CN102415230A - 复合电磁波吸收薄膜 - Google Patents

复合电磁波吸收薄膜 Download PDF

Info

Publication number
CN102415230A
CN102415230A CN2010800182423A CN201080018242A CN102415230A CN 102415230 A CN102415230 A CN 102415230A CN 2010800182423 A CN2010800182423 A CN 2010800182423A CN 201080018242 A CN201080018242 A CN 201080018242A CN 102415230 A CN102415230 A CN 102415230A
Authority
CN
China
Prior art keywords
wave absorption
absorption film
film
linear trace
electromagentic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800182423A
Other languages
English (en)
Other versions
CN102415230B (zh
Inventor
加川清二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102415230A publication Critical patent/CN102415230A/zh
Application granted granted Critical
Publication of CN102415230B publication Critical patent/CN102415230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00258Electromagnetic wave absorbing or shielding materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/132Heat exchange with adjustor for heat flow
    • Y10S165/133Conduction rate
    • Y10S165/134Conduction rate by varying thickness of conductive layer, e.g. air gap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种复合电磁波吸收薄膜,在塑料基底薄膜上设有相邻的多个电磁波吸收薄膜片,其中,各电磁波吸收薄膜片由具有导电体层的塑料薄膜构成,所述导电体层以不规则的宽度及间隔沿多个方向形成有实质上平行的多个断续的线状痕迹,所述多个电磁波吸收薄膜片的所述线状痕迹的宽度、间隔、长度及方向中的至少一个不同。

