CN102365763B - GaN缓冲层中的掺杂剂扩散调制 - Google Patents

GaN缓冲层中的掺杂剂扩散调制 Download PDF

Info

Publication number
CN102365763B
CN102365763B CN201080014928.5A CN201080014928A CN102365763B CN 102365763 B CN102365763 B CN 102365763B CN 201080014928 A CN201080014928 A CN 201080014928A CN 102365763 B CN102365763 B CN 102365763B
Authority
CN
China
Prior art keywords
layer
gan
gas flow
iii element
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080014928.5A
Other languages
English (en)
Other versions
CN102365763A (zh
Inventor
罗伯特·比奇
赵广元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Efficient Power Conversion Corp
Original Assignee
Efficient Power Conversion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efficient Power Conversion Corp filed Critical Efficient Power Conversion Corp
Publication of CN102365763A publication Critical patent/CN102365763A/zh
Application granted granted Critical
Publication of CN102365763B publication Critical patent/CN102365763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种半导体晶体及其形成方法。该方法包括提供包含掺杂剂和III族元素的气体流、停止提供包含掺杂剂和III族元素的气体流降低温度、重新开始提供包含III族元素的气体流然后升高温度。

Description

GaN缓冲层中的掺杂剂扩散调制
技术领域
本发明涉及氮化镓(GaN)晶体管的领域。尤其,本发明涉及一种用于捕获多余的掺杂剂的方法和装置。
背景技术
对于功率半导体器件,氮化镓(GaN)半导体器件的需求日益增加,这是由于它们能够承载大电流并且支持高电压的能力。这些器件的发展通常旨在进行高功率/高频应用。为这些应用类型而制造的器件基于展示高电子迁移率的通用器件结构,并且这些器件被称为异质结场效应晶体管(HFET)、高电子迁移率晶体管(HEMT)或者调制掺杂场效应晶体管(MODFET)等各种名称。这些类型的器件典型地可以经受高电压,例如100伏特,同时在高频下运行,例如100kHz-10GHz。
GaN HEMT器件包括具有至少两个氮化物层的氮化物半导体。形成在该半导体或缓冲层上的不同材料使得这些层具有不同的带隙。相邻氮化物层中的不同材料还引起极化,这有助于在两层接合处附近,尤其在具有较窄带隙的层中形成导电二维电子气(2DEG)区。
引起极化的这些氮化物层通常包括临近GaN层的AlGaN阻挡层,以包括2DEG,其允许电荷流经器件。该阻挡层可以是掺杂或无掺杂的。由于在零栅偏压下门极下方存在2DEG区,所以大部分氮化物器件是常开型或者是耗尽型器件。如果在施加零栅偏压时在门极下方2DEG区被耗尽,即被移除,则该器件可以是增强型器件。增强型器件是常关型,并且由于它们提供的附加安全性而符合需要。为了传导电流,增强型器件需要在门极施加正偏压。
