CN102332395A - 一种选择性淀积栅氧和栅电极的方法 - Google Patents

一种选择性淀积栅氧和栅电极的方法 Download PDF

Info

Publication number
CN102332395A
CN102332395A CN201110285019A CN201110285019A CN102332395A CN 102332395 A CN102332395 A CN 102332395A CN 201110285019 A CN201110285019 A CN 201110285019A CN 201110285019 A CN201110285019 A CN 201110285019A CN 102332395 A CN102332395 A CN 102332395A
Authority
CN
China
Prior art keywords
gate
silicon dioxide
gate electrode
selectively deposited
grid oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110285019A
Other languages
English (en)
Other versions
CN102332395B (zh
Inventor
孙清清
李叶
房润辰
王鹏飞
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201110285019.1A priority Critical patent/CN102332395B/zh
Publication of CN102332395A publication Critical patent/CN102332395A/zh
Priority to US13/528,446 priority patent/US20130078793A1/en
Application granted granted Critical
Publication of CN102332395B publication Critical patent/CN102332395B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/66583Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with initial gate mask or masking layer complementary to the prospective gate location, e.g. with dummy source and drain contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明属于半导体集成电路制造技术领域,具体涉及一种选择性淀积栅氧和栅电极的方法。本发明利用十八烷基三乙氧基硅烷(ODTS)易于吸附在Si-OH界面而不易吸附在Si-H界面的特性,有选择性的淀积栅氧和栅电极材料,避免了不必要的材料浪费,节约了成本。本发明同时将对栅氧和栅电极的刻蚀转化为对SiO2的刻蚀,降低了刻蚀工艺的难度,提高了生产效率。

