CN102365747A - 补偿门极misfet及其制造方法 - Google Patents

补偿门极misfet及其制造方法 Download PDF

Info

Publication number
CN102365747A
CN102365747A CN201080015425XA CN201080015425A CN102365747A CN 102365747 A CN102365747 A CN 102365747A CN 201080015425X A CN201080015425X A CN 201080015425XA CN 201080015425 A CN201080015425 A CN 201080015425A CN 102365747 A CN102365747 A CN 102365747A
Authority
CN
China
Prior art keywords
iii
layer
group
semi
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201080015425XA
Other languages
English (en)
Other versions
CN102365747B (zh
Inventor
亚力山大·利道
罗伯特·比奇
曹建军
阿兰娜·纳卡塔
赵广元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Efficient Power Conversion Corp
Original Assignee
Efficient Power Conversion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42933678&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102365747(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Efficient Power Conversion Corp filed Critical Efficient Power Conversion Corp
Publication of CN102365747A publication Critical patent/CN102365747A/zh
Application granted granted Critical
Publication of CN102365747B publication Critical patent/CN102365747B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/802Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with heterojunction gate, e.g. transistors with semiconductor layer acting as gate insulating layer, MIS-like transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/326Application of electric currents or fields, e.g. for electroforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种具有低门极泄漏的MISFET,诸如GaN晶体管。在一个实施例中,利用位于门极触点下方且在阻挡层上方的补偿GaN层减少门极泄漏。在另一实施例中,通过采用在门极触点之下且在阻挡层之上的半绝缘层减少门极泄漏。

