磁性隧道结单元中的每一个电连接到所述交流电源;以及直流电源,其中所述多个磁性隧道结单元中的每一个电连接到所述直流电源。
15.一种电存储数据的方法,包括:
设置向平面外的磁性隧道结存储器单元,所述向平面外的磁性隧道结存储器单元包括铁磁自由层、阻挡层和铁磁基准层,其中所述阻挡层定位在所述铁磁基准层和铁磁自由层之间,并且所述铁磁自由层和铁磁基准层的磁化方向是向平面外的;以及
使交流切换电流流经所述向平面外的磁性隧道结单元,其中所述交流切换电流切换所述铁磁自由层的磁化方向,由此存储数据位。
16.如权利要求15所述的方法,其特征在于,所述交流切换电流的频率与所述铁磁自由层的旋磁频率相匹配。
17.如权利要求16所述的方法,其特征在于,所述交流切换电流感生绕开所述磁性隧道结单元的磁场。
18.如权利要求15所述的方法,其特征在于,所述交流切换电流从所述铁磁基准层流到所述铁磁自由层或从所述铁磁自由层流到所述铁磁基准层。
19.如权利要求15所述的方法,其特征在于,还包括:使直流读取电流流经所述磁性隧道结单元,以及感测所述磁性隧道结单元的电阻。
20.如权利要求15所述的方法,其特征在于,还包括:
使直流读取电流流经所述磁性隧道结单元,并且感测所述磁性隧道结单元的电阻;以及
使第二交流切换电流流经所述磁性隧道结单元以对所述铁磁自由层的磁化方向进行第二次切换。
CN201110383019.5A 2010-11-16 2011-11-15 切换向平面外的磁性隧道结单元的方法 Expired - Fee Related CN102467954B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/946,900 2010-11-16
US12/946,900 US8508973B2 (en) 2010-11-16 2010-11-16 Method of switching out-of-plane magnetic tunnel junction cells

Publications (2)

Publication Number Publication Date
CN102467954A true CN102467954A (zh) 2012-05-23
CN102467954B CN102467954B (zh) 2014-12-17

Family

ID=46047637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110383019.5A Expired - Fee Related CN102467954B (zh) 2010-11-16 2011-11-15 切换向平面外的磁性隧道结单元的方法

Country Status (4)

Country Link
US (2) US8508973B2 (zh)
JP (2) JP2012109554A (zh)
KR (1) KR101338050B1 (zh)
CN (1) CN102467954B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738371A (zh) * 2017-02-24 2018-11-02 Tdk株式会社 磁化反转元件、磁阻效应元件和存储设备
CN113724769A (zh) * 2019-12-24 2021-11-30 珠海南北极科技有限公司 单次可程序化位元的形成方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728240B2 (en) * 2009-04-08 2017-08-08 Avalanche Technology, Inc. Pulse programming techniques for voltage-controlled magnetoresistive tunnel junction (MTJ)
US8541855B2 (en) * 2011-05-10 2013-09-24 Magic Technologies, Inc. Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
US9293182B2 (en) * 2011-12-15 2016-03-22 Everspin Technologies, Inc. Random access memory architecture for reading bit states
US9344345B2 (en) * 2014-03-19 2016-05-17 Micron Technology, Inc. Memory cells having a self-aligning polarizer
JP6365901B2 (ja) 2016-09-28 2018-08-01 株式会社東芝 磁気抵抗素子及び磁気記憶装置
KR102522620B1 (ko) 2016-11-29 2023-04-19 삼성전자주식회사 자기 메모리 소자 및 자기 메모리 소자의 쓰기 방법
US10693056B2 (en) 2017-12-28 2020-06-23 Spin Memory, Inc. Three-dimensional (3D) magnetic memory device comprising a magnetic tunnel junction (MTJ) having a metallic buffer layer
US10403343B2 (en) 2017-12-29 2019-09-03 Spin Memory, Inc. Systems and methods utilizing serial configurations of magnetic memory devices
US10803916B2 (en) * 2017-12-29 2020-10-13 Spin Memory, Inc. Methods and systems for writing to magnetic memory devices utilizing alternating current
US10424357B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction (MTJ) memory device having a composite free magnetic layer
US10347308B1 (en) 2017-12-29 2019-07-09 Spin Memory, Inc. Systems and methods utilizing parallel configurations of magnetic memory devices
US10319424B1 (en) 2018-01-08 2019-06-11 Spin Memory, Inc. Adjustable current selectors
US10192789B1 (en) 2018-01-08 2019-01-29 Spin Transfer Technologies Methods of fabricating dual threshold voltage devices
US10692556B2 (en) 2018-09-28 2020-06-23 Spin Memory, Inc. Defect injection structure and mechanism for magnetic memory
US10878870B2 (en) 2018-09-28 2020-12-29 Spin Memory, Inc. Defect propagation structure and mechanism for magnetic memory
JP7246071B2 (ja) * 2019-01-21 2023-03-27 国立研究開発法人産業技術総合研究所 磁気記憶装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116529B2 (en) * 2002-09-06 2006-10-03 Kabushiki Kaisha Toshiba Magnetoresistive element in which pinned magnetization layers have antiparallel pinned directions, magnetic head and magnetic recording/reproducing apparatus
CN1938780A (zh) * 2004-02-25 2007-03-28 弘世科技公司 利用自旋转移的垂直磁化磁性元件
US20080144232A1 (en) * 2006-12-15 2008-06-19 Seagate Technology Llc CPP reader with phase detection of magnetic resonance for read-back
US20080225585A1 (en) * 2007-02-12 2008-09-18 Yadav Technology Low Cost Multi-State Magnetic Memory
US20090015958A1 (en) * 2007-07-11 2009-01-15 Kabushiki Kaisha Toshiba Magnetic recording device and magnetic recording apparatus
US20100254042A1 (en) * 2009-04-06 2010-10-07 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording system with auxiliary coil and circuitry for fast switching of write pole magnetization