Description

一种选择性淀积栅氧和栅电极的方法
技术领域
本发明涉及一种栅氧和栅电极的制备方法,具体涉及一种选择性淀积栅氧和栅电极的方法,属于半导体集成电路制造技术领域。
背景技术
随着金属-氧化物-半导体场效应晶体管(MOSFET)特征尺寸的不断缩小, 绝缘栅介质层也按照等比例缩小的原则变得越来越薄,当栅介质层薄到一定程度后,其可靠性问题,尤其是与时间相关的击穿及栅电极中的杂质向衬底的扩散等问题,将严重影响器件的稳定性和可靠性。现在,SiO2作为栅介质已经达到其物理极限,会由于量子直接隧穿效应而导致栅极漏电流显著增加,使器件功耗变大,同时可靠性变坏。用高k栅介质取代SiO2栅介质,可以在保持等效氧化层厚度(EOT)不变的情况下大大增加其物理厚度,从而减小栅极漏电流。
高k栅介质材料因为解决了SiO2接近物理厚度极限引发的诸多问题,而成为了代替SiO2的热门材料。然而,由于多晶硅与HfO2等高k栅介质材料结合会出现许多问题,如多晶硅栅耗尽效应、费米能级的钉扎、过高的栅电阻、严重的硼穿透等现象。因此,采用金属栅替代多晶硅栅电极成为发展的必然趋势。传统工艺中栅极的形成过程是先淀积栅氧和栅电极,然后对栅氧和栅电极进行光刻、刻蚀出栅极,其刻蚀工艺难度较大,良率偏低。
原子层淀积是一种在经过表面活性处理的衬底上利用表面饱和反应,对温度和反应物通量不太敏感的淀积方法。在原子层淀积过程中,新一层原子膜的化学反应是直接与前一层相关联的,这种方式使每次反应只淀积一层原子。相对于传统的淀积工艺而言,原子层淀积方法能精确地控制薄膜的厚度和化学组分,而且淀积的薄膜具有很好的均匀性和保形性,被认为是未来集成电路中制备薄膜最具有前景的技术。所谓选择性淀积是指利用化学试剂如十八烷基三乙氧基硅烷(ODTS)对集成电路衬底的不同表面进行化学修饰来实现薄膜的淀积在某些特定表面的生长,可以减少材料的浪费。
发明内容
有鉴于此,本发明的目的在于提出一种利用选择性淀积技术来制备栅极的方法,以减少材料的浪费,同时可以减小栅氧和栅电极的刻蚀难度,提高生产良率。
为达到本发明的上述目的,本发明提出了一种选择性淀积栅氧和栅电极的方法,具体步骤包括:
提供一个半导体衬底并清洗;
进行场氧区隔离;
生长一层二氧化硅;
淀积光刻胶;
光刻、刻蚀定义出栅极位置;
剥除光刻胶;
对二氧化硅进行表面处理;
在二氧化硅上吸附一层十八烷基三乙氧基硅烷(ODTS); 
淀积高k栅介质;
淀积金属电极;
去除ODTS和二氧化硅。
进一步地,所述的二氧化硅的厚度为50-200纳米。所述的高k栅介质为Pr2O3、TiO2、HfO2、Al2O3或ZrO2等材料,其厚度范围为2-20纳米。所述的金属电极由TiN、TaN、Ru或W等金属栅材料形成
更进一步地,所述的对二氧化硅进行表面处理的过程为:先用piranha solution(浓度为95-98%的H2SO4与H2O2的体积比为7:3)在室温下处理15--25分钟,之后在浓度为2%的HF酸溶液中浸泡1-3分钟,最后用去离子水冲洗干净。
本发明所提出的选择性淀积栅氧和栅电极的方法的优点是:
1、利用ODTS易于吸附在Si-OH界面而不易吸附在Si-H界面的特性,有选择性的淀积栅氧和栅电极材料,避免了不必要的材料浪费,节约了成本。
2、将对栅氧和栅电极的刻蚀转化为对SiO2的刻蚀,降低了刻蚀工艺的难度,提高了生产效率。
3、采用原子层淀积的方法生长高k栅介质和金属栅的主体部分,保证了高k栅介质层的质量以及与金属栅良好的接触。
附图说明
图1为本发明所提供的选择性淀积栅氧和栅电极的方法的流程图。
图2至图8为利用本发明提供的选择性淀积栅氧和栅电极的方法来制备栅极的一个实施例的工艺流程图。
具体实施方式
图1为本发明所提供的选择性淀积栅氧和栅电极的方法的流程图,具体包括:提供一个半导体衬底并经RCA清洗工艺清洗;进行场氧区隔离;生长一层二氧化硅;光刻、刻蚀定义出栅极位置;对二氧化硅进行表面处理;在二氧化硅上吸附一层十八烷基三乙氧基硅烷(ODTS); 淀积高k栅介质;淀积金属电极;去除ODTS和二氧化硅。
下面结合附图与具体实施方式对本发明作进一步详细的说明,在图中,为了方便说明,放大或缩小了层和区域的厚度,所示大小并不代表实际尺寸。尽管这些图并不能完全准确的反映出器件的实际尺寸,但是它们还是完整的反映了区域和组成结构之间的相互位置,特别是组成结构之间的上下和相邻关系。图中的表示是示意性的,但这不应该被认为是限制本发明的范围。同时在下面的描述中,所使用的术语衬底可以理解为包括正在工艺加工中的半导体衬底,可能包括在其上所制备的其它薄膜层。
本发明所提出的选择性淀积栅氧和栅电极的方法可以适用于不同MOS器件的栅极的制备,以下所叙述的是利用本发明所提出的方法来制备NMOSFET器件的栅极的实施例。
首先,提供一个P型的Si衬底201,并用传统的RCA清洗工艺清洗Si衬底,之后在浓度为2%的HF酸中浸泡1-3分钟以去除Si表面的氧化层,然后用N2将Si衬底吹干。接着利用LOCOS的方法进行场区隔离,具体工艺为:先生长缓冲层氧化层并利用LPCVD 工艺淀积Si3N4,然后光刻、刻蚀形成场氧区202,如图2所示。
接下来,生长一层厚度为100纳米左右的二氧化硅203,接着淀积一层光刻胶,然后光刻、刻蚀定义出栅极位置204,剥除光刻胶后的结构如图3所示。
接下来,将二氧化硅203用piranha solution(浓度为95-98%的H2SO4与H2O2的体积比为7:3)在室温下处理20分钟,之后在浓度为2%的HF酸溶液中浸泡2分钟,最后用去离子水冲洗,得到如图4所示的结果,在二氧化硅203表面形成Si-OH界面,在Si衬底201的表面形成Si-OH界面。
接下来,将基片在10mM的ODTS溶液中浸泡48小时,然后用甲苯、丙酮、氯仿清洗,再用N2吹干。这样,利用ODTS易于吸附在Si-OH界面而不易吸附在Si-H界面的特性,可以在只在二氧化硅203的表面形成一层ODTS 205,如图5所示。
接下来,利用原子层淀积(ALD)技术生长高 k栅介质层206,如图6所示。高k栅介质比如采用Al2O3或者HfO2,反应温度分别为200℃和300℃,速率分别为0.1nm/cycle和0.09nm/cycle。
接下来,淀积栅电极207,如图7所示,栅电极比如采用W、TiN、Ru、TaN材料,其具体工艺过程可以为:首先用ALD技术淀积栅电极的成核层,之后再用化学气相淀积(CVD)技术淀积其主体部分。
最后,去除ODTS 205和二氧化硅203,如图8所示。
如上所述,在不偏离本发明精神和范围的情况下,还可以构成许多有很大差别的实施例。应当理解,除了如所附的权利要求所限定的,本发明不限于在说明书中所述的具体实例。

