CN102263245A - 球形多孔锂离子电池复合负极材料的制备方法 - Google Patents

球形多孔锂离子电池复合负极材料的制备方法 Download PDF

Info

Publication number
CN102263245A
CN102263245A CN2011101923208A CN201110192320A CN102263245A CN 102263245 A CN102263245 A CN 102263245A CN 2011101923208 A CN2011101923208 A CN 2011101923208A CN 201110192320 A CN201110192320 A CN 201110192320A CN 102263245 A CN102263245 A CN 102263245A
Authority
CN
China
Prior art keywords
lithium ion
silicon
composite cathode
cathode material
spherical porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101923208A
Other languages
English (en)
Inventor
杨学林
张鹏昌
王凤军
石长川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINA SCIENCES HENGDA GRAPHITE Co Ltd
China Three Gorges University CTGU
Original Assignee
CHINA SCIENCES HENGDA GRAPHITE Co Ltd
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINA SCIENCES HENGDA GRAPHITE Co Ltd, China Three Gorges University CTGU filed Critical CHINA SCIENCES HENGDA GRAPHITE Co Ltd
Priority to CN2011101923208A priority Critical patent/CN102263245A/zh
Publication of CN102263245A publication Critical patent/CN102263245A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种球形多孔锂离子电池复合负极材料的制备方法,借助于原位碳热还原法和喷雾造粒技术将纳米硅合成出来的同时将其均匀分散在石墨颗粒表面,得到的复合材料颗粒为球形。球形材料具有流动性好、振实密度高等优点。这种通过粘结剂将硅颗粒粘结在异取向石墨表面的球形颗粒在石墨和硅的结合强度上较其他通过机械混合得到的复合材料要高。天然石墨具有循环稳定性好的优点且导电性也比硅材料高,能在维持复合材料循环稳定性的同时保持电极导电网络的完整性,并充分发挥硅材料高储锂容量的优点,使电极能稳定地释放出可逆容量。该材料具有可逆容量高、循环性能优异和制备工艺简单等优点。