Description

复合电磁波吸收薄膜
技术领域
本发明涉及一种具有优良的电磁波吸收能力并减少其各向异性的复合电磁波吸收薄膜。
背景技术
在个人计算机、便携式电话、收费道路的自动费用收取系统(ETC)、无线LAN等电子设备或通信设备的系统中,使用防止电磁波的泄漏及进入的屏蔽材料。对于屏蔽材料,不仅需要能够良好地吸收大范围的频率的电磁波,而且需要减少对应于入射方向的电磁波吸收能力的变化(各向异性)。尤其是在ETC等那样的使用圆偏振波的系统中,需要一种对TE波(电场分量相对于入射面垂直的电磁波)及TM波(磁场分量相对于入射面垂直的电磁波)这双方都能高效地吸收的屏蔽材料。
目前,作为屏蔽材料而广泛使用的金属的片或网较重,有配置在设备的壳体内需要花费劳力和时间的问题。而且,金属的片或网存在电磁波吸收能力具有大的各向异性的倾向,即当电磁波的入射角增大时电磁波吸收能力显著下降的倾向。
作为轻量且容易向壳体配置的电磁波吸收屏蔽材料,日本特开平9-148782号提出有一种屏蔽材料,其由塑料薄膜和形成在其两面上的第一及第二铝蒸镀膜构成,在第一铝蒸镀膜上蚀刻有非导通的线状图案,在第二铝蒸镀膜上蚀刻有网眼状图案。然而,该屏蔽材料的线状图案及网眼状图案都是规则的图案,因此无法高效地吸收大范围的频率的电磁波,而且电磁波吸收能力的各向异性也大。
日本特开2004-134528号提出有一种电磁波吸收体,其依次具有各向异性电阻层、包含导电性填料的电介质层、以及电磁波反射体层,其中,各向异性电阻层由导通的线状图案构成,该电磁波吸收体具有表面电阻在一方向上为1kΩ以下而在另一方向上为10kΩ以上的各向异性。日本特开2004-134528号记载有如下情况:以使线状图案成为与TE波的磁场分量平行的方式配置电磁波吸收体时,能够高效地吸收TE波及TM波这双方。然而该电磁波吸收体存在电磁波吸收能力的各向异性大的问题。
发明内容
因此,本发明的目的在于提供一种不仅对各种频率的电磁波都具有良好的吸收能力,而且能减少电磁波吸收能力的各向异性的复合电磁波吸收薄膜。
鉴于上述目的而专心研究的结果是,本发明者发现了通过将具有如下的导电体层的多个电磁波吸收薄膜片相邻配置,而能得到不仅对各种频率的电磁波都具有良好的吸收能力,而且能减少电磁波吸收能力的各向异性的复合电磁波吸收薄膜,从而想到了本发明,其中所述导电体层是将实质上平行的多个断续的线状痕迹以不规则的宽度及间隔沿多个方向形成而得到的导电体层。
即,本发明的复合电磁波吸收薄膜在塑料基底薄膜上设有相邻的多个电磁波吸收薄膜片,其特征在于,各电磁波吸收薄膜片由具有导电体层的塑料薄膜构成,所述导电体层以不规则的宽度及间隔沿多个方向形成有实质上平行的多个断续的线状痕迹,所述多个电磁波吸收薄膜片的所述线状痕迹的宽度、间隔、长度及方向中的至少一个不同。
优选,在相邻的电磁波吸收薄膜片之间设有微小的空隙。所述空隙的宽度优选为0.1~5mm。
优选,多个电磁波吸收薄膜片的导电体层包括:具有20Ω/□~1kΩ/□的表面电阻的第一导电体层;具有超过1kΩ/□~小于3.5kΩ/□的表面电阻的第二导电体层;具有3.5kΩ/□~1MΩ/□的表面电阻的第三导电体层。优选,所述第一至第三导电体层的面积率是总计为100%而分别为50~70%、10~20%及20~30%。
优选,所述电磁波吸收薄膜片都是矩形,具有所述第二导电体层的电磁波吸收薄膜片及具有所述第三导电体层的电磁波吸收薄膜片与具有所述第一导电体层的电磁波吸收薄膜片的一边相邻。
优选,各导电体层由单层或多层的金属薄膜构成。
优选,所述线状痕迹的宽度为,90%以上处于0.1~100μm的范围内,平均为1~50μm,且所述线状痕迹的间隔处于0.1~200μm的范围内,平均为1~100μm。
优选,各电磁波吸收薄膜片中的线状痕迹取向为两个方向,其交叉角为30~90°。
发明效果
本发明的复合电磁波吸收薄膜将具有如下导电体层的多个电磁波吸收薄膜片相邻配置,其中所述导电体层以不规则的宽度及间隔沿多个方向形成有实质上平行的多个断续的线状痕迹,因此,不仅对各种频率的电磁波具有良好的吸收能力,而且其各向异性少。具有这种特征的本发明的复合电磁波吸收薄膜适合于便携式电话、个人计算机、电视机等电子设备及通信设备;使用IC标签、非接触IC卡等的RFID(Radio FrequencyIdentification)系统;无线LAN系统;收费道路的自动收费系统(ETC);建筑物内壁等的电磁波噪声的泄漏及进入的防止或信息的泄漏防止等。
附图说明
图1(a)是表示本发明的一实施方式的复合电磁波吸收薄膜的俯视图。
图1(b)是图1(a)的A-A剖视图。
图1(c)是图1(a)的B-B剖视图。
图2(a)是表示图1(a)的复合电磁波吸收薄膜的部分A、B、C的俯视图。
图2(b)是图2(a)的C-C剖视图。
图2(c)是表示图2(b)的部分A’、B’、C’的放大剖视图。
图3(a)是表示电磁波吸收薄膜片的又一例的剖视图。
图3(b)是表示图3(a)的部分D的放大剖视图。
图4(a)是表示线状痕迹的交叉角为90°的电磁波吸收薄膜片的俯视图。
图4(b)是表示具有三方向的线状痕迹的电磁波吸收薄膜片的俯视图。
图4(c)是表示具有四方向的线状痕迹的电磁波吸收薄膜片的俯视图。
图5(a)是表示电磁波吸收薄膜片的又一例的俯视图。
图5(b)是图5(a)的D-D剖视图。
图6是表示本发明的另一实施方式的复合电磁波吸收薄膜的俯视图。
图7是表示本发明的再一实施方式的复合电磁波吸收薄膜的俯视图。
图8是表示本发明的又一实施方式的电磁波吸收薄膜的剖视图。
图9是表示本发明的又再一实施方式的复合电磁波吸收薄膜的俯视图。
图10(a)是表示线状痕迹形成装置的一例的立体图。
图10(b)是表示图10(a)的线状痕迹形成装置的俯视图。
图10(c)是图10(b)的E-E剖视图。
图10(d)是用于说明相对于塑料薄膜的前进方向形成倾斜的线状痕迹的原理的局部放大俯视图。
图10(e)是表示图10(a)的线状痕迹形成装置中的花纹辊及按压辊相对于塑料薄膜的倾斜角度的局部俯视图。
图11是简要表示线状痕迹形成装置的另一例的局部剖视图。
图12是表示线状痕迹形成装置的再一例的立体图。
图13是表示线状痕迹形成装置的又一例的立体图。
图14是表示线状痕迹形成装置的又再一例的立体图。
图15是表示评价复合电磁波吸收薄膜的电磁波吸收能力的装置的简图。
图16是表示实施例1的复合电磁波吸收薄膜的峰值吸收率及峰值频率与电磁波入射角度的关系的曲线图。
图17是表示实施例1的复合电磁波吸收薄膜的频率2.0196GHz下的反射衰减量与电磁波入射角度的关系的曲线图。
图18是表示实施例2的复合电磁波吸收薄膜的峰值吸收率及峰值频率与电磁波入射角度的关系的曲线图。
图19是表示实施例2的复合电磁波吸收薄膜的频率2.0196GHz下的反射衰减量与电磁波入射角度的关系的曲线图。