Claims (5)

1.一种选择性淀积栅氧和栅电极的方法,其特征在于具体步骤为:
提供一个半导体衬底并清洗;
进行场氧区隔离;
生长一层二氧化硅;
光刻、刻蚀定义出栅极位置;
对二氧化硅进行表面处理;
在二氧化硅上吸附一层十八烷基三乙氧基硅烷; 
淀积高k栅介质;
淀积金属电极;
去除ODTS和二氧化硅。
2.根据权利要求1所述的选择性淀积栅氧和栅电极的方法,其特征在于,所述的二氧化硅的厚度为50-200纳米。
3.根据权利要求1所述的选择性淀积栅氧和栅电极的方法,其特征在于,所述的对二氧化硅进行表面处理的过程为:先用piranha solution在室温下处理15--25分钟,之后在浓度为2%的HF酸溶液中浸泡1-3分钟,最后用去离子水冲洗干净。
4.根据权利要求1所述的选择性淀积栅氧和栅电极的方法,其特征在于,所述的高k栅介质材料为Pr2O3、TiO2、HfO2、Al2O3或ZrO2,其厚度范围为2-20纳米。
5.根据权利要求1所述的选择性淀积栅氧和栅电极的方法,其特征在于,所述的金属电极由TiN、TaN、Ru或W金属栅材料形成。
CN201110285019.1A 2011-09-23 2011-09-23 一种选择性淀积栅氧和栅电极的方法 Expired - Fee Related CN102332395B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110285019.1A CN102332395B (zh) 2011-09-23 2011-09-23 一种选择性淀积栅氧和栅电极的方法
US13/528,446 US20130078793A1 (en) 2011-09-23 2012-06-20 Method for depositing a gate oxide and a gate electrode selectively

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110285019.1A CN102332395B (zh) 2011-09-23 2011-09-23 一种选择性淀积栅氧和栅电极的方法

Publications (2)

Publication Number Publication Date
CN102332395A true CN102332395A (zh) 2012-01-25
CN102332395B CN102332395B (zh) 2014-03-05

Family

ID=45484122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110285019.1A Expired - Fee Related CN102332395B (zh) 2011-09-23 2011-09-23 一种选择性淀积栅氧和栅电极的方法

Country Status (2)