Description

球形多孔锂离子电池复合负极材料的制备方法
技术领域
本发明涉及一类锂二次电池天然石墨/硅复合负极材料的制备方法,属于电化学电源领域。
背景技术
由于基于嵌入式反应机理的天然石墨的理论比容量仅为372mAh/g,而目前商品化的石墨化碳材料的比容量已非常接近该值,不能满足高能量密度的要求,继续研究的潜力不大。硅材料由于具有最高理论比容量(≈4200mAh/g)和嵌/脱锂电位合适等优点吸引了众多研究者的目光。但其在充放电循环过程中存在巨大的体积效应(>300%),导致活性物质颗粒粉化失效,容量因此快速衰减,使得硅负极的实用化受阻。已有的研究表明,如果将硅颗粒降低到微米或纳米级就能显著地改善其循环性能。目前在这方面的研究多以纳米(<100nm)硅粉为嵌/脱锂主体,将其均匀分散在另一种体积变化不明显的活性/非活性相,如无定形碳中,以避免硅颗粒在充放电循环过程中重新团聚发生“电化学烧结”,并引发产生新的体积效应。结合天然石墨循环稳定性好和硅材料储锂容量高的特点,利用二者的协同效应,制备天然石墨/硅复合材料已成为一个重要的研究方向。相关的研究首先就涉及到硅材料的引入方法。不同的引入方法及复合材料的形貌都会对其循环性能产生影响。大部分的制备方法是将两者机械混合,此方法虽然工艺简单,但硅与石墨的结合强度较低,随着循环的进行硅因经历巨大的体积效应而从石墨基体上脱落。此外,以SiH4为前躯体采用CVD法将纳米硅沉积在石墨颗粒表面得到石墨/硅复合材料是另一种有效的方法,其电化学性能比石墨有较大的提高,这主要归因于小的硅颗粒尺寸、纳米硅和石墨高的结合强度及纳米硅在石墨表面均一的分布。但此种方法工艺过程复杂,其应用于锂电池产业不现实。喷雾造粒是一种将经雾化器雾化的雾滴在瞬间迅速蒸发而获得粉体材料的粉体制备技术。已广泛应用于食品、制药、陶瓷和化工等行业。但还未见喷雾造粒应用于球形多孔锂离子电池复合负极材料的制备方面的报道。
发明内容
本发明的目的是要提供一种球形多孔锂离子电池复合负极材料的制备方法,该方法借助于原位碳热还原法和喷雾造粒技术将纳米硅合成出来的同时将其均匀分散在石墨颗粒表面,得到的复合材料颗粒为球形。
本发明的目的是这样实现的:一种球形多孔锂离子电池复合负极材料的制备方法,
原料准备:复合材料的合成原料为含硅氧化物,SiOx,0<x≤1、天然石墨和粘结剂,所需天然石墨和含硅氧化物的的质量比在1:12与1:3之间;
制备过程:先将含硅氧化物在惰性气氛下高能球磨3~5小时,再将其转移至盛有粘结剂溶液的球磨罐中球磨6~8小时,然后将其转移至容器中并加入天然石墨和分散介质,搅拌均匀后进行喷雾造粒,得到的球形物料再置于电阻炉中进行在惰性气氛中烧结,筛分后得到球形多孔锂离子电池复合负极材料。
得到的球形物料再置于电阻炉中在惰性气氛中烧结时是指在200℃保温2小时后升温至900℃,保温3小时后冷却至室温。
所述的天然石墨纯度≥99%。
所述的粘结剂为CMC、PVA或PVB。
粘结剂为CMC或PVA时,分散介质为水;粘结剂为PVB时,分散介质为无水乙醇。
本发明提供的球形多孔锂离子电池复合负极材料的制备方法,借助于原位碳热还原法和喷雾造粒技术将纳米硅合成出来的同时将其均匀分散在石墨颗粒表面,得到的复合材料颗粒为球形,球形材料具有流动性好、振实密度高等优点。这种通过粘结剂将硅颗粒粘结在异取向石墨表面的球形颗粒在石墨和硅的结合强度上较其他通过机械混合得到的复合材料要高。天然石墨具有循环稳定性好的优点且导电性也比硅材料高,能在维持复合材料循环稳定性的同时保持电极导电网络的完整性,并充分发挥硅材料高储锂容量的优点,使电极能稳定地释放出可逆容量。通过本发明提供的方法得到的材料具有可逆容量高、循环性能优异和制备工艺简单等优点。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为所制备天然石墨/硅复合材料及天然石墨的X-射线衍射图谱,可以看出复合材料除天然石墨的衍射峰外有单质硅的衍射峰,说明SiO被热解生成的碳成功还原。
图2为所制备天然石墨/硅复合材料的扫描电镜照片。从中可以看出,复合材料粒径在15-30μm,表面存在大量的孔状结构。
图3为以所制备天然石墨/硅复合材料为活性物质制备工作电极,以金属锂为对电极和参比电极组装成钮扣电池的循环性能曲线。可以看出,可逆容量呈缓慢上升的趋势,经历100次循环后,材料仍能稳定地释放出高达426.5 mAh/g的可逆容量。
具体实施方式
下面通过实施例和比较例的描述,进一步阐述本发明的实质性特点和优势。为描述方便,首先对比较例加以叙述,然后再描述实施例1~4,以与之比较,显示出本发明的效果。
比较例1. 将天然石墨加入到CMC(PVA、PVB等)溶液中搅拌均匀后进行喷雾造粒得到的球形材料再置于电阻炉中进行气氛(氩气)烧结(200℃保温2小时后升温至900℃,保温3小时后冷却至室温)。筛分(500目)后与聚偏氟乙烯(PVdF)按9:1的质量比在N-甲基吡咯烷酮(NMP)介质中制成浆料,涂布于铜箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极, Celgard聚丙烯膜为隔膜,1MLiPF6/(PC+DMC+DEC,VC) (1:1:1)为电解液,在0.15mA/cm2的电流密度下,0-1.5V的电压范围内进行充放电实验。首次嵌锂容量为400.6 mAh/g,脱锂容量为301.9 mAh/g,库仑效率为75.4%。第100次循环的嵌锂容量为340.6mAh/g,脱锂容量为339.7 mAh/g,经过100次循环脱锂容量并未衰减。