Description

补偿门极MISFET及其制造方法
技术领域
本发明涉及增强型氮化镓(GaN)晶体管的领域。尤其,本发明涉及一种具有在门触点下方且在阻挡层上方的补偿GaN层或者半绝缘GaN层的增强型GaN晶体管。
背景技术
对于功率半导体器件,氮化镓(GaN)半导体器件的需求日益增加,这是由于它们能够承载大电流并且支持高电压的能力。这些器件的发展通常旨在进行高功率/高频应用。为这些应用类型而制造的器件基于展示高电子迁移率的通用器件结构,并且这些器件被称为异质结场效应晶体管(HFET)、高电子迁移率晶体管(HEMT)或者调制掺杂场效应晶体管(MODFET)等各种名称。这些类型的器件通常可以经受高电压,例如100伏特,同时在高频下运行,例如100kHz-10GHz。
GaN HEMT器件包括具有至少两个氮化物层的氮化物半导体。形成在该半导体或缓冲层上的不同材料使得这些层具有不同的带隙。相邻氮化物层中的不同材料还引起极化,这有助于在两层接合处附近,尤其在具有较窄带隙的层中形成导电二维电子气(2DEG)区。
引起极化的这些氮化物层通常包括临近GaN层的AlGaN阻挡层,以包括2DEG,其允许电荷流经器件。该阻挡层可以是掺杂或无掺杂的。由于在零栅偏压下门极下方存在2DEG区,所以大部分氮化物器件是常开型或者是耗尽型器件。如果在施加零栅偏压时在门极下方2DEG区被耗尽,即被移除,则该器件可以是增强型器件。增强型器件是常关型,并且由于它们提供的附加安全性以及它们更易于使用简单低成本的驱动电路进行控制,因而符合需要。为了传导电流,增强型器件需要在门极施加正偏压。
图1示出了常规增强型GaN晶体管器件100。器件100包括由硅(Si)、碳化硅(SiC)、蓝宝石或其他材料形成的基底11,通常由AlN和AlGaN形成的厚度为约0.1至约1.0μm的过渡层102,通常由GaN形成的厚度为约0.5至约10μm的缓冲材料103,通常由AlGaN形成的厚度从约0.005至约0.03μm的阻挡材料104,其中Al和Ga比例为约0.1至约0.5,p型AlGaN 105,高度掺杂的p型GaN 106,绝缘区107,钝化区108,用于源极和漏极、通常由具有诸如Ni和Au的封盖金属的Ti和Al形成的欧姆触点金属109和110,以及通常由位于p型GaN门极上方的镍(Ni)和金(Au)金属触点形成的门金属111。
图1中所示的常规GaN晶体管存在多个缺点。一个问题是由于门极电荷输入,在器件导电期间门极触点的电流泄漏非常高。
因而需要提供一种在器件导电期间不泄漏电流并且更易于制造的金属绝缘半导体场效应晶体管(MISFET),尤其是GaN晶体管。
发明内容
本发明涉及一种具有低门极泄漏的MISFET,如GaN晶体管。在一个实施例中,利用在门触点下方且在阻挡层上方的补偿GaN层减少门泄漏。在另一实施例中,通过采用在门触点下方且在阻挡层上方的半绝缘层减少门泄漏。
附图说明
图1是现有技术晶体管的横截面图。
图2是根据本文所述的一个实施例的晶体管。
图3是一个处理阶段时的横截面视图。
图4是在图3中所示处理阶段之后的处理阶段时的横截面视图。
图5是在图4中所示处理阶段之后的处理阶段时的横截面视图。
图6是在图5中所示处理阶段之后的处理阶段时的横截面视图。
图7是在图6中所示处理阶段之后的处理阶段时的横截面视图。
图8是在图7中所示处理阶段之后的处理阶段时的横截面视图。
图9是在图8中所示处理阶段之后的处理阶段时的横截面视图。
图10是根据本文所述的一个实施例的晶体管。
图11是在图6中所示处理阶段之后的处理阶段时的横截面视图。
图12是在图11中所示处理阶段之后的处理阶段时的横截面视图。
图13是在图12中所示处理阶段之后的处理阶段时的横截面视图。
图14是根据本文所述的一个实施例的晶体管。
图15是在图11中所示处理阶段之后的处理阶段时的横截面视图。
图16是根据本文所述的一个实施例的晶体管。
具体实施方式
图2示出了根据本发明一个实施例的采取GaN晶体管1形式的MISFET。GaN晶体管1形成在基底31上,基底31例如可以包括硅Si、碳化硅SiC或蓝宝石。在基底31上并与其接触的是过渡层32。过渡层32例如可以包括AlN或AlGaN,厚度在0.1至1.0μm之间。缓冲层33使得过渡层32与阻挡层34分离。缓冲层33优选由InAlGaN形成,具有任意浓度的In和Al(包括0%In和/或Al),并且厚度在0.5至3μm之间。阻挡层34由AlGaN形成,厚度在0.005至0.03μm之间,并且Al的百分比为约10%至50%。源极和漏极触点35、36设置在阻挡层上。源极和漏极触点由具有诸如Ni和Au或Ti和TiN的封盖金属形成。门极触点37例如由Ta、Ti、TiN、W或WSi2形成,厚度在0.05至1.0μm之间。根据本发明,补偿半导体层38形成在阻挡层34之上且在门极触点37之下。补偿半导体层38优选包括具有深层钝化的p型杂质的AlGaN或GaN,所述杂质诸如Mg、Zn、Be、Cd或Ca。缓冲层33和阻挡层34由III族氮化物材料制成。III族氮化物材料可以包括InxAlyGa1-x-yN,其中x+y≤1。