图1示出了常规GaN晶体管器件100。器件100包括由硅(Si)、碳化硅(SiC)、蓝宝石或其他材料形成的基底11,通常由氮化铝(AlN)和氮化铝镓(AlGaN)形成的厚度为约0.1至约1.0μm的过渡层12,掺杂Mg的GaN层10,通常由GaN形成的厚度为约0.5至约3μm的缓冲层13,由GaN或氮化铟镓(InGaN)形成的厚度通常为约0.01至0.5μm的电流传导区14,通常由AlGaN、Al和钛(Ti)形成的可以具有Si的厚度通常为约0.01至约0.03μm的接触区15,通常由AlGaN形成的厚度为约0.01至约0.03μm的阻挡层16,其中Al和Ga比例为约0.1至约0.5,由镍(Ni)和金(Au)金属触点形成的门极结构17,以及由具有诸如Ni和Au的封盖金属的Ti和Al形成的欧姆触点金属18和19。
在常规GaN晶体管器件(例如图1)中生长掺杂Mg的GaN材料期间,将镁(Mg)添加至生长环境中。该Mg积聚在GaN的表面上,并且成为晶体的一部分。此外,在该部分生长期间,Mg覆盖了生长腔的壁。在生长掺杂Mg的材料之后,为了获得不具有Mg的材料而生长未掺杂的GaN是困难的,这是因为在GaN的表面仍然残留有Mg并且在室壁上也具有Mg。由于Mg容易在生长腔移动,所以这些残余的Mg将继续污染晶体更长时间。
常规GaN晶体管具有许多缺点。击穿电压受到门极17宽度的限制(如图1中所示)。为了实现高电压,需要宽的门极以及门极17和漏极触点18之间的大间隔,这是由于在未掺杂GaN材料13中由于氧污染和氮空位导致的残余n-型掺杂。此外,使用掺杂在缓冲层中的Mg的常规GaN晶体管受到由阻挡层附近的Mg所引起的导电性改变的不良影响。
发明内容
需要提供一种方法和装置,以实现利用掺杂缓冲层改善器件的击穿电压,同时消除由阻挡层附近的掺杂剂引起的器件性能波动。为了实现该目标,需要捕获多余的掺杂剂,以便于避免现有技术的上述缺点。
附图说明
图1示出了常规GaN晶体管器件的横截面视图。
图2示出了根据本发明第一实施例形成的增强型GaN晶体管器件的横截面视图。
图3是与非中断或标准生长相比的单行中断和多行中断的缓冲层中的Mg浓度的曲线图。
图4示出了根据本发明第二实施例形成的增强型GaN晶体管器件的横截面视图。
具体实施方式
在下列详述中,参考特定实施例。充分详细地描述这些实施例,以使得本领域技术人员能够实施这些实施例。应当理解的是,可以采用其他实施例,并且可以进行各种结构、逻辑和电气改变。
本发明涉及具有Mg生长中断层以捕获多余或残余的掺杂剂的GaN晶体管器件,以及用于制造该器件的方法。本发明被设计成迫使Mg与氮进行反应,例如形成较低挥发性的材料,即氮化镁。随后,该材料被一层GaN或AlGaN所覆盖。覆层步骤可以在较低的温度下进行,以协助覆层。通过降低温度,MgN与Al或Ga之间将发生较少的反应。Al和MgN的反应使得形成AlN,而MgN还原成Mg。该反应与所需覆层和MgN的捕获相竞争。因而,如果可以通过降低温度而抑制该反应,Mg将更易于以MgN的形式存留。
参考图2,现在参考增强型GaN晶体管的形成来描述第一实施例。图2示出器件200的截面视图。器件200自底向上地包括基底31、过渡层32、Mg掺杂层33、生长中断层39、缓冲层34、阻挡层35、欧姆接触金属36、37以及门极结构38。生长中断层(Mg扩散阻挡)39可以由一层或多层高度Mg掺杂的GaN构成。它们可以通过中断生长并且将表面暴露至氨而形成。可以使用除了Mg之外的其他合适的掺杂剂,包括铁(Fe)、镍(Ni)、锰(Mn)、钙(Ca)、钒(V)或其他过渡金属。
现在将参考Mg作为掺杂剂的一个实例,描述图2的结构的形成。通过在基底31上成核和生长形成过渡层32。基底31可以包括硅(Si)、碳化硅(SiC)、蓝宝石、氧化锂镓(LiGaO2)、氮化镓(GaN)或其他合适的材料。过渡层32可以包括AlN、AlGaN、InAlGaN、SiO2、SiN、MgO、Al2O3或其组合物,优选其厚度为约0.1至约1.0μm。过渡层32通常厚度小于约1000埃。随后,生长Mg掺杂层33。Mg掺杂层33可以包括GaN,其厚度为约0.1至约1.0μm,其中Mg的浓度在每cm3具有1016个原子和每cm3具有1019个原子之间。接着,生长阻挡Mg的生长中断层39。生长中断层39的形成包括生长不具有含Mg材料的GaN,停止提供含镓材料、同时维持提供氨或其他活性氮源(例如,等离子体N2),以形成一层氮化镁,开始提供Ga以通过生长一层GaN而封盖该氮化镁层,再次中断生长并重复上述顺序,直到实现最终层中的Mg的目标含量。