图20是表示实施例3的复合电磁波吸收薄膜的峰值吸收率及峰值频率与电磁波入射角度的关系的曲线图。
图21是表示实施例3的复合电磁波吸收薄膜的频率2.0196GHz下的反射衰减量与电磁波入射角度的关系的曲线图。
图22是表示实施例4的复合电磁波吸收薄膜的峰值吸收率及峰值频率与电磁波入射角度的关系的曲线图。
图23是表示实施例4的复合电磁波吸收薄膜的频率2.0196GHz下的反射衰减量与电磁波入射角度的关系的曲线图。
图24是表示对实施例4的复合电磁波吸收薄膜进行了左右翻转时的峰值吸收率及峰值频率与电磁波入射角度的关系的另一曲线图。
图25是表示对实施例4的复合电磁波吸收薄膜进行了左右翻转时的频率2.0196GHz下的反射衰减量与电磁波入射角度的关系的另一曲线图。
图26是表示参考例1的电磁波吸收薄膜片(以纵向比横向长的方式固定于支架)的峰值吸收率及峰值频率与电磁波入射角度的关系的曲线图。
图27是表示参考例1的电磁波吸收薄膜片(以横向比纵向长的方式固定于支架)的峰值吸收率及峰值频率与电磁波入射角度的关系的另一曲线图。
图28是表示参考例2的电磁波吸收薄膜片(以纵向比横向长的方式固定于支架)的峰值吸收率及峰值频率与电磁波入射角度的关系的曲线图。
图29是表示参考例2的电磁波吸收薄膜片(以横向比纵向长的方式固定于支架)的峰值吸收率及峰值频率与电磁波入射角度的关系的另一曲线图。
具体实施方式
参照附图,对本发明的各实施方式进行详细说明,但只要未作特别说明,关于一个实施方式的说明就也能适用于其他实施方式。而且下述说明并未受限定,在本发明的技术思想的范围内可以进行各种变更。
[1]复合电磁波吸收薄膜
图1(a)~图1(c)表示在塑料基底薄膜10a的一面上相邻配置三张电磁波吸收薄膜片1a~1c而成的复合电磁波吸收薄膜的一例。电磁波吸收薄膜片1a~1c都具有塑料薄膜10和设置在该塑料薄膜10一面上的金属薄膜11,且实质上平行且断续的多个线状痕迹12以不规则的宽度及间隔沿多个方向形成在金属薄膜11的整面上。需要说明的是,为了便于说明而在图1(a)中比实际放大了线状痕迹12的长度、宽度及间隔。
(1)电磁波吸收薄膜片
第一至第三电磁波吸收薄膜片1a~1c都在塑料薄膜10的至少一面上具有单层或多层的金属薄膜11。作为多层的金属薄膜,优选双层结构的金属薄膜,这种情况下,优选磁性金属薄膜与非磁性金属薄膜的组合。
(a)塑料薄膜
形成塑料薄膜10的树脂只要具有绝缘性并具有充分的强度、挠性及加工性即可,并未特别受限定,例如列举有聚酯(聚对苯二甲酸乙二醇酯等)、聚芳硫醚(聚苯硫醚等)、聚酰胺、聚酰亚胺、聚酰胺酰亚胺、聚醚砜、聚醚醚酮、聚碳酸酯、丙烯酸树脂、聚苯乙烯、聚烯烃(聚乙烯、聚丙烯等)等。塑料薄膜10的厚度优选10~100μm左右。
(b)金属薄膜
形成金属薄膜11的金属只要具有导电性即可,并未特别受限定,从耐腐蚀性及成本的观点出发,优选铝、铜、镍、钴、银及它们的合金,尤其优选铝、铜、镍及它们的合金。金属薄膜的厚度优选0.01μm以上。厚度的上限并未特别限定,但在实用性方面为10μm左右就足够。当然,也可以使用超过10μm的金属薄膜,但高频率的电磁波的吸收能力几乎没有改变。金属薄膜的厚度更优选0.01~5μm,最优选0.01~1μm,特别优选10~100nm。
金属薄膜11既可以是图2(a)~图2(c)所示的单层结构,也可以是图3(a)及图3(b)所示的多层结构。多层结构的金属薄膜11优选一方由非磁性金属构成而另一方由磁性金属的第一及第二金属的薄膜11a、11b构成。作为磁性金属,列举有镍、钴、铬或它们的合金,作为非磁性金属,列举有铜、银、铝、锡或它们的合金。优选的组合是镍与铜或铝。磁性金属薄膜的厚度优选0.01μm以上,非磁性金属薄膜的厚度优选0.1μm以上。厚度的上限并未特别受限定,但两金属薄膜在实用性方面优选10μm左右。更优选,磁性金属薄膜的厚度为0.01~5μm,非磁性金属薄膜的厚度为0.1~5μm。
(c)线状痕迹
在图2(a)~图2(c)所示的例子中,多个实质上平行且断续的线状痕迹12a、12b以不规则的宽度及间隔沿两方向取向地形成在金属薄膜11上。需要说明的是,为了便于说明,在图2(b)中比实际放大了线状痕迹12a的深度。线状痕迹12从非常细的线状痕迹至非常粗的线状痕迹,具有各种宽度W,并以各种间隔I不规则地排列。线状痕迹12的宽度W利用与原来的表面S交叉的位置来求出,相邻的线状痕迹12的间隔I利用与原来的表面S交叉的位置来求出。在线状痕迹12中也可以是局部连结的线状痕迹。而且在线状痕迹12中还存在贯通金属薄膜11而到达塑料薄膜10的线状痕迹(形成非导通部121的线状痕迹)和比较深但未贯通金属薄膜11的线状痕迹(形成高电阻部122的线状痕迹)。如此,由于线状痕迹12以不规则的宽度W及间隔I形成,因此本发明的电磁波吸收薄膜片能够高效地吸收大范围的频率的电磁波。
线状痕迹12的宽度W优选90%以上处于0.1~100μm的范围内,且平均为1~50μm。若在上述范围外的话,电磁波吸收薄膜片的电磁波吸收能力低。线状痕迹12的宽度W更优选90%以上处于0.1~50μm的范围内,最优选处于0.1~20μm的范围内。而且线状痕迹12的平均宽度Wav更优选1~20μm,最优选1~10μm。
线状痕迹12的间隔I优选处于0.1~200μm的范围内,更优选处于0.1~100μm的范围内,最优选处于0.1~50μm的范围内,特别优选处于0.1~20μm的范围内。而且线状痕迹12的平均间隔Iav优选1~100μm,更优选1~50μm,最优选1~20μm。
线状痕迹12的长度L由滑动接触条件(主要是辊及薄膜的相对的周速、及薄膜向辊的卷绕角度)决定,因此,只要不改变滑动接触条件就大部分大致相同(大致与平均长度相等)。线状痕迹12的长度并未特别受限定,而在实用性方面优选1~100mm左右。
图4(a)~图4(c)分别表示线状痕迹12的图案的另一例。通过适当设定滑动接触条件(花纹辊的数目、轴线方向、花纹辊及薄膜的相对的周速等),而能得到取向方向及数目不同的各种图案的线状痕迹12。图4(a)的线状痕迹12由交叉角θs为90°的线状痕迹12a、12b构成,图4(b)的线状痕迹12由三方向的线状痕迹12a、12b、12c构成,图4(c)的线状痕迹12由四方向的线状痕迹12a、12b、12c、12d构成。
(d)微细孔
图5(a)及图5(b)表示具有单层金属薄膜的电磁波吸收薄膜片的另一例。在该例中,在金属薄膜11上除了线状痕迹12之外,还随机设有贯通金属薄膜11的多个微细孔13。微细孔13能够通过将表面具有高硬度微粒子的辊向金属薄膜11按压而形成。如图5(b)所示,微细孔13的开口直径D利用原来的表面S的位置来求出。微细孔13的开口直径D优选90%以上处于0.1~100μm的范围内,更优选处于0.1~50μm的范围内。而且微细孔13的平均开口直径Dav优选处于0.5~50μm的范围内,更优选处于1~30μm的范围内。平均开口直径Dav的上限进一步优选20μm,最优选10μm。微细孔13的平均密度优选为500个/cm2以上,更优选5000~50000个/cm2