有利的是,补偿层38的高度掺杂水平导致形成增强型器件。另外,使用补偿半导体层38导致在器件工作期间的低门极泄漏。最终,补偿层38的绝缘性减小了器件的门极电容。
图3-图9描述了制造图2中所示的GaN晶体管1的实例方法。参考图3,第一步是提供基底31。参考图4,下一步是使过渡层32在基底31顶部成核和生长。参考图5,下一步是在过渡层32上生长缓冲层33。参考图6,下一步是在缓冲层33上生长阻挡层34。
参考图7,下一步是在阻挡层34上生长补偿半导体层38。参考图8,下一步是在补偿半导体层38上沉积门极触点层37。参考图9,下一步是施加门极光掩模以蚀刻门极触点层37,并且蚀刻掉除了门极触点层37下方的那部分补偿半导体层38之外的补偿半导体层38。随后移除门极遮光掩模。通过在高温下将器件暴露至氨或氢等离子体,可以执行附加的氢钝化。最后一步是在阻挡层34上提供源极和漏极欧姆触点35、36,这形成了图2中所示的最终GaN晶体管1。
上述处理中,使得本发明的器件与现有技术器件(图1)不同的关键步骤在于,使用氢对p型杂质的钝化。钝化导致了两个区别。第一,在GaN晶体管1中,补偿半导体层38是高度补偿半绝缘材料,而在现有技术的GaN晶体管100中,层105是导电p型材料。第二,与现有技术相比,在本发明中,门极与沟道层的电容减小。
图10示出根据本发明第二实施例的GaN晶体管2。GaN晶体管2类似于GaN晶体管1(图2),区别在于GaN晶体管2具有半绝缘层39,代替补偿半导体层38(图2)。半绝缘层39可以包括例如AlGaN或GaN,其具有深度杂质原子,例如,C、Fe、Mn、Cr、V或Ni。此外,GaN晶体管可以具有半绝缘层和补偿半导体层两者。
本发明的第二实施例具有与第一实施例相同的优点。半绝缘层39的高度掺杂导致形成增强型器件,半绝缘层39导致在器件工作期间的低门极泄漏,并且半绝缘层39的绝缘性减小了器件的门极电容。此外,第二实施例的器件的性能对涉及氢和/或高温的后续处理步骤不敏感。
就在图3-图6中所示的步骤而言,制造GaN晶体管2的方法与制造GaN晶体管1的方法相同。参考图11,在第二实施例的制造中,在图6所示的步骤之后的下一步,是生长包括杂质原子的半绝缘层39。
参考图12,下一步是在半绝缘层39上沉积门极触点层37。参考图13,下一步是施加光掩模,以蚀刻门极触点层37,并且蚀刻掉除了门极触点层37下方的那部分半绝缘层39之外的半绝缘层39。随后移除光刻胶掩模。下一步是在阻挡层34上提供源极和漏极欧姆触点35、36,这形成了图10中所示的最终器件2。
本发明的器件具有与现有技术区别的下列特征:(1)当器件工作时,门极与沟道层之间的电容低于现有技术的电容;(2)可以更正向地驱动门极偏压,而没有显著电流流过门极(通常,在现有技术中,门极在2.5V至3.5V之间开始传导电流),而本发明可以被驱动至5V,而不发生明显的门极泄漏;以及(3)从门极至沟道层的空穴注入相对于现有技术明显减少。
图14示出了根据本发明第三实施例的GaN晶体管3。GaN晶体管3类似于GaN晶体管2,区别在于在半绝缘层上和门极触点层下设置限制层。该限制层可以由AlGaN、SiN、SiO2或其他绝缘材料形成。
就图3-图6中所示的步骤而言,制造GaN晶体管3的方法与制造GaN晶体管1的方法相同,就图11中所示的步骤而言与制造GaN晶体管2的方法相同。参考图15,下一步是沉积绝缘限制层40。
第三实施例与实施例1和实施例2相比,优点在于进一步减少了门极泄漏。缺点是进一步减小了当通过向门极触点施加正电压来导通器件时的导电性。第三实施例的独特优点在于形成了可变阈值电压器件。限制层厚度可以调整,从而在正常工作电压下,例如当导通和关闭器件时,发生非常少量的泄漏,通常向门极施加5V以导通器件,向门极施加0V以关闭器件。然而,在较高的偏压下,电流可以穿透限制层,并且对半绝缘GaN层充电。该电荷随后被捕获在阻挡层和限制层之间。该被捕获的电荷导致器件导通和关闭的电压偏移。通过适当地施加门极电压,该器件可以改变成耗尽型器件,从而在门极上施加0V时器件导通。或者,该器件可以改变成增强型器件,其需要大于门极驱动才导通,从而有效地形成断路。当编程控制具有集成门极驱动的GaN FET的集成电路时,这两种类型的器件是有用的。
图16示出了根据本发明第四实施例的GaN晶体管4。GaN晶体管4类似于GaN晶体管2,区别在于其具有分隔层49,位于半绝缘层48之下且在阻挡层44之上。分隔层49是低Mg区,与分隔层49相关的是掺杂偏移厚度。在阻挡层附近的低Mg浓度减少了向阻挡层的反向扩散。
上述描述和附图仅是实现本文所述的特征和优点的特定实施例的解释说明。可以对特定处理条件进行修改和替换。因此,不应认为本发明的实施例受到前述描述和附图的限制。