接着,生长缓冲层34、阻挡层35和门极结构38,并且进行材料处理以形成门极触点。缓冲层34可以包括GaN,优选厚度为约0.5至约3.0μm。阻挡层可以包括AlGaN,其中Al组分比例为约0.1至约0.5,优选厚度在约0.01和约0.03μm之间。Al组分比例是Al在AlGaN的含量,其中Al组分比例加上Ga组分比例等于1。门极结构38可以包括p型GaN,其具有高熔点金属触点,诸如钽(Ta)、钛(Ti)、氮化钛(TiN)、钨(W)或硅化钨(WSi2)。门极结构可以是简单金属,如Au下的Ni,或者具有金属的半导体,如TiN下的GaN,或者金属下的绝缘体下的半导体,如TiN下的SiN下的GaN。其他半导体可以是Si、GaAs或InAlGaN。其他绝缘体可以是AlGaN、InAlGaN、SiO2、SiN、MgO、Al2O3。其他金属可以是Al、Ni、Au、Pt等。也可以使用多晶硅代替金属。金属和门极层优选厚度均为约0.01至约1.0μm。门极结构的总厚度优选低于1μm。接着,在器件的其他区域蚀刻门极结构38,并且形成欧姆触点36、37。欧姆触点金属36、37可以由具有诸如镍(Ni)和金(Au)或者钛(Ti)和氮化钛(TiN)的封盖金属的钛(Ti)和铝(Al)形成。还可以存在与接触区相关的被注入的高掺杂区。主沟道区可以使n型掺杂GaN、或未掺杂或本征InAlGaN。
根据上述方法,在门极下添加p型GaN层33和一系列生长中断层39减小了GaN缓冲层34中Mg的水平。在图2中,层33的Mg掺杂增大了器件的击穿电压。器件的门极长度可以显著地减小,而不减小器件的击穿电压。由于较小的门极长度,器件的门极电容减小。由于较小的门极电容,提高了器件的开关速度。生长中断层39减少了层34中和阻挡层35附近的Mg浓度。
图3是比较在不具有生长中断层的缓冲层中、具有单一生长中断层的缓冲层中和具有六层生长中断层的缓冲层中Mg浓度的曲线图。从多个生长中断曲线可见,每个生长中断在中断位置处形成较高水平的Mg,而在随后层中具有较低水平的Mg。每个生长中断层降低了Mg,并且通过应用多层,可以在较短的距离内获得低水平的Mg。
降低层34中的Mg增加器件的导电性。降低层34中的Mg还允许将层33设置紧密接近层35,而不降低器件的导电性。此外,层33与层35的紧密接近导致提高了器件的击穿电压,并且减小了门极漏电流。然而,图2的结构具有一些缺点。生成生长中断层39所需的时间会很长,导致增加制造成本。此外,因为反应器部件的污染,在层34中仍然存在一些Mg。
参考图4,现在参考增强型GaN晶体管的形成而描述第二实施例。图4示出了由下文所述方法形成的器件300的横截面视图。本发明的该实施例与第一实施例不同之处在于,图2的生长中断层39现在替换为AlGaN层49。AlGaN层49(掺杂扩散阻挡)可以包括一层或多层AlGaN。类似于第一实施例,它们通过中断生长和暴露GaN表面至氨、随后沉积AlGaN以及再沉积GaN而形成。AlGaN层中的Al组分比例在约0.3和约1之间。AlGaN层的厚度优选为约0.005至约0.03μm。
图4结构的形成类似于上述参考第一实施例(图2)所述,其中使用Mg作为掺杂剂,作为实例。各层的尺寸和成分也类似于第一实施例。然而,不形成生长中断层39(图2),而是形成AlGaN层49。AlGaN层49的形成包括生长不具有含Mg材料的GaN,停止提供含镓材料、同时维持提供氨或其他活性氮源(例如,等离子体N2),以形成一层氮化镁,降低生长温度,开始提供Al和/或Ga以通过生长一层GaN而封盖该氮化镁层,返回生长温度至初始温度以生长GaN,再次中断生长并重复上述顺序,直到实现最终层中的Mg的目标量级。降低生长温度和返回初始生长温度的步骤是任选的。
根据上述方法,在门极下添加p型GaN层43和一系列生长中断和AlGaN层49减少了GaN缓冲层44中的Mg的水平。第二实施例共享与第一实施例相同的优势。而且,向扩散阻挡49添加多个AlGaN层,提高了每个生长中断步骤的效率,减少了实现缓冲层44中Mg掺杂的所需水平的步骤数量。
上述描述和附图仅是实现本文所述的特征和优点的特定实施例的解释说明。可以对特定处理条件进行修改和替换。因此,不应认为本发明的实施例受到前述描述和附图的限制。