(2)表面电阻
第一至第三电磁波吸收薄膜片1a~1c的表面电阻优选按该顺序分别为20Ω/□~1kΩ/□、超过1kΩ/□~小于3.5kΩ/□、以及3.5kΩ/□~1MΩ/□,由此,在电场分量相对于入射面垂直的偏振波(TE波)倾斜入射的情况下及磁场分量相对于入射面垂直的偏振波(TM波)倾斜入射的情况下的任一情况下,都能与入射方向无关地得到优异的电磁波吸收能力。
第一电磁波吸收薄膜片1a的表面电阻更优选100~800Ω/□,最优选200~700Ω/□。第二电磁波吸收薄膜片1b的表面电阻更优选1.5kΩ/□以上~小于3.5kΩ/□,最优选2kΩ/□以上~小于3.5kΩ/□。第三电磁波吸收薄膜片1c的表面电阻更优选3.5kΩ/□~500kΩ/□,最优选3.5kΩ/□~100kΩ/□。电磁波吸收薄膜片1a~1c的表面电阻可以根据金属薄膜11的材料及厚度、线状痕迹12的宽度、间隔、长度等进行调整。表面电阻可以利用直流二端子法进行测定。
为了更高效地吸收TE波及TM波,优选使第一及第二电磁波吸收薄膜片的表面电阻之差为1kΩ/□以上,并使第二及第三电磁波吸收薄膜片的表面电阻之差为500Ω/□以上。前者更优选1.5kΩ/□以上,后者更优选700Ω/□以上。
(2)电磁波吸收薄膜片的面积率
第一至第三电磁波吸收薄膜片1a~1c的面积率优选使总计为100%而分别为50~70%、10~20%及20~30%。
(3)电磁波吸收薄膜片的形状及配置
电磁波吸收薄膜片1a~1c的外形优选矩形(包含正方形),但也可以是圆形、三角形、不定形等。如图1(a)~图1(c)所示,配置矩形的电磁波吸收薄膜片1a~1c而成的集合体优选矩形,更优选矩形的电磁波吸收薄膜片1b及1c与矩形的电磁波吸收薄膜片1a的一边相邻。但是,如图6所示,也可以将电磁波吸收薄膜片1a~1c配置成条纹状。此种矩形集合体的纵横尺寸比优选大致为黄金比。该矩形集合体的尺寸根据用途适当设定即可。
如图1(a)~图1(c)所示,电磁波吸收薄膜片1a~1c优选设有微小的空隙14来进行配置。虽然并未限定,但空隙14的宽度d优选0.1~5mm,更优选0.5~3mm。复合电磁波吸收薄膜具有各向异性小的电磁波吸收能力不仅是因为多个线状痕迹12,而且因为通过空隙14使电磁波发生衰减。需要说明的是,电磁波吸收薄膜片1a~1c也可以将金属薄膜11侧粘接于塑料基底薄膜10a。
(4)线状痕迹的交叉角及取向
线状痕迹12通过花纹辊形成为长条的复合薄膜(至少在一面上形成有金属薄膜11的塑料薄膜10),因此可以根据花纹辊相对于复合薄膜的滑动接触条件(花纹辊的轴线方向、花纹辊及薄膜的相对的周速等)而适当设定线状痕迹12a、12b的交叉角(锐角侧的交叉角)θs。线状痕迹12a、12b的交叉角θs优选30~90°,更优选45~90°,最优选60~90°。薄膜1a~1c的交叉角θs既可以是其中的两种或全部相同,也可以是全部不同。交叉角θs的中心线L1~L3的取向方向也并未受限定,可以适当设定。图7表示交叉角θs的中心线L1~L3的取向方向分别不同的例子。优选,以使中心线L1~L3的取向方向相互平行或正交的方式配置电磁波吸收薄膜片1a~1c。更优选如图1(a)所示,以使电磁波吸收薄膜片1a及1b的交叉角θs的中心线L1及L2平行并使电磁波吸收薄膜片1a及1c的交叉角θs的中心线L1及L3正交的方式配置电磁波吸收薄膜片1a~1c。
(5)塑料基底薄膜
形成塑料基底薄膜10a的树脂与电磁波吸收薄膜片的塑料薄膜10相同即可。
(6)保护层
如图8所示,也可以通过塑料保护层10b来覆盖复合电磁波吸收薄膜的金属薄膜11。保护层10b的厚度优选10~100μm。
图9表示本发明的复合电磁波吸收薄膜的又一例。该复合电磁波吸收薄膜将宽度、间隔、长度及方向中的至少一个不同的两种矩形电磁波吸收薄膜片1a及1d相邻配置而成。电磁波吸收薄膜片1d优选具有超过1kΩ/□~1MΩ/□的表面电阻及30~50%的面积率。除此以外与复合电磁波吸收薄膜的上述例相同即可。电磁波吸收薄膜片1d的表面电阻更优选1.5kΩ/□~500kΩ/□,最优选2kΩ/□~100kΩ/□。电磁波吸收薄膜片1a与1d的表面电阻差优选1kΩ/□以上。
[2]复合电磁波吸收薄膜的制造方法
本发明的复合电磁波吸收薄膜可以通过如下工序来制造:(a)制造在塑料薄膜的至少一面上具有单层或多层的导电体层的多个复合薄膜,(b)通过在各复合薄膜的导电体层上以不规则的宽度及间隔沿多个方向形成实质上平行的多个断续的线状痕迹,而形成线状痕迹的宽度、间隔、长度及方向中的至少一个不同的多个长条的电磁波吸收薄膜,(c)由各长条的电磁波吸收薄膜冲裁出规定形状的电磁波吸收薄膜片,(d)将所希望的组合的电磁波吸收薄膜片粘贴在塑料基底薄膜上。
(1)复合薄膜的制造
具有单层或多层导电体层(金属薄膜)的长条的电磁波吸收薄膜可以通过在塑料薄膜10的至少一面上利用蒸镀法(真空蒸镀法、溅射法、离子镀敷法等物理蒸镀法、或等离子CVD法、热CVD法、光CVD法等化学气相蒸镀法)、镀敷法或箔接合法形成金属薄膜11而进行制造。
(2)线状痕迹的形成
(a)线状痕迹形成装置
图10(a)~图10(e)表示形成取向为两个方向的线状痕迹的装置的例子。该线状痕迹形成装置从上游侧依次具有:(i)对在塑料薄膜10的一面上形成有金属薄膜11的复合薄膜100进行卷绕的卷轴21;(ii)多个引导辊22;(iii)在表面具有多个高硬度的微粒子,且在与复合薄膜100的宽度方向不同的方向上配置在金属薄膜11侧的第一花纹辊2a;(iv)在第一花纹辊2a的上游侧,配置在金属薄膜11的相反侧的第一按压辊3a;(v)在表面具有多个高硬度的微粒子,在复合薄膜100的宽度方向上,与第一花纹辊2a反方向地配置在金属薄膜11侧的第二花纹辊2b;(vi)在第二花纹辊2b的下游侧,配置在金属薄膜11的相反侧的第二按压辊3b;(vii)在第一及第二花纹辊2a、2b之间,配置在金属薄膜11侧的电阻测定机构4a;(viii)在第二花纹辊2b的下游侧,配置在金属薄膜11侧的电阻测定机构4b;(ix)多个引导辊23;(x)对形成有线状痕迹的电磁波吸收薄膜1进行卷绕的卷轴24。各花纹辊2a、2b为了防止微小的挠曲而由支承辊(バツクアツプロ一ル)5a、5b支承。支承辊5a、5b优选橡胶辊,以免对花纹辊2a、2b造成不好的影响。