Claims (11)

1.一种III族氮化物晶体管,包括:
基底,
位于该基底上的一组III-N (III族氮化物)过渡层,
位于该组过渡层上的III-N缓冲层,
III-N阻挡层,以及
位于该阻挡层上的补偿III-N层。
2.根据权利要求1所述的晶体管,其中所述补偿III-N层包含使用氢钝化的受体型掺杂剂原子。
3.根据权利要求2所述的晶体管,其中所述受体型原子选自包括Mg、Zn、Be和Ca的组。
4.一种III族氮化物晶体管,包括:
基底,
位于该基底上的一组III-N过渡层,
位于该组过渡层上的III-N缓冲层,
III-N阻挡层,以及
位于该阻挡层上的半绝缘III-N层。
5.根据权利要求4所述的晶体管,其中所述半绝缘III-N层包含深度受体型掺杂剂原子。
6.根据权利要求5所述的晶体管,其中所述深度受体型掺杂剂原子选自包括C、Fe、Mn、Cr和V的组。
7.一种III族氮化物晶体管,包括:
基底,
位于该基底上的一组III-N过渡层,
位于该组过渡层上的III-N缓冲层,
III-N阻挡层,
位于该阻挡层上的半绝缘III-N层,以及
位于该半绝缘III-N层上的限制层。
8.根据权利要求7所述的晶体管,其中所述半绝缘III-N层包含选自包括C、Fe、Mn、Cr和V的组的深度受体型掺杂剂原子。
9.根据权利要求7所述的晶体管,其中所述限制层由SiN、SiO2、Al2O3、HfO2、Ga2O3或InAlGaN制成。
10.一种补偿门极MISFET晶体管,包括:
位于门极触点下的阻挡层,
漏极触点,
源极触点,以及
还包括位于所述阻挡层和门极触点之间的一个补偿或半绝缘III-N层。
11.根据权利要求10所述的晶体管,还包括位于所述一个补偿或半绝缘III-N层上的限制层。
CN201080015425.XA 2009-04-08 2010-04-07 补偿门极misfet及其制造方法 Active CN102365747B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16779209P 2009-04-08 2009-04-08
US61/167,792 2009-04-08
PCT/US2010/030193 WO2010118100A1 (en) 2009-04-08 2010-04-07 Compensated gate misfet and method for fabricating the same

Publications (2)

Publication Number Publication Date
CN102365747A true CN102365747A (zh) 2012-02-29
CN102365747B CN102365747B (zh) 2014-07-30

Family

ID=42933678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080015425.XA Active CN102365747B (zh) 2009-04-08 2010-04-07 补偿门极misfet及其制造方法

Country Status (7)