Country Link
US (1) US20130078793A1 (zh)
CN (1) CN102332395B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592974A (zh) * 2012-03-20 2012-07-18 中国科学院上海微系统与信息技术研究所 一种高k介质薄膜的制备方法
CN110277314A (zh) * 2018-03-15 2019-09-24 三星电子株式会社 蚀刻SiGe前的预处理组合物和制造半导体器件的方法
CN112331797A (zh) * 2019-12-31 2021-02-05 广东聚华印刷显示技术有限公司 显示器件及其封装方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112003B2 (en) 2011-12-09 2015-08-18 Asm International N.V. Selective formation of metallic films on metallic surfaces
US9895715B2 (en) 2014-02-04 2018-02-20 Asm Ip Holding B.V. Selective deposition of metals, metal oxides, and dielectrics
US10047435B2 (en) * 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition
US9490145B2 (en) 2015-02-23 2016-11-08 Asm Ip Holding B.V. Removal of surface passivation
US10428421B2 (en) 2015-08-03 2019-10-01 Asm Ip Holding B.V. Selective deposition on metal or metallic surfaces relative to dielectric surfaces
US10566185B2 (en) 2015-08-05 2020-02-18 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material
US10121699B2 (en) 2015-08-05 2018-11-06 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material
US10695794B2 (en) 2015-10-09 2020-06-30 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10814349B2 (en) 2015-10-09 2020-10-27 Asm Ip Holding B.V. Vapor phase deposition of organic films
US11081342B2 (en) 2016-05-05 2021-08-03 Asm Ip Holding B.V. Selective deposition using hydrophobic precursors
US10453701B2 (en) 2016-06-01 2019-10-22 Asm Ip Holding B.V. Deposition of organic films
US10373820B2 (en) 2016-06-01 2019-08-06 Asm Ip Holding B.V. Deposition of organic films
US9803277B1 (en) 2016-06-08 2017-10-31 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
US11430656B2 (en) 2016-11-29 2022-08-30 Asm Ip Holding B.V. Deposition of oxide thin films
US11094535B2 (en) 2017-02-14 2021-08-17 Asm Ip Holding B.V. Selective passivation and selective deposition
US11501965B2 (en) 2017-05-05 2022-11-15 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of metal oxide thin films
CN115233183A (zh) 2017-05-16 2022-10-25 Asm Ip 控股有限公司 电介质上氧化物的选择性peald
US10900120B2 (en) 2017-07-14 2021-01-26 Asm Ip Holding B.V. Passivation against vapor deposition
US10522358B2 (en) 2017-08-31 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and methods of forming same
JP7146690B2 (ja) 2018-05-02 2022-10-04 エーエスエム アイピー ホールディング ビー.ブイ. 堆積および除去を使用した選択的層形成
JP2020056104A (ja) 2018-10-02 2020-04-09 エーエスエム アイピー ホールディング ビー.ブイ. 選択的パッシベーションおよび選択的堆積
US11965238B2 (en) 2019-04-12 2024-04-23 Asm Ip Holding B.V. Selective deposition of metal oxides on metal surfaces
US11139163B2 (en) 2019-10-31 2021-10-05 Asm Ip Holding B.V. Selective deposition of SiOC thin films
TW202140832A (zh) 2020-03-30 2021-11-01 荷蘭商Asm Ip私人控股有限公司 氧化矽在金屬表面上之選擇性沉積
TW202204658A (zh) 2020-03-30 2022-02-01 荷蘭商Asm Ip私人控股有限公司 在兩不同表面上同時選擇性沉積兩不同材料
TW202140833A (zh) 2020-03-30 2021-11-01 荷蘭商Asm Ip私人控股有限公司 相對於金屬表面在介電表面上之氧化矽的選擇性沉積