如图10(c)所示,为了使复合薄膜100的金属薄膜11在被按压的状态下与各花纹辊2a、2b进行滑动接触,各按压辊3a、3b的纵向位置比复合薄膜100与各花纹辊2a、2b的滑动接触位置低。在满足该条件的状态下,通过调整各按压辊3a、3b的纵向位置,而能够调整金属薄膜11被按压到各花纹辊2a、2b上的按压力,并能够调整由中心角θ1表示的滑动接触距离。
图10(d)表示线状痕迹12a相对于复合薄膜100的前进方向倾斜形成的原理。花纹辊2a相对于复合薄膜100的前进方向发生倾斜,因此花纹辊2a上的硬质微粒子的移动方向(旋转方向)a与复合薄膜100的前进方向b不同。因此如X所示,在任意的时刻,若花纹辊2a上的点A的硬质微粒子与复合薄膜100的金属薄膜接触而形成痕迹B,则在规定的时间后,硬质微粒子移动到点A’,痕迹B移动到点B’。在硬质微粒子从点A到点A’移动期间,痕迹连续形成,因此形成从点B’延伸至点A’的线状痕迹12a。
由第一及第二花纹辊2a、2b形成的第一及第二线状痕迹群12A、12B的方向及交叉角θs能够通过调整各花纹辊2a,2b相对于复合薄膜100的角度及/或调整相对于复合薄膜100的移动速度的各花纹辊2a、2b的周速来进行调整。例如,若增大相对于复合薄膜100的移动速度b的花纹辊2a的周速a,则如图10(d)的Y所示,可以像线段C’D’那样将线状痕迹12a相对于复合薄膜100的前进方向形成为45°。同样地,若改变相对于复合薄膜100的宽度方向的花纹辊2a的倾斜角θ2,则能够改变花纹辊2a的周速a。这对于花纹辊2b也同样。因此,通过调整两花纹辊2a、2b,而能够变更线状痕迹12a、12b的方向。
由于各花纹辊2a、2b相对于复合薄膜100发生倾斜,因此通过与各花纹辊2a、2b的滑动接触,复合薄膜100会受到宽度方向的力,从而有可能会蜿蜒前进。为了防止复合薄膜100的蜿蜒前进,优选调整各按压辊3a、3b相对于各花纹辊2a、2b的纵向位置及/或角度。例如,对花纹辊2a的轴线与按压辊3a的轴线的交叉角θ3进行适当调节时,以消除宽度方向的力的方式得到按压力的宽度方向分布,由此能够防止蜿蜒前进。而且花纹辊2a与按压辊3a的间隔的调整也有助于防止蜿蜒前进。
为了防止复合薄膜100的蜿蜒前进及断裂,优选第一及第二花纹辊2a、2b的旋转方向与复合薄膜100的前进方向相同。
如图10(b)所示,各电阻测定机构(辊)4a、4b隔着绝缘部40在两端部具有一对电极41、41,在电极41、41之间对具有线状痕迹12a、12b的金属薄膜11的电阻进行测定。将电阻测定辊4a、4b测定出的电阻值与目标电阻值进行比较,根据它们的差来调整运行条件。被调整的运行条件是复合薄膜100的移动速度、花纹辊2a、2b的旋转速度及倾斜角θ2、按压辊3a、3b的纵向位置、距花纹辊2a、2b的距离、及相对于花纹辊2a、2b的倾斜角θ3等。
如图11所示,在花纹辊2a、2b之间设置第三按压辊3c时,不仅复合薄膜100的金属薄膜11被按压到花纹辊2a、2b上的力增大,而且由中心角θ1表示的金属薄膜11的滑动接触距离增大,线状痕迹12a、12b的深度及宽度增大。此外,还有助于防止复合薄膜100的蜿蜒前进。
图12表示形成如图4(b)所示的取向为三个方向的线状痕迹的装置的例子。该装置除了在第二花纹辊2b的下游侧设有第三花纹辊2c、第三按压辊30b及电阻测定辊4c以外,与图10(a)~图10(e)所示的装置相同。第三花纹辊2c的旋转方向既可以与复合薄膜100的前进方向相同也可以相反。沿宽度方向配置的第三花纹辊2c形成沿复合薄膜100的前进方向延伸的线状痕迹12c。第三按压辊30b既可以配置在第三花纹辊2c的上游侧也可以配置在下游侧。
图13表示形成如图4(c)所示的取向为四个方向的线状痕迹的装置的例子。该装置除了在第二花纹辊2b与第三花纹辊2c之间设有第四花纹辊2d且在第四花纹辊2d的上游侧设有第四按压辊3d以外,与图12所示的装置相同。通过减慢第四花纹辊2d的旋转速度,能够如图10(d)的Z所示,将线状痕迹12a’的方向(线段E’F’)形成为复合薄膜100的宽度方向。
图14表示形成图4(a)所示的与长度方向及横向正交的线状痕迹的装置的例子。该线状痕迹形成装置在基本上将第二花纹辊32b沿复合薄膜100的宽度方向配置的点上与图10(a)~图10(e)所示的装置不同。因此,以下仅说明与图10(a)~图10(e)所示的装置不同的部分。第二花纹辊32b的旋转方向既可以与复合薄膜100的前进方向相同也可以相反。而且第二按压辊33b既可以在第二花纹辊32b的上游侧也可以在下游侧。该装置适合于,如图10(d)的Z所示将线状痕迹12a’的方向(线段E’F’)形成为复合薄膜100的宽度方向而形成图4(c)所示的线状痕迹。
(b)运行条件
作为不仅决定线状痕迹的倾斜角及交叉角而且决定它们的深度、宽度、长度及间隔的运行条件,有复合薄膜的移动速度、花纹辊的旋转速度及倾斜角θ2、复合薄膜的张力(由按压辊的纵向位置、距花纹辊的距离、及相对于花纹辊的倾斜角θ3等决定)等。复合薄膜的移动速度优选5~200m/分,花纹辊的旋转速度(周速)优选10~2,000m/分。倾斜角θ2优选20°~60°,特别优选约45°。复合薄膜的张力优选0.05~5kgf/cm幅度。
(c)花纹辊
形成线状痕迹的花纹辊优选在表面形成了具有尖锐角部的莫氏硬度5以上的微粒子的辊,例如日本特开2002-59487号所记载的金刚石辊。线状痕迹的宽度由微粒子的粒径来决定,因此金刚石微粒子的90%以上优选具有1~100μm的范围内的粒径,更优选10~50μm的范围内的粒径。金刚石微粒子优选以30%以上的面积率附着于辊面。
(3)微细孔的形成
可以利用日本专利第2063411号等所记载的方法,在具有线状痕迹12的金属薄膜11上形成多个微细孔13。例如,当以金属薄膜11为第一辊侧而使复合薄膜100以与第一辊的周速相同的速度通过第一辊与平滑面的第二辊之间的间隙时,形成微细孔,其中该第一辊(也可以与上述线状痕迹形成用辊相同)在表面附着了具有尖锐角部的莫氏硬度5以上的多个微粒子,该第二辊被第一辊按压。
(4)电磁波吸收薄膜的切断
通过对得到的线状痕迹不同的多个长条的电磁波吸收薄膜进行冲裁,而能够形成具有所希望的形状的多个电磁波吸收薄膜片。
(5)电磁波吸收薄膜片的粘贴
利用热层压法、粘接法等将线状痕迹不同的多个电磁波吸收薄膜片隔开规定的空隙粘贴于塑料基底薄膜10a,从而得到复合电磁波吸收薄膜。在粘贴电磁波吸收薄膜片之后,利用热层压法等将塑料薄膜粘接于金属薄膜11,从而能够形成塑料保护层10b。
通过以下的实施例,对本发明进行更详细的说明,但本发明并不局限于此。
实施例1
利用真空蒸镀法在二轴延伸聚对苯二甲酸乙二醇酯(PET)薄膜[厚度:12μm,介电常数:3.2(1MHz),介质损耗因子(誘電正接):1.0%(1MHz),熔点:265℃]的一面上形成厚度0.05μm的铝层,制作了复合薄膜。