Country Link
US (1) US8350294B2 (zh)
JP (1) JP5785153B2 (zh)
KR (1) KR101660870B1 (zh)
CN (1) CN102365747B (zh)
DE (1) DE112010001589T5 (zh)
TW (1) TWI499054B (zh)
WO (1) WO2010118100A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684134A (zh) * 2013-07-29 2016-06-15 宜普电源转换公司 具有用于产生附加构件的多晶硅层的氮化镓晶体管
CN109119480A (zh) * 2018-09-04 2019-01-01 盛世瑶兰(深圳)科技有限公司 功率器件及其制备方法
CN109196650A (zh) * 2016-06-01 2019-01-11 宜普电源转换公司 多台阶表面钝化结构及其制造方法
CN113658862A (zh) * 2021-07-05 2021-11-16 西安电子科技大学广州研究院 一种阈值电压稳定的p-GaN栅增强型HEMTs器件的制备方法
CN113782600A (zh) * 2021-08-27 2021-12-10 聚能晶源(青岛)半导体材料有限公司 增强型GaN基HEMT器件、器件外延及其制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823012B2 (en) * 2009-04-08 2014-09-02 Efficient Power Conversion Corporation Enhancement mode GaN HEMT device with gate spacer and method for fabricating the same
KR20120027987A (ko) * 2010-09-14 2012-03-22 삼성엘이디 주식회사 질화갈륨계 반도체소자 및 그 제조방법
KR101720589B1 (ko) * 2010-10-11 2017-03-30 삼성전자주식회사 이 모드(E-mode) 고 전자 이동도 트랜지스터 및 그 제조방법
US20120153351A1 (en) * 2010-12-21 2012-06-21 International Rectifier Corporation Stress modulated group III-V semiconductor device and related method
JP2012199398A (ja) * 2011-03-22 2012-10-18 Sumitomo Electric Ind Ltd 複合GaN基板およびその製造方法、ならびにIII族窒化物半導体デバイスおよびその製造方法
KR20120124101A (ko) * 2011-05-03 2012-11-13 삼성전자주식회사 고효율 질화계 이종접합 전계효과 트랜지스터
US9543391B2 (en) * 2011-10-19 2017-01-10 Samsung Electronics Co., Ltd. High electron mobility transistor having reduced threshold voltage variation and method of manufacturing the same
US8946771B2 (en) * 2011-11-09 2015-02-03 Taiwan Semiconductor Manufacturing Co., Ltd. Gallium nitride semiconductor devices and method making thereof
CN103296078B (zh) * 2012-02-23 2017-01-18 宜普电源转换公司 具有栅极隔离物的增强型GaN高电子迁移率晶体管器件及其制备方法
JP2013207107A (ja) * 2012-03-28 2013-10-07 Fujitsu Ltd 化合物半導体装置及びその製造方法
US9048294B2 (en) * 2012-04-13 2015-06-02 Applied Materials, Inc. Methods for depositing manganese and manganese nitrides
KR101922122B1 (ko) 2012-09-28 2018-11-26 삼성전자주식회사 노멀리 오프 고전자이동도 트랜지스터
KR101898680B1 (ko) * 2012-11-05 2018-09-13 삼성전자주식회사 나노구조 발광 소자
US9048303B1 (en) * 2014-01-30 2015-06-02 Infineon Technologies Austria Ag Group III-nitride-based enhancement mode transistor
US9337279B2 (en) 2014-03-03 2016-05-10 Infineon Technologies Austria Ag Group III-nitride-based enhancement mode transistor
JP6562222B2 (ja) * 2014-07-29 2019-08-21 パナソニックIpマネジメント株式会社 窒化物半導体装置
JP7025853B2 (ja) * 2016-08-24 2022-02-25 ローム株式会社 窒化物半導体デバイスおよび窒化物半導体パッケージ
US20180061975A1 (en) 2016-08-24 2018-03-01 Rohm Co., Ltd. Nitride semiconductor device and nitride semiconductor package
US11121245B2 (en) 2019-02-22 2021-09-14 Efficient Power Conversion Corporation Field plate structures with patterned surface passivation layers and methods for manufacturing thereof
US11101378B2 (en) * 2019-04-09 2021-08-24 Raytheon Company Semiconductor structure having both enhancement mode group III-N high electron mobility transistors and depletion mode group III-N high electron mobility transistors
US11545566B2 (en) 2019-12-26 2023-01-03 Raytheon Company Gallium nitride high electron mobility transistors (HEMTs) having reduced current collapse and power added efficiency enhancement
CN113875019A (zh) 2020-04-30 2021-12-31 英诺赛科(苏州)半导体有限公司 半导体器件以及制造半导体器件的方法
US11362190B2 (en) 2020-05-22 2022-06-14 Raytheon Company Depletion mode high electron mobility field effect transistor (HEMT) semiconductor device having beryllium doped Schottky contact layers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987462A (en) * 1987-01-06 1991-01-22 Texas Instruments Incorporated Power MISFET
US5985687A (en) * 1996-04-12 1999-11-16 The Regents Of The University Of California Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
US6011271A (en) * 1994-04-28 2000-01-04 Fujitsu Limited Semiconductor device and method of fabricating the same
US20020187568A1 (en) * 2001-06-11 2002-12-12 Stockman Stephen A. Forming semiconductor structures including acticated acceptors in buried p-type gan layers
US20080296618A1 (en) * 2007-06-01 2008-12-04 The Regents Of The University Of California P-GaN/AlGaN/AlN/GaN ENHANCEMENT-MODE FIELD EFFECT TRANSISTOR