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832114A (zh) * 2006-02-24 2006-09-13 北京大学 用于改进高k栅介质mos晶体管性能的衬底处理方法
CN102005380A (zh) * 2010-10-12 2011-04-06 复旦大学 一种采用原子层淀积AlN/高k栅介质双层结构的方法
CN102064103A (zh) * 2010-12-02 2011-05-18 上海集成电路研发中心有限公司 高k栅介质层的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352913B1 (en) * 1998-04-28 2002-03-05 Compaq Computer Corporation Damascene process for MOSFET fabrication
JP2004343014A (ja) * 2003-05-19 2004-12-02 Sharp Corp 半導体記憶装置、半導体装置、及びそれらの製造方法、並びに携帯電子機器、並びにicカード
US7968273B2 (en) * 2004-06-08 2011-06-28 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
JP4654627B2 (ja) * 2004-07-26 2011-03-23 セイコーエプソン株式会社 化学吸着膜の形成方法、及び化学吸着膜
JP5055719B2 (ja) * 2005-06-27 2012-10-24 ソニー株式会社 絶縁層及び有機半導体層から成る積層構造の形成方法、並びに、有機電界効果型トランジスタ及びその製造方法
EP1850374A3 (en) * 2006-04-28 2007-11-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR100999838B1 (ko) * 2008-05-09 2010-12-09 한국과학기술원 다중외팔보 mems 센서의 제조방법 및 다중외팔보 mems 센서를 이용한 음원위치 추정방법
JPWO2010010851A1 (ja) * 2008-07-24 2012-01-05 コニカミノルタホールディングス株式会社 基材、導電性パターン形成方法、及び有機薄膜トランジスタ
US8097926B2 (en) * 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832114A (zh) * 2006-02-24 2006-09-13 北京大学 用于改进高k栅介质mos晶体管性能的衬底处理方法
CN102005380A (zh) * 2010-10-12 2011-04-06 复旦大学 一种采用原子层淀积AlN/高k栅介质双层结构的方法
CN102064103A (zh) * 2010-12-02 2011-05-18 上海集成电路研发中心有限公司 高k栅介质层的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592974A (zh) * 2012-03-20 2012-07-18 中国科学院上海微系统与信息技术研究所 一种高k介质薄膜的制备方法
CN102592974B (zh) * 2012-03-20 2014-07-02 中国科学院上海微系统与信息技术研究所 一种高k介质薄膜的制备方法
CN110277314A (zh) * 2018-03-15 2019-09-24 三星电子株式会社 蚀刻SiGe前的预处理组合物和制造半导体器件的方法
CN112331797A (zh) * 2019-12-31 2021-02-05 广东聚华印刷显示技术有限公司 显示器件及其封装方法

Also Published As

Publication number Publication date
CN102332395B (zh) 2014-03-05
US20130078793A1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
CN102332395B (zh) 一种选择性淀积栅氧和栅电极的方法
CN102227001B (zh) 一种锗基nmos器件及其制备方法
CN102915917B (zh) 一种互补型金属氧化物半导体场效应晶体管的制备方法
CN103295891B (zh) 栅介质层的制作方法、晶体管的制作方法
CN102142369A (zh) 一种改善SiC器件性能的方法
US9831084B2 (en) Hydroxyl group termination for nucleation of a dielectric metallic oxide
CN102592974A (zh) 一种高k介质薄膜的制备方法
WO2016161842A1 (zh) 横向扩散金属氧化物半导体场效应管及其制造方法
CN103021848A (zh) 一种锗硅异质结隧穿场效应晶体管及其制备方法
CN104347397A (zh) 注入增强型绝缘栅双极型晶体管的制造方法
CN101728257B (zh) 一种栅介质/金属栅集成结构的制备方法
CN102543751A (zh) 等效氧化物厚度为亚纳米的Ge基MOS器件的制备方法
CN105826175B (zh) 晶体管的形成方法
CN107919394A (zh) 基于MoO3/Al2O3双层栅介质的零栅源间距金刚石场效应晶体管及制作方法
US20050236675A1 (en) Semiconductor device and manufacturing method thereof
CN102403367A (zh) 一种高迁移率mos电容及其制作方法
WO2012145952A1 (zh) 沉积栅介质的方法、制备mis电容的方法及mis电容
CN104681490A (zh) Cmos晶体管的形成方法
CN107611010A (zh) 一种晶圆清洗方法
CN102005390B (zh) 一种锗的表面钝化方法
CN103219381B (zh) Ge基三栅器件及制造方法
CN103151254A (zh) 一种锗基肖特基结的制备方法
CN102064111A (zh) 一种利用等离子体释放费米能级钉扎的方法
CN102655112B (zh) 实现锗基mos器件有源区之间隔离的方法
CN102509734A (zh) 一种利用ald制备锗基mos电容的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140305

Termination date: 20140923

EXPY Termination of patent right or utility model