使用图10(a)所示的装置,以铝层为花纹辊2a、2b侧,而使复合薄膜100与花纹辊2a、2b进行滑动接触,通过适当设定运行条件(复合薄膜的移动速度、花纹辊2a、2b的旋转速度及倾斜角θ2、薄膜的卷绕角度θ1及复合薄膜的张力),而形成了图2(a)所示的取向为两个方向的线状痕迹,其中所述花纹辊2a、2b电沉积有粒径分布为50~80μm的金刚石微粒子。通过观察光学显微镜照片,可知得到的电磁波吸收薄膜具有下述的线状痕迹。
宽度W的范围:0.5~5μm
平均宽度Wav:2μm
间隔I的范围:2~30μm
平均间隔Iav:20μm
平均长度Lav:5mm
线状痕迹的锐角侧的交叉角θs:60°
由上述电磁波吸收薄膜切出的电磁波吸收薄膜片(32cm×33cm)的铝层的表面电阻(利用直流二端子法进行测定,取平均值。)为377Ω/□。除了变更装置的运行条件以外与上述同样地,制作了具有线状痕迹的交叉角θs为60°且表面电阻为3.4kΩ/□的铝层的电磁波吸收薄膜片(20cm×12cm)、以及具有线状痕迹的交叉角θs为30°且表面电阻为5kΩ/□的铝层的电磁波吸收薄膜片(20cm×20cm)。各电磁波吸收薄膜片的表面电阻、尺寸、面积率及线状痕迹的交叉角θs如表1所示。
【表1】
Figure BDA0000101906470000151
注:(1)与图1(a)所示的符号相同。
(2)电磁波吸收薄膜片1a~1c的表面积的总计为100%。
以带线状痕迹的铝层侧为上,将三张电磁波吸收薄膜片1a、1b、1c以1mm的空隙宽度d粘贴在厚度100μm的PET薄膜上之后,将厚度16μm的PET薄膜热粘接在铝层侧作为塑料保护层,制作了图1(a)~图1(c)所示的复合电磁波吸收薄膜(外部尺寸:53cm×33cm)。
使用图15所示的装置,按照以下的方法评价了该复合电磁波吸收薄膜的电磁波吸收能力,该图15所示的装置具有接地的电介质支架62、发送用天线63a、接收用天线63b、与天线63a、63b连接的网络分析器64。首先,从10°到60°以10°间隔改变入射角度θi并同时将1~6GHz的TE波及TM波分别以0.25GHz间隔从离开100cm的天线63a,向固定于支架62的铝板(纵32cm×横52cm×厚度2mm)照射,利用天线63b接收反射波,通过网络分析器64测定了反射电力。接着,以使带线状痕迹的铝层成为发送用天线63a侧的方式将复合电磁波吸收薄膜T固定于支架62,与上述同样地测定了反射电力。假定使用铝板进行测定时的反射电力与入射电力相等,求出反射系数RC(反射电力与入射电力的比),并利用RL(dB)=20log(1/RC)的式子求出了反射衰减量RL(dB)。各入射角度θi的反射衰减量根据频率进行变化,因此将反射衰减量成为最大时的频率(峰值频率)下所得到的电磁波吸收率作为峰值吸收率。关于各个TE波及TM波,相对于入射角度θi绘制了峰值吸收率(dB)及峰值频率(GHz)。结果如图16所示。而且相对于入射角度θi绘制的2.0196GHz的反射衰减量RL的结果如图17所示。
实施例2
除了变更装置的运行条件以外与实施例1同样地,制作了具有表2所示的表面电阻、尺寸、面积率及线状痕迹的交叉角θs的电磁波吸收薄膜片。与实施例1同样地,使用三张电磁波吸收薄膜片1a、1b、1c制作了复合电磁波吸收薄膜,并评价了电磁波吸收能力。结果如图18及图19所示。
【表2】
Figure BDA0000101906470000161
注:(1)及(2)都与表1相同。
实施例3
除了变更装置的运行条件以外与实施例1同样地,制作了具有表3所示的表面电阻、尺寸、面积率及线状痕迹的交叉角θs的电磁波吸收薄膜片。与实施例1同样地,使用三张电磁波吸收薄膜片1a、1b、1c而制作了复合电磁波吸收薄膜,并评价了电磁波吸收能力。结果如图20及图21所示。
【表3】
Figure BDA0000101906470000171
注:(1)及(2)都与表1相同。
实施例4
除了变更装置的运行条件以外与实施例1同样地,制作了具有表4所示的表面电阻、尺寸、面积率及线状痕迹的交叉角θs的电磁波吸收薄膜片。与实施例1同样地,使用三张电磁波吸收薄膜片1a、1b、1c而制作了复合电磁波吸收薄膜,并评价了电磁波吸收能力。结果如图22及图23所示。而且将该复合电磁波吸收薄膜的左右翻转(使电磁波吸收薄膜片1a为接收用天线63b侧),与上述同样地评价了电磁波吸收能力。结果如图24及图25所示。
【表4】
Figure BDA0000101906470000172
注:(1)及(2)都与表1相同。
参考例1
除了变更装置的运行条件以外与实施例1同样地,制作了线状痕迹的交叉角θs为30°,表面电阻为377Ω/□,尺寸为53cm×33cm的电磁波吸收薄膜片。与上述同样地评价了该电磁波吸收薄膜片的电磁波吸收能力。结果如图26(以纵向比横向长的方式固定于支架62时)及图27(以横向比纵向长的方式固定于支架62时)所示。
参考例2
除了变更装置的运行条件以外与实施例1同样地,制作了线状痕迹的交叉角θs为60°,表面电阻为377Ω/□,尺寸为53cm×33cm的电磁波吸收薄膜片。与上述同样地评价了该电磁波吸收薄膜片的电磁波吸收能力。结果如图28(以纵向比横向长的方式固定于支架62时)及图29(以横向比纵向长的方式固定于支架62时)所示。
从图16、18、20、22及24可知,实施例1~4的复合电磁波吸收薄膜相对于10~60°的入射角度θi的TE波及TM波都具有10dB以上且达到30dB以上的峰值吸收率。从图17、19、21、23及25可知,即使在一定频率(2.0196GHz)的情况下,实施例1~4的电磁波吸收薄膜相对于10~60°的入射角度θi的TE波及TM波也都具有优异的吸收能力。相对于此,在不是线状痕迹不同的多个电磁波吸收薄膜片的组合的参考例1及2中,TE波及TM波的吸收能力的各向异性比较大。
实施例5
除了变更装置的运行条件以外与实施例1同样地,制作了具有表5所示的表面电阻、尺寸、面积率及线状痕迹的交叉角θs的电磁波吸收薄膜片。与实施例1同样地,使用三张电磁波吸收薄膜片1a、1b、1c而制作了图6所示的复合电磁波吸收薄膜。该复合电磁波吸收薄膜具有各向异性比较小的电磁波吸收能力。
【表5】
Figure BDA0000101906470000181
注:(1)及(2)都与表1相同。
实施例6
除了变更装置的运行条件以外与实施例1同样地,制作了具有表6所示的表面电阻、尺寸、面积率及线状痕迹的交叉角θs的电磁波吸收薄膜片。与实施例1同样地,使用两张电磁波吸收薄膜片1a、1d而制作了图9所示的复合电磁波吸收薄膜。该复合电磁波吸收薄膜具有各向异性比较小的电磁波吸收能力。
【表6】
Figure BDA0000101906470000191
注:(1)与图9所示的符号相同。
(2)与表1相同。