Claims (10)

1.一种增强型GaN晶体管,包括:
基底;
一组位于该基底上的过渡层;
包括掺杂剂原子的掺杂层材料,该掺杂层形成在该组过渡层上;
该掺杂层上的一组生长中断层,所述生长中断层用作掺杂剂扩散阻挡层,其中所述生长中断层包括交替生长的III族氮化物层和由所述掺杂剂的氮化物构成的层,其中所述III族氮化物层选自GaN层和AlGaN层;以及
缓冲层材料,包括形成在所述生长中断层上的GaN;
其中所述掺杂剂原子选自于包括Mg、Fe、Ni、Mn、Ca、V和其他过渡金属的组,并且其中在所述掺杂层上的所述生长中断层中,所述III族氮化物层和由所述掺杂剂的氮化物构成的层顺序重复,直到在所述缓冲层下的所述生长中断层的最终层中实现目标掺杂剂水平。
2.根据权利要求1所述的晶体管,其中所述掺杂剂原子包括Mg。
3.根据权利要求2所述的晶体管,其中生长中断层组包括交替的GaN层和氮化镁层。
4.根据权利要求2所述的晶体管,其中生长中断层组包括交替的AlGaN层和氮化镁层。
5.一种制造增强型GaN晶体管的方法,该方法包括:
在基底上形成一组过渡层;
在所述过渡层上生长掺杂有Mg的材料;
开始提供含Ga材料和活性氮源以在所述掺杂有Mg的材料上生长GaN材料;
停止提供含Ga材料,同时维持提供活性氮源以形成氮化镁层;
在形成所述氮化镁层之后,恢复提供含Ga材料以在所述氮化镁层上形成GaN材料;以及
在最后形成的GaN材料上形成缓冲层。
6.根据权利要求5所述的方法,进一步包括在最后形成的GaN材料上形成缓冲层之前,重复所述停止提供含Ga材料同时维持提供活性氮源以形成氮化镁层、以及在形成所述氮化镁层之后恢复提供含Ga材料以在所述氮化镁层上形成GaN材料的步骤。
7.一种制造增强型GaN晶体管的方法,该方法包括:
在基底上形成一组过渡层;
在所述过渡层上生长包括掺杂剂原子的掺杂材料;
提供包含活性氮源和III族元素的气体流;
停止提供包含III族元素的气体流并维持提供所述活性氮源;
在停止提供包含III族元素的气体流之后降低温度;
在降低温度之后重新开始提供包含III族元素的气体流;
在重新开始提供包含III族元素的气体流之后升高温度至降温前的初始温度;
形成缓冲层;
其中所述掺杂剂原子选自包括Mg、Fe、Ni、Mn、Ca、V和其他过渡金属的组。
8.根据权利要求7所述的方法,其中在形成所述缓冲层之前,重复所述提供包含活性氮源和III族元素的气体流、停止提供包含III族元素的气体流并维持提供所述活性氮源、在停止提供包含III族元素的气体流之后降低温度、在降低温度之后重新开始提供含III族元素的气体流和在重新开始提供包含III族元素的气体流之后升高温度至降温前的初始温度的步骤。
9.根据权利要求7所述的方法,其中所述包含III族元素的气体流是下列一种或多种化合物的混合物:三甲基镓、三甲基铝、三乙基镓、三乙基铝和三乙基铟。
10.根据权利要求7所述的方法,其中所述提供包含活性氮源和III族元素的气体流以及停止提供包含III族元素的气体流并维持提供所述活性氮源的步骤包括:
在掺杂材料上生长GaN材料;
停止提供含Ga材料,同时维持提供所述活性氮源以形成所述掺杂剂的氮化物。
CN201080014928.5A 2009-04-08 2010-04-07 GaN缓冲层中的掺杂剂扩散调制 Active CN102365763B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16782009P 2009-04-08 2009-04-08
US61/167,820 2009-04-08
PCT/US2010/030194 WO2010118101A1 (en) 2009-04-08 2010-04-07 Dopant diffusion modulation in gan buffer layers

Publications (2)

Publication Number Publication Date
CN102365763A CN102365763A (zh) 2012-02-29
CN102365763B true CN102365763B (zh) 2015-04-22

Family

ID=42933716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080014928.5A Active CN102365763B (zh) 2009-04-08 2010-04-07 GaN缓冲层中的掺杂剂扩散调制

Country Status (8)