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172902B1 (en) * 1998-08-12 2001-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Non-volatile magnetic random access memory
US6462919B1 (en) 1999-04-28 2002-10-08 Seagate Technology Llc Spin valve sensor with exchange tabs
US6650513B2 (en) 2001-01-29 2003-11-18 International Business Machines Corporation Magnetic devices with a ferromagnetic layer having perpendicular magnetic anisotropy and an antiferromagnetic layer for perpendicularly exchange biasing the ferromagnetic layer
TWI222630B (en) 2001-04-24 2004-10-21 Matsushita Electric Ind Co Ltd Magnetoresistive element and magnetoresistive memory device using the same
JP2003030993A (ja) 2001-07-17 2003-01-31 Toshiba Corp 半導体記憶装置
JP2003124541A (ja) 2001-10-12 2003-04-25 Nec Corp 交換結合膜、磁気抵抗効果素子、磁気ヘッド及び磁気ランダムアクセスメモリ
US6714444B2 (en) 2002-08-06 2004-03-30 Grandis, Inc. Magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6888742B1 (en) 2002-08-28 2005-05-03 Grandis, Inc. Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6838740B2 (en) 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6958927B1 (en) 2002-10-09 2005-10-25 Grandis Inc. Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
CN101114694A (zh) 2002-11-26 2008-01-30 株式会社东芝 磁单元和磁存储器
US6791868B2 (en) * 2003-01-02 2004-09-14 International Business Machines Corporation Ferromagnetic resonance switching for magnetic random access memory
US7190611B2 (en) 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US6829161B2 (en) 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6847547B2 (en) 2003-02-28 2005-01-25 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6933155B2 (en) 2003-05-21 2005-08-23 Grandis, Inc. Methods for providing a sub .15 micron magnetic memory structure
US7245462B2 (en) 2003-08-21 2007-07-17 Grandis, Inc. Magnetoresistive element having reduced spin transfer induced noise
US6985385B2 (en) 2003-08-26 2006-01-10 Grandis, Inc. Magnetic memory element utilizing spin transfer switching and storing multiple bits
US7161829B2 (en) 2003-09-19 2007-01-09 Grandis, Inc. Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
JP4767861B2 (ja) * 2003-10-31 2011-09-07 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ ナノコンタクト磁気メモリデバイス
US20050136600A1 (en) 2003-12-22 2005-06-23 Yiming Huai Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
US7105372B2 (en) 2004-01-20 2006-09-12 Headway Technologies, Inc. Magnetic tunneling junction film structure with process determined in-plane magnetic anisotropy
US7110287B2 (en) 2004-02-13 2006-09-19 Grandis, Inc. Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
US7242045B2 (en) 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US6992359B2 (en) 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US7201977B2 (en) 2004-03-23 2007-04-10 Seagate Technology Llc Anti-ferromagnetically coupled granular-continuous magnetic recording media
JP4202958B2 (ja) * 2004-03-30 2008-12-24 株式会社東芝 磁気抵抗効果素子
US7233039B2 (en) 2004-04-21 2007-06-19 Grandis, Inc. Spin transfer magnetic elements with spin depolarization layers
US7088609B2 (en) 2004-05-11 2006-08-08 Grandis, Inc. Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same
US7057921B2 (en) 2004-05-11 2006-06-06 Grandis, Inc. Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same
US7576956B2 (en) 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7369427B2 (en) 2004-09-09 2008-05-06 Grandis, Inc. Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements
JP4682585B2 (ja) * 2004-11-01 2011-05-11 ソニー株式会社 記憶素子及びメモリ