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161733A (ja) * 1993-12-06 1995-06-23 Fujitsu Ltd 化合物半導体装置の製造方法
TWI314360B (en) * 2003-01-23 2009-09-01 Epistar Corp Field effect transistor and method of fabricating the same
JP2006032552A (ja) * 2004-07-14 2006-02-02 Toshiba Corp 窒化物含有半導体装置
JP4850410B2 (ja) * 2004-09-29 2012-01-11 新日本無線株式会社 窒化物半導体装置及びその製造方法
US7456443B2 (en) * 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
JP2006253224A (ja) * 2005-03-08 2006-09-21 Toyota Central Res & Dev Lab Inc 半導体装置とその製造方法
JP4705412B2 (ja) 2005-06-06 2011-06-22 パナソニック株式会社 電界効果トランジスタ及びその製造方法
JP2007109830A (ja) * 2005-10-12 2007-04-26 Univ Nagoya 電界効果トランジスタ
US8399911B2 (en) * 2006-06-07 2013-03-19 Imec Enhancement mode field effect device and the method of production thereof
US20090321787A1 (en) * 2007-03-20 2009-12-31 Velox Semiconductor Corporation High voltage GaN-based heterojunction transistor structure and method of forming same
JP2008277640A (ja) * 2007-05-02 2008-11-13 Toshiba Corp 窒化物半導体素子
JP4514063B2 (ja) * 2007-08-30 2010-07-28 古河電気工業株式会社 Ed型インバータ回路および集積回路素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987462A (en) * 1987-01-06 1991-01-22 Texas Instruments Incorporated Power MISFET
US6011271A (en) * 1994-04-28 2000-01-04 Fujitsu Limited Semiconductor device and method of fabricating the same
US5985687A (en) * 1996-04-12 1999-11-16 The Regents Of The University Of California Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
US20020187568A1 (en) * 2001-06-11 2002-12-12 Stockman Stephen A. Forming semiconductor structures including acticated acceptors in buried p-type gan layers
US20080296618A1 (en) * 2007-06-01 2008-12-04 The Regents Of The University Of California P-GaN/AlGaN/AlN/GaN ENHANCEMENT-MODE FIELD EFFECT TRANSISTOR