Country Link
US (1) US8431960B2 (zh)
JP (1) JP5670427B2 (zh)
KR (1) KR101620987B1 (zh)
CN (1) CN102365763B (zh)
DE (1) DE112010001557T5 (zh)
HK (1) HK1165614A1 (zh)
TW (1) TWI409859B (zh)
WO (1) WO2010118101A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562579B2 (ja) * 2009-05-12 2014-07-30 日本碍子株式会社 半導体素子用エピタキシャル基板の作製方法
US8686562B2 (en) * 2009-08-25 2014-04-01 International Rectifier Corporation Refractory metal nitride capped electrical contact and method for frabricating same
US9299821B2 (en) 2010-06-23 2016-03-29 Cornell University Gated III-V semiconductor structure and method
JP2012019069A (ja) * 2010-07-08 2012-01-26 Toshiba Corp 電界効果トランジスタおよび電界効果トランジスタの製造方法
JP5746927B2 (ja) * 2010-08-11 2015-07-08 住友化学株式会社 半導体基板、半導体デバイスおよび半導体基板の製造方法
KR101720589B1 (ko) * 2010-10-11 2017-03-30 삼성전자주식회사 이 모드(E-mode) 고 전자 이동도 트랜지스터 및 그 제조방법
US20120126239A1 (en) * 2010-11-24 2012-05-24 Transphorm Inc. Layer structures for controlling stress of heteroepitaxially grown iii-nitride layers
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
WO2013032906A1 (en) 2011-08-29 2013-03-07 Efficient Power Conversion Corporation Parallel connection methods for high performance transistors
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US8946771B2 (en) * 2011-11-09 2015-02-03 Taiwan Semiconductor Manufacturing Co., Ltd. Gallium nitride semiconductor devices and method making thereof
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
JP2014072428A (ja) * 2012-09-28 2014-04-21 Fujitsu Ltd 半導体結晶基板の製造方法、半導体装置の製造方法、半導体結晶基板及び半導体装置
KR102083495B1 (ko) 2013-01-07 2020-03-02 삼성전자 주식회사 Cmos 소자와 이를 포함하는 광학장치와 그 제조방법
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245992B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
WO2015009514A1 (en) 2013-07-19 2015-01-22 Transphorm Inc. Iii-nitride transistor including a p-type depleting layer
CN103872198B (zh) * 2014-03-24 2016-09-28 天津三安光电有限公司 一种多量子阱结构及采用该结构的发光二极管
CN105092324B (zh) * 2014-05-07 2018-03-20 中芯国际集成电路制造(上海)有限公司 一种FinFET鳍片掺杂浓度分布的测量方法和测量样品制备方法
CN103972336B (zh) * 2014-05-27 2017-03-22 内蒙古华延芯光科技有限公司 利用温度循环法提高GaN基LED器件工作寿命的方法
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9590087B2 (en) 2014-11-13 2017-03-07 Infineon Technologies Austria Ag Compound gated semiconductor device having semiconductor field plate
US9559161B2 (en) * 2014-11-13 2017-01-31 Infineon Technologies Austria Ag Patterned back-barrier for III-nitride semiconductor devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
FR3043251B1 (fr) * 2015-10-30 2022-11-11 Thales Sa Transistor a effet de champ a rendement et gain optimise
JP6737800B2 (ja) * 2015-11-02 2020-08-12 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
TWI813243B (zh) 2016-05-31 2023-08-21 美商創世舫科技有限公司 包含漸變空乏層的三族氮化物裝置
US9960265B1 (en) * 2017-02-02 2018-05-01 Semiconductor Components Industries, Llc III-V semiconductor device and method therefor
EP3442026B1 (en) 2017-08-11 2023-03-08 IMEC vzw Gate for an enhancement-mode transistor
US20210257463A1 (en) * 2018-06-20 2021-08-19 Lawrence Livermore National Security, Llc Field assisted interfacial diffusion doping through heterostructure design
TWI775121B (zh) * 2020-07-27 2022-08-21 世界先進積體電路股份有限公司 高電子遷移率電晶體
US11316040B2 (en) 2020-09-14 2022-04-26 Vanguard International Semiconductor Corporation High electron mobility transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300669A (zh) * 2003-12-05 2008-11-05 国际整流器公司 具有增强的绝缘结构的场效应晶体管