实施例1. 在手套箱中将一氧化硅置于不锈钢球磨罐中,再加入不锈钢球,球料比为16:1,密封后取出。在高能球磨机上进行高能球磨,转速475转/分钟,时间3~5小时。再将其转移至盛有CMC或PVA、PVB等溶液的球磨罐中于行星球磨机上球磨6~8小时,然后将其转移至烧杯中并加入一定量的石墨,氧化硅: 石墨=1:12和分散介质,当粘结剂为CMC或PVA时,分散介质为水;粘结剂为PVB时,分散介质为无水乙醇,搅拌均匀后进行喷雾造粒,得到的球形材料再置于电阻炉中进行气氛(氩气)烧结,升温到200℃保温2小时后升温至900℃,保温3小时后冷却至室温,采用500目筛分后与乙炔黑、聚偏氟乙烯(PVdF)按3:1:1的质量比在N-甲基吡咯烷酮(NMP)介质中制成浆料,涂布于铜箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极, Celgard聚丙烯膜为隔膜,1MLiPF6/(PC+DMC+DEC,VC) (1:1:1)为电解液,在0.15mA/cm2的电流密度下,0.02-1.5V的电压范围内进行充放电实验。首次嵌锂容量为573.6mAh/g,脱锂容量为368.3mAh/g,库仑效率为64.2%。第100次循环的嵌锂容量为414.7mAh/g,脱锂容量为413.9mAh/g,库伦效率为99.8%。与比较例1中的材料相比,实施例1中的材料不仅具有较好的循环稳定性还可保持较高的可逆容量,说明通过此种方法制备的复合材料较好地结合了天然石墨和硅材料的优点。
实施例2. 在手套箱中将一氧化硅置于不锈钢球磨罐中,再加入不锈钢球,球料比为16:1,密封后取出。在高能球磨机上进行高能球磨,转速475转/分钟,时间3~5小时。再将其转移至盛有CMC或PVA、PVB等溶液的球磨罐中于行星球磨机上球磨6~8小时,然后将其转移至烧杯中并加入一定量的石墨,氧化硅: 石墨=1:9和分散介质,当粘结剂为CMC或PVA时,分散介质为水;粘结剂为PVB时,分散介质为无水乙醇,搅拌均匀后进行喷雾造粒,得到的球形材料再置于电阻炉中进行气氛(氩气)烧结,升温到200℃保温2小时后升温至900℃,保温3小时后冷却至室温,筛分(500目)后与乙炔黑、聚偏氟乙烯(PVdF)按3:1:1的质量比在N-甲基吡咯烷酮(NMP)介质中制成浆料,涂布于铜箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极, Celgard聚丙烯膜为隔膜,1MLiPF6/(PC+DMC+DEC,VC) (1:1:1)为电解液,在0.15mA/cm2的电流密度下,0.02-1.5V的电压范围内进行充放电实验。首次嵌锂容量为550.1mAh/g,脱锂容量为353.7mAh/g,库仑效率为64.3%。第100次循环的嵌锂容量为410.1mAh/g,脱锂容量为409.3mAh/g,库伦效率为99.8%。材料可逆容量比实施例1中的材料略有降低,仍然较好地结合了天然石墨和硅材料的优点。
实施例3. 在手套箱中将一氧化硅置于不锈钢球磨罐中,再加入不锈钢球,球料比为16:1,密封后取出。在高能球磨机上进行高能球磨,转速475转/分钟,时间3~5小时。再将其转移至盛有CMC或PVA、PVB等溶液的球磨罐中于行星球磨机上球磨6~8小时,然后将其转移至烧杯中并加入一定量的石墨,氧化硅: 石墨=1:6和分散介质,当粘结剂为CMC或PVA时,分散介质为水;粘结剂为PVB时,分散介质为无水乙醇,搅拌均匀后进行喷雾造粒,得到的球形材料再置于电阻炉中进行气氛(氩气)烧结,升温到200℃保温2小时后升温至900℃,保温3小时后冷却至室温,筛分(500目)后与乙炔黑、聚偏氟乙烯(PVdF)按3:1:1的质量比在N-甲基吡咯烷酮(NMP)介质中制成浆料,涂布于铜箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极, Celgard聚丙烯膜为隔膜,1MLiPF6/(PC+DMC+DEC,VC) (1:1:1)为电解液,在0.15mA/cm2的电流密度下,0.02-1.5V的电压范围内进行充放电实验。首次嵌锂容量为548.3mAh/g,脱锂容量为356.4mAh/g,库仑效率为65%。第100次循环的嵌锂容量为408.4mAh/g,脱锂容量为408mAh/g,库伦效率为99.9%。材料循环100次后仍表现出较好的循环性能。
实施例4. 在手套箱中将一氧化硅置于不锈钢球磨罐中,再加入不锈钢球,球料比为16:1,密封后取出。在高能球磨机上进行高能球磨,转速475转/分钟,时间3~5小时。再将其转移至盛有CMC或PVA、PVB等溶液的球磨罐中于行星球磨机上球磨6~8小时,然后将其转移至烧杯中并加入一定量的石墨,氧化硅: 石墨=1:3和分散介质,当粘结剂为CMC或PVA时,分散介质为水;粘结剂为PVB时,分散介质为无水乙醇,搅拌均匀后进行喷雾造粒,得到的球形材料再置于电阻炉中进行气氛(氩气)烧结,升温到200℃保温2小时后升温至900℃,保温3小时后冷却至室温,筛分(500目)后与乙炔黑、聚偏氟乙烯(PVdF)按3:1:1的质量比在N-甲基吡咯烷酮(NMP)介质中制成浆料,涂布于铜箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极, Celgard聚丙烯膜为隔膜,1MLiPF6/(PC+DMC+DEC,VC) (1:1:1)为电解液,在0.15mA/cm2的电流密度下,0.02-1.5V的电压范围内进行充放电实验。首次嵌锂容量为540.5mAh/g,脱锂容量为354.6mAh/g,库仑效率为65.6%。第100次循环的嵌锂容量为406.5mAh/g,脱锂容量为406mAh/g,库伦效率为99.9%。材料循环100次后仍表现出较好的循环性能。