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684134A (zh) * 2013-07-29 2016-06-15 宜普电源转换公司 具有用于产生附加构件的多晶硅层的氮化镓晶体管
CN105684134B (zh) * 2013-07-29 2019-01-22 宜普电源转换公司 具有用于产生附加构件的多晶硅层的氮化镓晶体管
CN109196650A (zh) * 2016-06-01 2019-01-11 宜普电源转换公司 多台阶表面钝化结构及其制造方法
CN109196650B (zh) * 2016-06-01 2022-04-29 宜普电源转换公司 多台阶表面钝化结构及其制造方法
CN109119480A (zh) * 2018-09-04 2019-01-01 盛世瑶兰(深圳)科技有限公司 功率器件及其制备方法
CN113658862A (zh) * 2021-07-05 2021-11-16 西安电子科技大学广州研究院 一种阈值电压稳定的p-GaN栅增强型HEMTs器件的制备方法
CN113782600A (zh) * 2021-08-27 2021-12-10 聚能晶源(青岛)半导体材料有限公司 增强型GaN基HEMT器件、器件外延及其制备方法
CN113782600B (zh) * 2021-08-27 2023-07-28 聚能晶源(青岛)半导体材料有限公司 增强型GaN基HEMT器件、器件外延及其制备方法

Also Published As

Publication number Publication date
TWI499054B (zh) 2015-09-01
JP5785153B2 (ja) 2015-09-24
JP2012523701A (ja) 2012-10-04
DE112010001589T5 (de) 2012-06-28
KR20110136827A (ko) 2011-12-21
CN102365747B (zh) 2014-07-30
WO2010118100A1 (en) 2010-10-14
KR101660870B1 (ko) 2016-09-28
TW201101495A (en) 2011-01-01
US20100258848A1 (en) 2010-10-14
US8350294B2 (en) 2013-01-08

Similar Documents

Publication Publication Date Title
CN102365747B (zh) 补偿门极misfet及其制造方法
US9425301B2 (en) Sidewall passivation for HEMT devices
CN102365763B (zh) GaN缓冲层中的掺杂剂扩散调制
CN101689570B (zh) 采用耗尽模式GaN基FET的串叠电路
JP5813279B2 (ja) 窒化物ベースのトランジスタのための窒化アルミニウムを含むキャップ層およびその作製方法
KR101124937B1 (ko) 질화물계 트랜지스터를 위한 캡층 및/또는 패시베이션층,트랜지스터 구조 및 그 제조방법
US7728355B2 (en) Nitrogen polar III-nitride heterojunction JFET
US9553183B2 (en) Gate stack for normally-off compound semiconductor transistor
US20150243775A1 (en) Nitride semiconductor device
US20100264461A1 (en) N-polar aluminum gallium nitride/gallium nitride enhancement-mode field effect transistor
US10679860B2 (en) Self-aligning source, drain and gate process for III-V nitride MISHEMTs
KR101092467B1 (ko) 인헨스먼트 노말리 오프 질화물 반도체 소자 및 그 제조방법
CN110754001B (zh) 用以改善氮化镓间隔件厚度均匀度的增强型氮化镓晶体管
KR20120016046A (ko) 역확산 억제 구조
US10651303B2 (en) High-electron-mobility transistor devices
WO2007108055A1 (ja) 化合物半導体装置及びその製造方法
US9653591B2 (en) Compound semiconductor device having at least one buried semiconductor material region
EP3321968A1 (en) High electron mobility transistor with graded back-barrier region
KR20190112526A (ko) 이종접합 전계효과 트랜지스터 및 그 제조 방법
US20220416070A1 (en) High electron mobility transistor and method of manufacturing the same
KR20190112523A (ko) 이종접합 전계효과 트랜지스터 및 그 제조 방법
US8421182B2 (en) Field effect transistor having MOS structure made of nitride compound semiconductor
CN112397583A (zh) 增强型高电子迁移率晶体管器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1165615

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1165615

Country of ref document: HK