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8031A (en) * 1851-04-08 Gkraih separator and ban
JP3322179B2 (ja) * 1997-08-25 2002-09-09 松下電器産業株式会社 窒化ガリウム系半導体発光素子
JP4122871B2 (ja) * 2002-07-15 2008-07-23 昭和電工株式会社 リン化硼素層の製造方法及びリン化硼素系半導体素子
US7112830B2 (en) 2002-11-25 2006-09-26 Apa Enterprises, Inc. Super lattice modification of overlying transistor
SG135924A1 (en) * 2003-04-02 2007-10-29 Sumitomo Electric Industries Nitride-based semiconductor epitaxial substrate, method of manufacturing the same, and hemt substrate
US7547928B2 (en) * 2004-06-30 2009-06-16 Interuniversitair Microelektronica Centrum (Imec) AlGaN/GaN high electron mobility transistor devices
US20060049418A1 (en) * 2004-09-03 2006-03-09 Tzi-Chi Wen Epitaxial structure and fabrication method of nitride semiconductor device
JP2006096620A (ja) * 2004-09-29 2006-04-13 ▲さん▼圓光電股▲ふん▼有限公司 窒化物エピタキシャル層製造方法及びその構造
US7459718B2 (en) * 2005-03-23 2008-12-02 Nichia Corporation Field effect transistor
JP4705412B2 (ja) 2005-06-06 2011-06-22 パナソニック株式会社 電界効果トランジスタ及びその製造方法
US7485512B2 (en) * 2005-06-08 2009-02-03 Cree, Inc. Method of manufacturing an adaptive AIGaN buffer layer
US7547925B2 (en) * 2005-11-14 2009-06-16 Palo Alto Research Center Incorporated Superlattice strain relief layer for semiconductor devices
US7825432B2 (en) * 2007-03-09 2010-11-02 Cree, Inc. Nitride semiconductor structures with interlayer structures
JP2008277655A (ja) * 2007-05-02 2008-11-13 Hitachi Cable Ltd 半導体エピタキシャルウェハ及び電界効果トランジスタ
JP4341702B2 (ja) * 2007-06-21 2009-10-07 住友電気工業株式会社 Iii族窒化物系半導体発光素子
JP5266679B2 (ja) * 2007-07-11 2013-08-21 住友電気工業株式会社 Iii族窒化物電子デバイス
JP4761319B2 (ja) * 2008-02-19 2011-08-31 シャープ株式会社 窒化物半導体装置とそれを含む電力変換装置
US7985986B2 (en) * 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
US20100117118A1 (en) * 2008-08-07 2010-05-13 Dabiran Amir M High electron mobility heterojunction device
JP5013218B2 (ja) * 2009-02-05 2012-08-29 日立電線株式会社 半導体エピタキシャルウェハの製造方法、並びに電界効果トランジスタの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101300669A (zh) * 2003-12-05 2008-11-05 国际整流器公司 具有增强的绝缘结构的场效应晶体管

Also Published As

Publication number Publication date
US8431960B2 (en) 2013-04-30
DE112010001557T5 (de) 2012-09-13
JP5670427B2 (ja) 2015-02-18
CN102365763A (zh) 2012-02-29
WO2010118101A1 (en) 2010-10-14
HK1165614A1 (zh) 2012-10-05
TW201103077A (en) 2011-01-16
KR20120002985A (ko) 2012-01-09
JP2012523702A (ja) 2012-10-04
KR101620987B1 (ko) 2016-05-13
TWI409859B (zh) 2013-09-21
US20100258912A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
CN102365763B (zh) GaN缓冲层中的掺杂剂扩散调制
US11522066B2 (en) Sidewall passivation for HEMT devices
US11699748B2 (en) Normally-off HEMT transistor with selective generation of 2DEG channel, and manufacturing method thereof
JP5785153B2 (ja) 補償型ゲートmisfet及びその製造方法
US8907349B2 (en) Semiconductor device and method of manufacturing the same
US8436398B2 (en) Back diffusion suppression structures
US9130026B2 (en) Crystalline layer for passivation of III-N surface
US9443969B2 (en) Transistor having metal diffusion barrier
US10074537B2 (en) Method of forming semiconductor structure having sets of III-V compound layers
US9214539B2 (en) Gallium nitride transistor with a hybrid aluminum oxide layer as a gate dielectric
JP4968747B2 (ja) Iii−v族化合物半導体素子
KR20150092708A (ko) 반도체 장치
JP6444789B2 (ja) 半導体装置及びその製造方法
JP2013012735A (ja) Hemt装置を製造するcmosコンパチブルな方法とそのhemt装置
TW201810654A (zh) 半導體結構、hemt結構及其形成方法
US20240030329A1 (en) Semiconductor device and method for manufacturing the same
JP7308593B2 (ja) 窒化物半導体装置
US20240055509A1 (en) Nitride-based semiconductor device and method for manufacturing the same
CN112310215A (zh) 增强型高电子迁移率晶体管元件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1165614

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1165614

Country of ref document: HK