Claims (5)

1.一种球形多孔锂离子电池复合负极材料的制备方法,其特征在于:
原料准备:复合材料的合成原料为含硅氧化物,SiOx,0<x≤1、天然石墨和粘结剂,所需天然石墨和含硅氧化物的的质量比在1:12与1:3之间;
制备过程:先将含硅氧化物在惰性气氛下高能球磨3~5小时,再将其转移至盛有粘结剂溶液的球磨罐中球磨6~8小时,然后将其转移至容器中并加入天然石墨和分散介质,搅拌均匀后进行喷雾造粒,得到的球形物料再置于电阻炉中进行在惰性气氛中烧结,筛分后得到球形多孔锂离子电池复合负极材料。
2.根据权利要求1所述的球形多孔锂离子电池复合负极材料的制备方法,其特征在于:得到的球形物料再置于电阻炉中在惰性气氛中烧结时是指在200℃保温2小时后升温至900℃,保温3小时后冷却至室温。
3.根据权利要求1所述的球形多孔锂离子电池复合负极材料的制备方法,其特征在于:所述的天然石墨纯度≥99%。
4.根据权利要求1所述的球形多孔锂离子电池复合负极材料的制备方法,其特征在于:所述的粘结剂为CMC、PVA或PVB。
5.根据权利要求1或4所述的球形多孔锂离子电池复合负极材料的制备方法,其特征在于:粘结剂为CMC或PVA时,分散介质为水;粘结剂为PVB时,分散介质为无水乙醇。 
CN2011101923208A 2011-07-11 2011-07-11 球形多孔锂离子电池复合负极材料的制备方法 Pending CN102263245A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101923208A CN102263245A (zh) 2011-07-11 2011-07-11 球形多孔锂离子电池复合负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101923208A CN102263245A (zh) 2011-07-11 2011-07-11 球形多孔锂离子电池复合负极材料的制备方法