US7126202B2 (en) 2004-11-16 2006-10-24 Grandis, Inc. Spin scattering and heat assisted switching of a magnetic element
US7313013B2 (en) 2004-11-18 2007-12-25 International Business Machines Corporation Spin-current switchable magnetic memory element and method of fabricating the memory element
JP4575136B2 (ja) 2004-12-20 2010-11-04 株式会社東芝 磁気記録素子、磁気記録装置、および情報の記録方法
US7241631B2 (en) 2004-12-29 2007-07-10 Grandis, Inc. MTJ elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements
FR2883066B1 (fr) 2005-03-08 2007-05-11 Valeo Vision Sa Projecteur lumineux a plusieurs fonctions pour vehicule automobile
US7241632B2 (en) 2005-04-14 2007-07-10 Headway Technologies, Inc. MTJ read head with sidewall spacers
US7230265B2 (en) 2005-05-16 2007-06-12 International Business Machines Corporation Spin-polarization devices using rare earth-transition metal alloys
US7518835B2 (en) 2005-07-01 2009-04-14 Grandis, Inc. Magnetic elements having a bias field and magnetic memory devices using the magnetic elements
US7230845B1 (en) 2005-07-29 2007-06-12 Grandis, Inc. Magnetic devices having a hard bias field and magnetic memory devices using the magnetic devices
US7489541B2 (en) 2005-08-23 2009-02-10 Grandis, Inc. Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements
US7224601B2 (en) * 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
JP2007088415A (ja) 2005-08-25 2007-04-05 Fujitsu Ltd 磁気抵抗効果素子、磁気ヘッド、磁気記憶装置、および磁気メモリ装置
US20070054450A1 (en) 2005-09-07 2007-03-08 Magic Technologies, Inc. Structure and fabrication of an MRAM cell
JP2007080952A (ja) 2005-09-12 2007-03-29 Fuji Electric Holdings Co Ltd 多値記録スピン注入磁化反転素子およびこれを用いた装置
US7973349B2 (en) 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
JP4444241B2 (ja) 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
US20070096229A1 (en) 2005-10-28 2007-05-03 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory device
US7486545B2 (en) 2005-11-01 2009-02-03 Magic Technologies, Inc. Thermally assisted integrated MRAM design and process for its manufacture
US7880249B2 (en) 2005-11-30 2011-02-01 Magic Technologies, Inc. Spacer structure in MRAM cell and method of its fabrication
US7430135B2 (en) 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
KR100706806B1 (ko) 2006-01-27 2007-04-12 삼성전자주식회사 자기 메모리 소자 및 그 제조 방법
US7630177B2 (en) 2006-02-14 2009-12-08 Hitachi Global Storage Technologies Netherlands B.V. Tunnel MR head with closed-edge laminated free layer
US8183652B2 (en) * 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
JP2007266498A (ja) * 2006-03-29 2007-10-11 Toshiba Corp 磁気記録素子及び磁気メモリ
US7728384B2 (en) * 2006-05-30 2010-06-01 Macronix International Co., Ltd. Magnetic random access memory using single crystal self-aligned diode
FR2904724B1 (fr) * 2006-08-03 2011-03-04 Commissariat Energie Atomique Dispositif magnetique en couches minces a forte polarisation en spin perpendiculaire au plan des couches, jonction tunnel magnetique et vanne de spin mettant en oeuvre un tel dispositif
JP2008098523A (ja) 2006-10-13 2008-04-24 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
US8593862B2 (en) 2007-02-12 2013-11-26 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
US7738287B2 (en) 2007-03-27 2010-06-15 Grandis, Inc. Method and system for providing field biased magnetic memory devices
US7486551B1 (en) 2007-04-03 2009-02-03 Grandis, Inc. Method and system for providing domain wall assisted switching of magnetic elements and magnetic memories using such magnetic elements
US7486552B2 (en) 2007-05-21 2009-02-03 Grandis, Inc. Method and system for providing a spin transfer device with improved switching characteristics
WO2008154519A1 (en) 2007-06-12 2008-12-18 Grandis, Inc. Method and system for providing a magnetic element and magnetic memory being unidirectional writing enabled
US7742328B2 (en) 2007-06-15 2010-06-22 Grandis, Inc. Method and system for providing spin transfer tunneling magnetic memories utilizing non-planar transistors
US7394248B1 (en) 2007-08-02 2008-07-01 Magic Technologies, Inc. Method and structure to reset multi-element MTJ
US7982275B2 (en) 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
JP4649457B2 (ja) 2007-09-26 2011-03-09 株式会社東芝 磁気抵抗素子及び磁気メモリ
JP5224803B2 (ja) * 2007-12-26 2013-07-03 株式会社日立製作所 磁気メモリ及び磁気メモリの書き込み方法
JP5151503B2 (ja) * 2008-01-24 2013-02-27 Tdk株式会社 磁気デバイス及び磁気メモリ
KR100961723B1 (ko) * 2008-02-18 2010-06-10 이화여자대학교 산학협력단 스핀 토크 변환을 이용한 자기터널접합 소자를 사용한xor 논리 연산장치
JP2009200260A (ja) * 2008-02-21 2009-09-03 Tdk Corp 磁気デバイス及び磁気メモリ
US7826258B2 (en) 2008-03-24 2010-11-02 Carnegie Mellon University Crossbar diode-switched magnetoresistive random access memory system
US20090302403A1 (en) 2008-06-05 2009-12-10 Nguyen Paul P Spin torque transfer magnetic memory cell
US7800938B2 (en) * 2008-08-07 2010-09-21 Seagate Technology, Llc Oscillating current assisted spin torque magnetic memory
US8416539B2 (en) * 2008-08-07 2013-04-09 HGST Netherlands B.V. Magnetic field sensing system using spin-torque diode effect
KR100961708B1 (ko) * 2008-09-25 2010-06-10 인하대학교 산학협력단 자기 소자, 초고주파 발진기, 및 정보 기록 방법
US8495118B2 (en) * 2008-10-30 2013-07-23 Seagate Technology Llc Tunable random bit generator with magnetic tunnel junction
US7884433B2 (en) * 2008-10-31 2011-02-08 Magic Technologies, Inc. High density spin-transfer torque MRAM process
JP5166322B2 (ja) * 2009-03-03 2013-03-21 株式会社東芝 磁気ランダムアクセスメモリ
US7936598B2 (en) 2009-04-28 2011-05-03 Seagate Technology Magnetic stack having assist layer
US8169816B2 (en) * 2009-09-15 2012-05-01 Magic Technologies, Inc. Fabrication methods of partial cladded write line to enhance write margin for magnetic random access memory
US8159866B2 (en) * 2009-10-30 2012-04-17 Grandis, Inc. Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories
US8203389B1 (en) * 2010-12-06 2012-06-19 Headway Technologies, Inc. Field tunable spin torque oscillator for RF signal generation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116529B2 (en) * 2002-09-06 2006-10-03 Kabushiki Kaisha Toshiba Magnetoresistive element in which pinned magnetization layers have antiparallel pinned directions, magnetic head and magnetic recording/reproducing apparatus
CN1938780A (zh) * 2004-02-25 2007-03-28 弘世科技公司 利用自旋转移的垂直磁化磁性元件
US20080144232A1 (en) * 2006-12-15 2008-06-19 Seagate Technology Llc CPP reader with phase detection of magnetic resonance for read-back
US20080225585A1 (en) * 2007-02-12 2008-09-18 Yadav Technology Low Cost Multi-State Magnetic Memory
US20090015958A1 (en) * 2007-07-11 2009-01-15 Kabushiki Kaisha Toshiba Magnetic recording device and magnetic recording apparatus
US20100254042A1 (en) * 2009-04-06 2010-10-07 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording system with auxiliary coil and circuitry for fast switching of write pole magnetization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738371A (zh) * 2017-02-24 2018-11-02 Tdk株式会社 磁化反转元件、磁阻效应元件和存储设备
US11107615B2 (en) 2017-02-24 2021-08-31 Tdk Corporation Magnetization rotational element, magnetoresistance effect element, and memory device
CN113724769A (zh) * 2019-12-24 2021-11-30 珠海南北极科技有限公司 单次可程序化位元的形成方法
CN113724769B (zh) * 2019-12-24 2023-11-21 珠海南北极科技有限公司 单次可程序化位元的形成方法

Also Published As

Publication number Publication date
CN102467954B (zh) 2014-12-17
US20120120708A1 (en) 2012-05-17
KR101338050B1 (ko) 2013-12-09
US20130329490A1 (en) 2013-12-12
JP5973959B2 (ja) 2016-08-23
KR20120052865A (ko) 2012-05-24
JP2012109554A (ja) 2012-06-07
JP2013201458A (ja) 2013-10-03
US8508973B2 (en) 2013-08-13
US8792264B2 (en) 2014-07-29

Similar Documents

Publication Publication Date Title
CN102467954B (zh) 切换向平面外的磁性隧道结单元的方法
US9343658B2 (en) Magnetic memory bits with perpendicular magnetization switched by current-induced spin-orbit torques
CN102473450B (zh) 具有带垂直磁化取向的基准层的磁性叠层
US7502253B2 (en) Spin-transfer based MRAM with reduced critical current density
KR102543879B1 (ko) 외부 자기장의 부재시에 스핀 궤도 상호작용 토크를 사용하여 프로그래밍할 수 있는 자기 접합부
KR102534007B1 (ko) 스핀 궤도 쓰기를 갖는 스핀 전달 토크 자기저항 랜덤 액세스 메모리를 위한 크로스 포인트 구조
EP3297049B1 (en) Magnetic memory device
CN102414756B (zh) 具有辅助层的磁性叠层
CN100505086C (zh) 用于低功耗和高选择性的mram结构
US8497559B2 (en) MRAM with means of controlling magnetic anisotropy
US9165625B2 (en) ST-RAM cells with perpendicular anisotropy
CN102804279B (zh) 用于提供反向双磁隧道结元件的方法和系统
US20170179372A1 (en) Spin-orbit torque bit design for improved switching efficiency
US20100148167A1 (en) Magnetic tunnel junction stack
CN105493292B (zh) 自旋电子逻辑元件
CN104584134A (zh) 使用具有不同氧化镁(MgO)厚度的多个磁性隧道结的多级存储器单元
KR102074261B1 (ko) 시프트 레지스터를 이용한 자기 메모리를 제공하는 방법 및 시스템
US7589994B2 (en) Methods of writing data to magnetic random access memory devices with bit line and/or digit line magnetic layers
WO2010126723A1 (en) A method for reducing current density in a magnetoelectronic device
US20180061887A1 (en) Magnetoresistive random access memory (mram) with an interconnect that generates a spin current and a magnetic field effect
WO2018005698A1 (en) Systems for source line sensing of magnetoelectric junctions
US10424357B2 (en) Magnetic tunnel junction (MTJ) memory device having a composite free magnetic layer
US20070247901A1 (en) Mesoscopic Magnetic Body Having Circular Single Magnetic Domain Structure, its Production Method, and Magnetic Recording Device Using the Same
Apalkov et al. Temperature dependence of spin transfer switching in nanosecond regime
JP2013168667A (ja) 磁気抵抗効果素子及びmram

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141217

Termination date: 20181115

CF01 Termination of patent right due to non-payment of annual fee