Claims (8)

1.一种复合电磁波吸收薄膜,在塑料基底薄膜上设有相邻的多个电磁波吸收薄膜片,其特征在于,
各电磁波吸收薄膜片由具有导电体层的塑料薄膜构成,所述导电体层以不规则的宽度及间隔沿多个方向形成有实质上平行的多个断续的线状痕迹,
所述多个电磁波吸收薄膜片的所述线状痕迹的宽度、间隔、长度及方向中的至少一个不同。
2.根据权利要求1所述的复合电磁波吸收薄膜,其特征在于,
在相邻的电磁波吸收薄膜片之间设有微小的空隙。
3.根据权利要求1所述的复合电磁波吸收薄膜,其特征在于,
多个电磁波吸收薄膜片的导电体层包括:具有20Ω/□~1kΩ/□的表面电阻的第一导电体层;具有超过1kΩ/□~小于3.5kΩ/□的表面电阻的第二导电体层;具有3.5kΩ/□~1MΩ/□的表面电阻的第三导电体层。
4.根据权利要求3所述的复合电磁波吸收薄膜,其特征在于,
所述第一至第三导电体层的面积率是总计为100%而分别为50~70%、10~20%及20~30%。
5.根据权利要求3所述的复合电磁波吸收薄膜,其特征在于,
所述电磁波吸收薄膜片都是矩形,具有所述第二导电体层的电磁波吸收薄膜片及具有第三导电体层的电磁波吸收薄膜片与具有所述第一导电体层的电磁波吸收薄膜片的一边相邻。
6.根据权利要求1至5中任一项所述的复合电磁波吸收薄膜,其特征在于,
各导电体层由单层或多层的金属薄膜构成。
7.根据权利要求1至6中任一项所述的复合电磁波吸收薄膜,其特征在于,
所述线状痕迹的宽度为,90%以上处于0.1~100μm的范围内,平均为1~50μm,且所述线状痕迹的间隔处于0.1~200μm的范围内,平均为1~100μm。
8.根据权利要求1至7中任一项所述的复合电磁波吸收薄膜,其特征在于,
各电磁波吸收薄膜片中的线状痕迹取向为两个方向,其交叉角为30~90°。
CN201080018242.3A 2009-12-25 2010-10-29 复合电磁波吸收薄膜 Active CN102415230B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-296298 2009-12-25
JP2009296298 2009-12-25
PCT/JP2010/069306 WO2011077834A1 (ja) 2009-12-25 2010-10-29 複合電磁波吸収フィルム