Publications (1)

Publication Number Publication Date
CN102263245A true CN102263245A (zh) 2011-11-30

Family

ID=45009785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101923208A Pending CN102263245A (zh) 2011-07-11 2011-07-11 球形多孔锂离子电池复合负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN102263245A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983317A (zh) * 2012-12-05 2013-03-20 奇瑞汽车股份有限公司 硅基复合材料及其制备方法、硅碳复合材料、锂离子电池
CN103187556A (zh) * 2011-12-27 2013-07-03 宁波杉杉新材料科技有限公司 锂离子电池及其负极材料、制备方法
CN104733719A (zh) * 2013-12-24 2015-06-24 中国电子科技集团公司第十八研究所 碳热还原制备锂离子电池用锗基负极材料的方法
CN106025219A (zh) * 2016-06-24 2016-10-12 中天储能科技有限公司 一种球形硅氧碳负极复合材料及其制备方法和用途
CN106463714A (zh) * 2014-05-29 2017-02-22 3M创新有限公司 用于可再充电电池的阳极组合物及其制备方法
CN107093721A (zh) * 2017-04-24 2017-08-25 四川聚能仁和新材料有限公司 石墨/硅@碳核壳结构复合球型负极材料及其制备方法
CN107204438A (zh) * 2016-03-17 2017-09-26 国家纳米科学中心 一种碳硅复合材料及其制备方法和用途
CN110391406A (zh) * 2019-07-01 2019-10-29 深圳市比克动力电池有限公司 一种锂离子电池硅氧负极材料及其制备方法、锂离子电池
CN111697217A (zh) * 2020-06-15 2020-09-22 中国检验检疫科学研究院 一种锂离子电池硅/石墨复合负极制备方法
CN112086624A (zh) * 2019-06-12 2020-12-15 识骅科技股份有限公司 复合型碳硅阴极基材的制造方法及由该制造方法所制成的复合型碳硅阴极基体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074738A1 (fr) * 2000-03-30 2001-10-11 Nippon Steel Corporation Produit refractaire carbone et son procede de preparation
CN1595683A (zh) * 2003-09-10 2005-03-16 中国科学院物理研究所 纳米金属或合金复合材料及其制备和用途
CN1909266A (zh) * 2006-07-13 2007-02-07 上海交通大学 一种锂离子电池用复合负极材料的制备方法
CN101409368A (zh) * 2008-12-05 2009-04-15 北京理工大学 一种采用离子液体型固态聚合物电解质的锂二次电池
CN101800304A (zh) * 2010-05-12 2010-08-11 三峡大学 一种异取向球形天然石墨负极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001074738A1 (fr) * 2000-03-30 2001-10-11 Nippon Steel Corporation Produit refractaire carbone et son procede de preparation
CN1595683A (zh) * 2003-09-10 2005-03-16 中国科学院物理研究所 纳米金属或合金复合材料及其制备和用途
CN1909266A (zh) * 2006-07-13 2007-02-07 上海交通大学 一种锂离子电池用复合负极材料的制备方法
CN101409368A (zh) * 2008-12-05 2009-04-15 北京理工大学 一种采用离子液体型固态聚合物电解质的锂二次电池
CN101800304A (zh) * 2010-05-12 2010-08-11 三峡大学 一种异取向球形天然石墨负极材料及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187556A (zh) * 2011-12-27 2013-07-03 宁波杉杉新材料科技有限公司 锂离子电池及其负极材料、制备方法
CN102983317A (zh) * 2012-12-05 2013-03-20 奇瑞汽车股份有限公司 硅基复合材料及其制备方法、硅碳复合材料、锂离子电池
CN104733719A (zh) * 2013-12-24 2015-06-24 中国电子科技集团公司第十八研究所 碳热还原制备锂离子电池用锗基负极材料的方法
CN106463714A (zh) * 2014-05-29 2017-02-22 3M创新有限公司 用于可再充电电池的阳极组合物及其制备方法
CN107204438A (zh) * 2016-03-17 2017-09-26 国家纳米科学中心 一种碳硅复合材料及其制备方法和用途
CN107204438B (zh) * 2016-03-17 2021-05-04 国家纳米科学中心 一种碳硅复合材料及其制备方法和用途
CN106025219A (zh) * 2016-06-24 2016-10-12 中天储能科技有限公司 一种球形硅氧碳负极复合材料及其制备方法和用途
CN107093721A (zh) * 2017-04-24 2017-08-25 四川聚能仁和新材料有限公司 石墨/硅@碳核壳结构复合球型负极材料及其制备方法
CN112086624A (zh) * 2019-06-12 2020-12-15 识骅科技股份有限公司 复合型碳硅阴极基材的制造方法及由该制造方法所制成的复合型碳硅阴极基体
CN110391406A (zh) * 2019-07-01 2019-10-29 深圳市比克动力电池有限公司 一种锂离子电池硅氧负极材料及其制备方法、锂离子电池
CN111697217A (zh) * 2020-06-15 2020-09-22 中国检验检疫科学研究院 一种锂离子电池硅/石墨复合负极制备方法

Similar Documents

Publication Publication Date Title
CN102263245A (zh) 球形多孔锂离子电池复合负极材料的制备方法
CN102394287B (zh) 锂离子电池硅碳负极材料及其制备方法
CN106784640B (zh) 锂离子电池用硅基复合负极材料、其制备方法及包含该材料的锂离子电池负极
CN103647056B (zh) 一种SiOX基复合负极材料、制备方法及电池
CN101800304B (zh) 一种异取向球形天然石墨负极材料及其制备方法
CN100414747C (zh) 锂离子动力电池复合碳负极材料及其制备方法
CN102891297B (zh) 一种锂离子电池用硅碳复合材料及其制备方法
CN101969111B (zh) 锂离子电池硅碳合金负极材料及其制备方法
CN102522546B (zh) 纳米锂离子电池级正极材料磷酸亚铁锂的制备方法
CN108123111A (zh) 一种锂离子电池用硅基复合负极材料、其制备方法及包含该材料的锂离子电池负极
CN111326715B (zh) 一种电池正极材料及其制备方法与应用
CN104091934A (zh) 一种多元复合负极材料、其制备方法及包含其的锂离子电池
CN107845797B (zh) 一种锂离子电池用纳米硅碳复合负极材料及其制备方法
CN107845781B (zh) 锂离子二次电池用负极活性材料、其制备方法及锂离子二次电池
WO2011009231A1 (zh) 一种碳包覆锂离子电池正极材料的制备方法
CN101752555A (zh) 一种锂离子电池正极材料磷酸铁锂的制备方法
CN101339990A (zh) 一种锂离子二次电池负极活性材料及其制备方法
CN101834288A (zh) 一种磷酸铁锂/纳米碳复合材料及其制备方法
CN102983317A (zh) 硅基复合材料及其制备方法、硅碳复合材料、锂离子电池
CN1850597A (zh) 一种高能球磨制备锂二次电池硅/富锂相复合负极材料的方法
CN102299330A (zh) 活性碳-纳米硅复合粉体及其合成方法及其制作的锂离子电池
CN101304088B (zh) 球形锂离子电池硅/锡二元储锂母体复合负极材料的制备方法
CN110767881A (zh) 高硅含量碳硅夹心材料及其制备方法和在锂离子电池中的应用
CN116936771A (zh) 一种中空球壳结构硫酸铁钠复合正极材料、制备方法及钠离子电池
CN101834287A (zh) 一种锂离子电池正极材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111130