Publications (2)

Publication Number Publication Date
CN102415230A true CN102415230A (zh) 2012-04-11
CN102415230B CN102415230B (zh) 2015-09-02

Family

ID=44195379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080018242.3A Active CN102415230B (zh) 2009-12-25 2010-10-29 复合电磁波吸收薄膜

Country Status (8)

Country Link
US (1) US9326433B2 (zh)
EP (1) EP2519091B1 (zh)
JP (1) JP5542139B2 (zh)
KR (1) KR101725470B1 (zh)
CN (1) CN102415230B (zh)
CA (1) CA2749701A1 (zh)
TW (1) TWI562717B (zh)
WO (1) WO2011077834A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110667206A (zh) * 2018-07-03 2020-01-10 加川清二 电磁波吸收复合板
CN112352476A (zh) * 2018-07-12 2021-02-09 迪睿合株式会社 拾取装置、安装装置、拾取方法、安装方法
CN114256632A (zh) * 2021-12-24 2022-03-29 中国人民解放军空军工程大学 一种基于感应耦合等离子体的新型蜂窝吸波复合结构

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8677698B2 (en) * 2008-03-06 2014-03-25 Stuart C. Segall Relocatable habitat unit
US20140109495A1 (en) * 2008-03-06 2014-04-24 Stuart Charles Segall Relocatable habitat unit having radio frequency interactive walls
US9157249B2 (en) 2013-03-15 2015-10-13 Stuart Charles Segall Relocatable habitat unit
US9016002B2 (en) 2008-03-06 2015-04-28 Stuart Charles Segall Relocatable habitat unit having interchangeable panels
CN103959927B (zh) * 2011-11-30 2017-07-18 加川清二 复合电磁波吸收片
JP2013175691A (ja) * 2012-02-27 2013-09-05 Seiji Kagawa 電磁波吸収筐体
US10070547B2 (en) * 2014-02-26 2018-09-04 Sparton Corporation Control of electric field effects in a printed circuit board assembly using embedded nickel-metal composite materials
US20150245548A1 (en) * 2014-02-26 2015-08-27 Sparton Corporation Control of electric field effects in a printed circuit board assembly using embedded nickel-metal composite materials
US9990574B2 (en) * 2015-11-27 2018-06-05 Joseph James Strong Holder for RFID enabled cards
JP6208394B1 (ja) * 2017-05-23 2017-10-04 加川 清二 電磁波吸収フィルタ
CN108770227B (zh) * 2018-06-14 2021-07-13 环旭电子股份有限公司 一种基于二次塑封的SiP模组的制造方法及SiP模组
US11540490B2 (en) 2019-02-24 2023-01-03 Catastrophic Creations, LLC Modular pet recreational assembly
CN113045263B (zh) * 2021-03-18 2022-11-08 西南石油大学 一种混杂纤维水泥基泡沫复合吸波材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1668783A (zh) * 2002-07-12 2005-09-14 藤森工业株式会社 电磁波屏蔽材料及其制造方法
WO2008075746A1 (ja) * 2006-12-20 2008-06-26 Seiji Kagawa 導電フィルム、その製造方法及び高周波部品
JP2009176827A (ja) * 2008-01-22 2009-08-06 Seiji Kagawa 電磁波吸収フィルム及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554908A (en) * 1979-08-29 1985-11-26 Alpha-Omega Development Inc. Electromagnetic energy absorber
US5373296A (en) * 1992-08-18 1994-12-13 Tdk Corporation Electromagnetic wave absorber and wave absorption structure
JP3417048B2 (ja) * 1994-04-08 2003-06-16 ティーディーケイ株式会社 電波吸収体
JPH09148782A (ja) 1995-11-27 1997-06-06 Nippon Paint Co Ltd 透明電磁波吸収シールド材
JP2000223886A (ja) * 1999-01-28 2000-08-11 Nisshinbo Ind Inc 透視性電磁波シールド材及びその製造方法
JP3739230B2 (ja) 1999-04-26 2006-01-25 株式会社日立製作所 高周波通信装置
JP2002076678A (ja) * 2000-08-31 2002-03-15 Takenaka Komuten Co Ltd 電磁波吸収体及び電磁波吸収方法
CN100471654C (zh) 2002-04-25 2009-03-25 加川清二 直线易撕性的热塑性树脂薄膜以及制造方法及其制造装置
JP2004134528A (ja) 2002-10-09 2004-04-30 Mitsui Chemicals Inc 電波吸収体
JP2005311330A (ja) * 2004-03-22 2005-11-04 Takiron Co Ltd 電波吸収体
KR100827401B1 (ko) * 2004-10-18 2008-05-06 삼성코닝정밀유리 주식회사 전자파 차폐 필터와 그 제조 방법 및 그를 포함하는pdp 장치
JP2007294808A (ja) * 2006-04-27 2007-11-08 Nitto Denko Corp 電磁波を伝導又は吸収する特性を有する構造体
JP5038497B2 (ja) * 2008-06-26 2012-10-03 清二 加川 電磁波吸収フィルム及びそれを用いた電磁波吸収体
JP4685977B2 (ja) * 2009-02-13 2011-05-18 清二 加川 線状痕付き金属薄膜−プラスチック複合フィルム及びその製造装置
US8970515B2 (en) * 2009-02-26 2015-03-03 3M Innovative Properties Company Touch screen sensor and patterned substrate having overlaid micropatterns with low visibility
JP4814400B1 (ja) * 2010-09-27 2011-11-16 株式会社 大▲瀬▼研究所 電子機器用のシールド材と、それを使用する電子機器のシールド構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1668783A (zh) * 2002-07-12 2005-09-14 藤森工业株式会社 电磁波屏蔽材料及其制造方法
WO2008075746A1 (ja) * 2006-12-20 2008-06-26 Seiji Kagawa 導電フィルム、その製造方法及び高周波部品
JP2009176827A (ja) * 2008-01-22 2009-08-06 Seiji Kagawa 電磁波吸収フィルム及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110667206A (zh) * 2018-07-03 2020-01-10 加川清二 电磁波吸收复合板
CN110667206B (zh) * 2018-07-03 2022-01-14 加川清二 电磁波吸收复合板
CN112352476A (zh) * 2018-07-12 2021-02-09 迪睿合株式会社 拾取装置、安装装置、拾取方法、安装方法
CN114256632A (zh) * 2021-12-24 2022-03-29 中国人民解放军空军工程大学 一种基于感应耦合等离子体的新型蜂窝吸波复合结构
CN114256632B (zh) * 2021-12-24 2024-02-06 中国人民解放军空军工程大学 一种基于感应耦合等离子体的新型蜂窝吸波复合结构

Also Published As

Publication number Publication date
EP2519091A4 (en) 2014-12-17
US9326433B2 (en) 2016-04-26
JPWO2011077834A1 (ja) 2013-05-02
JP5542139B2 (ja) 2014-07-09
US20110268925A1 (en) 2011-11-03
EP2519091B1 (en) 2016-10-26
TW201134381A (en) 2011-10-01
TWI562717B (en) 2016-12-11
CA2749701A1 (en) 2011-06-30
KR20120100699A (ko) 2012-09-12
WO2011077834A1 (ja) 2011-06-30
CN102415230B (zh) 2015-09-02
EP2519091A1 (en) 2012-10-31
KR101725470B1 (ko) 2017-04-10

Similar Documents

Publication Publication Date Title
CN102415230A (zh) 复合电磁波吸收薄膜
CN102046370B (zh) 带线状痕迹的金属薄膜-塑料复合膜及其制造装置
CN102067743B (zh) 电磁波吸收膜以及利用该吸收膜的电磁波吸收体
CN103270821B (zh) 近场电磁波吸收体
CN103718664A (zh) 具有高散热性的电磁波吸收薄膜
JP5302287B2 (ja) 電磁波吸収体
KR102069556B1 (ko) 전자기파 흡수 필터
JP5214541B2 (ja) 可視光透過性電磁波吸収フィルム及びそれを用いた可視光透過性電磁波吸収体
JP5203295B2 (ja) 電磁波吸収フィルム
CN117596854A (zh) 近场电磁波吸收体
CN110626017B (zh) 电磁波吸收复合板
JP5107394B2 (ja) 電磁波吸収体及びそれを用いた内装材
JP5186535B2 (ja) 透明電磁波吸収フィルム
TW202410554A (zh) 近場電磁波吸收器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant