CN102149983A - 能量供给系统 - Google Patents

能量供给系统 Download PDF

Info

Publication number
CN102149983A
CN102149983A CN2010800025460A CN201080002546A CN102149983A CN 102149983 A CN102149983 A CN 102149983A CN 2010800025460 A CN2010800025460 A CN 2010800025460A CN 201080002546 A CN201080002546 A CN 201080002546A CN 102149983 A CN102149983 A CN 102149983A
Authority
CN
China
Prior art keywords
mentioned
specified time
time limit
fuel cell
transport maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800025460A
Other languages
English (en)
Inventor
小原英夫
尾关正高
田中良和
鹈饲邦弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN102149983A publication Critical patent/CN102149983A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1048Counting of energy consumption
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/10Gas turbines; Steam engines or steam turbines; Water turbines, e.g. located in water pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/19Fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

一种能量供给系统,具备:能量供给装置(1a),其供给电力和/或热;以及控制装置(6),其设定具有多个第二规定期间的第一规定期间内的能量供给装置的运转时间的上限值、即第一最大运转时间,并且,针对属于第一规定期间的各个第二规定期间,通过运算求出并设定能量供给装置的运转时间的上限目标值、即第二目标最大运转时间,以避免第一规定期间内的能量供给装置的运转时间超过第一最大运转时间,根据在包含于某个第一规定期间中的过去的第二规定期间内能量供给装置实际运转的时间,重新设定包含于该第一规定期间中的将来的第二规定期间内的第二目标最大运转时间。

Description

能量供给系统
技术领域
本发明涉及一种供给电力、热等的能量供给系统。
背景技术
作为能量供给系统,以往已知燃气动力发电机、燃气发动机热电联产系统,近年来特别关注的有使用燃料电池一并供给电力和热的燃料电池热电联产系统。
已经开发了一种燃料电池热电联产系统,该燃料电池热电联产系统具有如下部件来进行运转以使设置有系统的对象中的消耗能量削减量、二氧化碳排放削减量最大(例如,参照专利文献1):对电力负荷(电力消耗能量)、热负荷(由于供给热水等产生的热消耗能量)进行测量的测量器;需求预测器,其根据由该测量器检测出的过去的负荷历史记录来预测这些负荷的将来需求;以及运转计划器,其根据需求预测器所预测出的将来的热水供给需求来生成燃料电池热电联产系统的运转模式。根据该以往例子的燃料电池热电联产系统,以使消耗能量削减量、二氧化碳排放削减量最大的方式决定燃料电池热电联产系统的起动时刻和停止时刻的组合。
并且,燃料电池热电联产系统进行以下动作:在决定的起动时刻起动之后,根据电力负荷逐次改变系统的发电电力的同时进行运转,在停止时刻停止运转。
还提出了根据耐用运转期间来制定燃料电池的运转计划的燃料电池的运转方法(例如参照专利文献2)。
还提出了根据过去的负荷的实际状况来预测负荷并据此决定运转时间段的热电联产装置的运转计划方法(例如参照专利文献3)。
专利文献1:日本特开2007-309598号公报
专利文献2:日本特开2007-323843号公报
专利文献3:日本特开2003-61245号公报
发明内容
发明要解决的问题
在以往的燃料电池、热电联产装置中,虽然在运转计划的制定阶段会在一定程度上考虑最优化,但是根据实际的运转状况的不同,运转计划反而有可能不符合实际情况而进行不适当的运转。
本发明是鉴于这种情况而完成的,其目的在于提供一种在制定运转计划的能量供给系统中能够根据实际的运转状况、装置的动作保证期间、运转时间寿命等来使运转计划最优化的能量供给系统。
用于解决问题的方案
本发明人们为了解决上述问题而进行了专心研究。其结果得出了以下见解。
即,例如在使用燃料电池的能量供给系统中,如果按照在运转前制定的运转计划进行运转,则根据实际的运转状况,有可能发生如下情况:在不需要运转的时间进行运转或者在本来需要运转的时间不能进行运转。
具体地说,例如在热水储存器中剩余有足够的热水而不需要生成热水的情况下,应该使系统停止。如果即使在这种状况下也按照事先制定的运转计划不合理地进行运转,则能量效率降低。
另外,例如在热水的消耗量较多而需要生成比正常情况多的热水的情况下,应该灵活地运转系统来生成热水。如果在这种状况下也按照事先制定的运转计划不灵活地停止运转,则能量效率降低。
因此,本发明人们想到针对能量供给系统的运转期间设定第一规定期间和包含在第一规定期间中的多个第二规定期间,设为在第一规定期间内若超过最大运转时间则不进行运转,同时在包含在同一第一规定时间中的第二规定时间之间相协调地调整目标运转时间。在上述结构中,能够与实际的运转状况相应地灵活地运转能量供给系统,从而能够使运转计划最优化。
为了解决上述问题,本发明的能量供给系统具备:能量供给装置,其供给电力和热中的至少一种;以及控制装置,其构成为:设定具有多个第二规定期间的期间、即第一规定期间内的上述能量供给装置的运转时间的上限值、即第一最大运转时间,并且根据所设定的上述第一最大运转时间,针对属于上述第一规定期间的各个上述第二规定期间,通过运算求出并设定上述能量供给装置的运转时间的上限值的目标值、即第二目标最大运转时间,以避免上述第一规定期间内的上述能量供给装置的运转时间超过上述第一最大运转时间,根据在包含于某个第一规定期间中的过去的第二规定期间内上述能量供给装置实际运转的时间,重新设定包含于该第一规定期间中的将来的第二规定期间内的第二目标最大运转时间。
在上述结构中,在制定运转计划的能量供给系统中,能够根据实际的运转状况使运转计划最优化。
在参照添附附图的基础上,根据以下优选的实施方式的详细说明,来明确本发明的上述目的、其它目的、特征以及优点。
发明的效果
根据本发明的能量供给系统,在制定运转计划的能量供给系统中,能够根据实际的运转状况使运转计划最优化。
附图说明
图1是表示本发明的实施方式1的热电联产系统(cogeneration system)的结构例的框图。
图2是表示实施方式1的热电联产系统的动作例的流程图。
图3是表示实施方式1的热电联产系统的运转历史记录的一例的图。
图4是表示利用现有技术的热电联产系统的运转历史记录的一例的图。
图5是表示实施方式1的变形例1的热电联产系统的动作例的流程图。
图6是表示实施方式1的变形例2的热电联产系统的动作例的流程图。
图7是表示实施方式1的变形例3的热电联产系统的动作例的流程图。
图8是表示实施方式2的热电联产系统的结构例的框图。
图9是表示实施方式2的热电联产系统的动作例的流程图。
图10是表示实施方式3的热电联产系统的动作例的流程图。
图11是表示实施方式4的热电联产系统的动作例的流程图。
图12是表示实施方式5的热电联产系统的动作例的流程图。
附图标记说明
1:燃料电池热电联产系统;1a:燃料电池单元;1b:热水储存单元;2:电力系统;3:电力消耗设备;4:电力计;5:热量计;6:控制装置;6a:存储器;6b:需求预测器;6c:运转计划器;6d:最大运转时间设定器;6e:期间设定器;7:远程控制器。
具体实施方式
下面,参照附图来说明本发明的实施方式。
本发明的实施方式的能量供给系统具备:能量供给装置(例如图1的燃料电池单元1a),其供给电力和热中的至少一种;以及控制装置(例如图1的控制装置6),其构成为:设定具有多个第二规定期间的期间、即第一规定期间内的上述能量供给装置的运转时间的上限值、即第一最大运转时间,并且根据所设定的上述第一最大运转时间,针对属于上述第一规定期间的各个上述第二规定期间,通过运算求出并设定上述能量供给装置的运转时间的上限值的目标值、即第二目标最大运转时间,以避免上述第一规定期间内的上述能量供给装置的运转时间超过上述第一最大运转时间,根据在包含于某个第一规定期间中的过去的第二规定期间内上述能量供给装置实际运转的时间,重新设定包含于该第一规定期间内的将来的第二规定期间的第二目标最大运转时间。
在上述结构中,在制定运转计划的能量供给系统中,能够根据实际的运转状况来使运转计划最优化。
在上述能量供给系统中,第一规定期间也可以是比上述能量供给装置的动作保证期间短的期间,上述控制装置构成为:设定上述第一最大运转时间以避免在上述动作保证期间之前达到上述能量供给装置的运转时间寿命。
在上述结构中,降低了在动作保证期间之前达到运转时间寿命的可能性,同时能够延长装置的寿命。
在上述能量供给系统中,上述控制装置也可以根据预先决定的模式来改变包含在一个上述第一规定期间中的上述第二规定期间的个数。
在上述能量供给系统中,包含在一个上述第一规定期间中的上述第二规定期间的个数也可以是固定值。
在上述能量供给系统中,上述第一规定期间也可以是小于或等于一年的期间。
在上述能量供给系统中,上述第二规定期间也可以是小于或等于一个月的期间。
在上述能量供给系统中,上述控制装置也可以构成为:设定上述第一最大运转时间和/或上述第二目标最大运转时间使得每单位运转时间的能量成本削减量最大。
在上述能量供给系统中,上述控制装置也可以构成为:设定上述第一最大运转时间和/或上述第二目标最大运转时间使得上述能量供给装置的能量消耗量最小。
在上述能量供给系统中,上述能量供给装置也可以是供给电力和热的热电联供装置,具备储存热电联供系统中所产生的热的储热器,上述控制装置构成为以使上述储热器储存的热最大的方式进行运转。
上述能量供给系统也可以具有用于输入能量供给装置的起动时刻和停止时刻的操作器(例如,图8的远程控制器7)。
在上述能量供给系统中,上述控制装置也可以根据环境条件来改变上述第一最大运转时间和/或上述第二目标最大运转时间。
在上述能量供给系统中,上述控制装置也可以根据环境条件来改变包含在一个上述第一规定期间中的上述第二规定期间的个数。
在上述能量供给系统中,上述环境条件也可以包含从如下组中选择的至少一个:该组包含季节信息、日历信息、大气温度以及城市用水温度。
在上述能量供给系统中,上述控制装置也可以构成为根据上述能量供给装置的累计运转时间来更新上述第一最大运转时间。
在上述能量供给系统中,上述控制装置也可以构成为:在上述第一规定期间内的上述能量供给装置的运转时间小于上述第一最大运转时间的情况下,计算上述第一最大运转时间与上述第一规定期间内的上述能量供给装置的运转时间之差并将该差进行累计,将累计得到的时间作为累计剩余运转时间进行存储。
在上述能量供给系统中,上述控制装置也可以构成为在上述累计剩余运转时间变为预先设定的第三规定期间的情况下,重新设定上述第一最大运转时间。
(实施方式1)
图1是表示本发明的实施方式的热电联产(热电联供)系统的结构例的框图,作为本实施方式的热电联产系统的一例,示出了燃料电池热电联产系统。
本实施方式的热电联产系统1具备燃料电池单元1a和热水储存单元1b,由燃料电池单元1a产生的电力与来自电力系统2的电力一起被供给至电力消耗设备3,其中,该燃料电池单元1a利用燃料电池进行发电,该热水储存单元1b使用通过燃料电池单元1a的燃料电池的发电而同时产生的热来使城市用水升温而作为温水并储存。
由电力计4测量电力消耗设备3所消耗的电力负荷量,由位于控制装置6中的存储器6a依次存储该电力负荷量。
另外,储存在热水储存单元1b中的温水从自来水管的水龙头等作为温水被供给,由热量计5测量作为温水所利用的热负荷量,并由位于控制装置6中的存储器6a依次存储该热负荷量。
热量计5例如包括测量城市用水温度的温度传感器(未图示)、测量从热水储存单元1b供给的温水的温度的温度传感器(未图示)以及测量从热水储存单元1b供给的温水的流量的流量计(未图示),根据城市用水与温水之间的温度差和温水的流量之积,来计算作为温水所利用的热负荷量。
另外,在燃料电池热电联产系统1中配备有备用热水供给器(未图示)使得在热水储存单元1b内的温水用完的情况下也能够供给温水。
控制装置6控制燃料电池单元1a和能量供给系统1的运转。
控制装置6还具有:需求预测器6b,其根据存储在存储器6a中的电力负荷和热负荷的产生历史记录,来预测将来电力负荷和热负荷产生的时间序列模式;运转计划器6c,其根据由需求预测器6b预测出的电力负荷和热负荷产生的时间序列模式的预测值,来决定燃料电池热电联产系统的起动时刻和停止时刻;最大运转时间设定器6d,其设定规定期间内的最大运转时间;以及期间设定器6e,其设定规定期间。
需求预测器6b读出存储在存储器6a中的固定期间(例如一年)内的热负荷需求的产生历史记录和电力负荷需求的产生历史记录,根据该历史记录,估计并运算在将来的规定期间(例如一天)内随着时间推移而改变的电力负荷的预测需求以及在将来的规定期间(例如一天)内随着时间推移而改变的热负荷的预测需求(下面将它们简称为“电力负荷预测需求”和“热负荷预测需求”),并将这些电力负荷预测需求和热负荷预测需求依次存储到存储器6a中。
此外,期望的是估计电力负荷预测需求和热负荷预测需求所需的过去的电力负荷的电力消耗历史记录和热负荷的热消耗历史记录的存储期间为系统能够适当地掌握设置有本实施方式的燃料电池热电联产系统的对象中的电力和热的消耗周期的期间,例如在将燃料电池热电联产系统设置在普通家庭中的情况下,所述过去的电力负荷的电力消耗历史记录和热负荷的热消耗历史记录的存储期间是几天~几个月左右。
另外,已经提出了各种根据电力负荷和热负荷的产生历史记录来估计电力负荷预测需求和热负荷预测需求的方法,在此省略其详细说明。
运转计划器6d为了避免在燃料电池单元1a的动作保证期间(例如10年)之前达到燃料电池单元1a的运转时间寿命(例如4万个小时),设定比动作保证期间短的第一规定期间(例如一周)内的燃料电池单元1a的运转时间的上限值、即第一最大运转时间,并且根据所设定的第一最大运转时间,通过运算求出比第一规定期间短的第二规定期间(例如一天)内的燃料电池单元1a的目标运转时间的上限值、即第二目标最大运转时间来进行设定,使得第一规定期间内的燃料电池单元1a的运转时间不超过第一最大运转时间。
此外,在设定第一规定期间内的第一最大运转时间时也可以不必考虑燃料电池单元1a的动作保证期间、燃料电池单元1a的运转时间寿命。但是,如果考虑这些要素,则能够在降低在动作保证期间之前达到运转时间寿命的可能性的同时抑制装置寿命降低。
控制装置6以第二规定期间内的燃料电池单元1a的运转时间原则上不超过第二目标最大运转时间的方式运转燃料电池单元1a。具体地说,例如逐一设定燃料电池单元1a的起动时刻和停止时刻使得第二规定期间内的燃料电池单元1a的运转时间不超过第二目标最大运转时间。即,起动时刻至停止时刻的时间是预定运转时间,只要使预定运转时间不超过第二目标最大运转时间即可。此时,例如也可以决定第二规定期间内的起动时刻和停止时刻以使后述的能量成本削减量最大并且使起动时刻至停止时刻的时间成为第二目标最大运转时间。关于决定起动时刻和停止时刻的具体方法,也可以适当地参照后述的变形例等。
作为一例,将动作保证期间(商品寿命)设为10年,将运转时间寿命(耐久时间)设为4万个小时,将第一规定期间设为一周,将第二规定期间设为一天。此时,例如根据10年=521.4周,能够将第一最大运转时间设为4万个小时÷521.4周=76.7小时/周。另外,能够将第二目标最大运转时间例如设为大于或等于7.7个小时且小于或等于20个小时的规定时间。考虑到效率,优选的是将第二目标最大运转时间设定为大于或等于一定的下限值(例如7.7个小时)。
既可以通过由操作者输入第一最大运转时间并将其存储到控制装置6的未图示的存储部中,也可以由控制装置6自动求出第一最大运转时间。具体地说,例如也可以由控制装置6根据动作保证期间、运转时间寿命以及第一规定期间进行运算来自动求出第一最大运转时间。其中,不特别地限定在运算第一最大运转时间时使用的参数,可以是其它的参数。
例如也可以通过由操作者输入动作保证期间、运转时间寿命以及第一规定期间并将这些信息存储到控制装置6的未图示的存储部中。例如能够通过下面的式(1)求出第一最大运转时间。
第一最大运转时间=运转时间寿命/(动作保证期间/第一规定期间)…(1)
能够由控制装置6根据所设定的第一最大运转时间进行运算来自动地求出第二目标最大运转时间。
表1示出了在将第一规定期间设为一周、将第二规定期间设为一天、将第一最大运转时间设为76.7小时的情况下由控制装置6设定的第二目标最大运转时间的一例。
[表1]
在表1的例子中,将第一规定期间分割为多个第二规定期间,将关于各个第二规定期间的第二目标最大运转时间设定成属于同一第一规定期间的所有第二规定期间的第二目标最大运转时间的总和小于或等于该第一规定期间内的第一最大运转时间。此外,表1中的第二规定期间内的各天是指以午夜0点(夜间)为起点并以第二天的午夜0点(夜间)为终点的24个小时,但是本发明并不限定于此。
控制装置6进行燃料电池单元1a的起动和停止,此时原则上以第二规定期间内的运转时间成为第二目标最大运转时间的方式起动和停止燃料电池单元1a。但是,例如如果有操作者等介入,则也可以停止或重新起动燃料电池单元1a。或者,例如预测出储存在热水储存单元1b中的温水越来越少而洗澡时间将近等的热水的消耗量会增加的情况,从而判断为发生热水不足的可能性高的情况下,运转时间可以超过第二目标最大运转时间。相反,热水储存单元1b中储存有大量温水,从而判断为即使考虑预测出的几个小时以内的热水消耗量,发生热水不足的可能性也不会高的情况下,可以在第二目标最大运转时间经过之前停止运转。这样,本实施方式的第二目标最大运转时间始终只是目标,实际的运转不应绝对受限于该第二目标最大运转时间。
优选的是,控制装置6将第二规定期间内的起动停止的次数限制为小于规定次数(小于3次、即小于或等于2次)。由此,能够更可靠地抑制由于起动停止的过度重复而导致装置寿命降低。
这样,通过将最大运转时间的设定与起动停止的次数限制进行关联,能够同时且更可靠地实现以下效果:使在动作保证期间之前达到运转时间寿命的可能性降低,并且抑制装置寿命降低。
第一规定期间是具有多个第二规定期间的期间。例如在上述例子中,第一规定期间包括n个第二规定期间,n为7。各个第二规定期间既可以是相同的期间(例如都为1天),也可以互不相同(例如第一个第二规定期间是2天,第二个第二规定期间是1天等)。也可以使包含在第一规定期间中的第二规定期间的合计时间比第一规定期间短。在这种情况下,虽然产生剩余时间,但是在这种情况下也能够获得本实施方式的效果,这是理所当然的。
更优选的是第二规定期间内的起动停止的次数限制为一次。即,优选的是,控制装置6在第二规定期间内的燃料电池单元1a的运转时间不超过第二目标最大运转时间的限制下,仅起动一次燃料电池单元1a并停止一次燃料电池单元1a。既可以设为在某个第二规定期间与下一个第二规定期间之间必须停止燃料电池单元1a,也可以设为不必停止燃料电池单元1a。在后者的情况下,由于可以跨越多个第二规定期间来持续运转燃料电池单元1a,因此进一步提高了运转计划的灵活性。另外,例如也可以允许将某个第二规定期间内的第二目标最大运转时间设为24个小时。在这种情况下,从该第二规定期间开始到该第二规定期间结束为止连续不断地运转燃料电池单元1a。
控制装置6根据在包含于某个第一规定期间中的过去的第二规定期间内燃料电池单元1a实际运转的时间,重新设定包含在该第一规定期间中的将来的第二规定期间内的第二目标最大运转时间。下面,说明本实施方式的第二目标最大运转时间的重新设定方法。
作为第一种情况,考虑包含在某个第一规定期间中的某个第二规定期间的运转时间比第二目标最大运转时间短的情况。以上述例子来说,例如考虑以下情况:虽然某一周的第一个第二规定期间(周日)的第二目标最大运转时间是16小时,但是在周日结束的时刻,当天的运转时间是14小时。这种情况例如是指,由于前一天(周六)的热水的使用量少而剩余了热水,即使不生成大量热水也能够满足热水的需求。在这种情况下,实际运转时间(燃料电池单元1a实际运转的时间)如表2。
[表2]
Figure BPA00001328898600131
虽然第二目标最大运转时间为16小时但是实际运转时间为14小时这一情况是说明:由于该一周内的第一最大运转时间不变,因此该一周内的运转时间能够留有2小时的余量。控制装置6通过运算来决定如何将剩余的2小时最优地分配给剩下的几天,并重新设定各天的第二目标最大运转时间。表3示出重新设定后的结果的例子。
[表3]
Figure BPA00001328898600132
在表3的例子中,剩余的2小时被分配给周四,周四的第二目标最大运转时间从9小时变更为11小时。
作为第二种情况,考虑包含在某个第一规定期间中的某个第二规定期间内的运转时间比第二目标最大运转时间长的情况。以上述例子来说,例如考虑以下情况:尽管某一周的第二个第二规定期间(周一)的第二目标最大运转时间是10小时,但是在周一结束的时刻,当天的运转时间是14小时。这种情况例如是指,由于前一天(周日)的热水的使用量多,因此在周一当天没有剩余多余的热水,如果不生成比正常情况多的量的热水就无法满足热水的需求。在这种情况下,实际运转时间(燃料电池单元1a实际运转的时间)如表4。
[表4]
Figure BPA00001328898600141
虽然第二目标最大运转时间为10小时但是实际运转时间为14小时这一情况是说明:由于该一周内的第一最大运转时间不变,因此该一周内的运转时间缺少4小时。控制装置6通过运算来决定从哪一天的第二目标最大运转时间中抽出所缺少的4小时才是最合适的,并重新设定各天的第二目标最大运转时间。表5示出重新设定后的结果的例子。
[表5]
Figure BPA00001328898600142
在表5的例子中,所缺少的4小时是从周六抽出的,周六的第二目标最大运转时间从14小时变更为10小时。
在上述的例子中,在经过每个第二规定期间的时刻重新设定第二目标最大运转时间,但是也可以在其它时刻进行重新设定。例如,既可以只在每周三的中午进行重新设定,也可以在每天中午根据前一天结束时的实际运转时间来进行重新设定。
重新设定的具体方法不被特别地限定,只要是根据在包含于某个第一规定期间中的过去的第二规定期间内燃料电池单元1a实际运转的时间来重新设定包含在该第一规定期间中的将来的第二规定期间内的第二目标最大运转时间的方法,就可以是任意的方法。
根据上述结构,在制定运转计划的能量供给系统中,能够根据实际的运转状况来使运转计划最优化。
此外,在本实施方式中,在第一规定期间内,运转时间不会超过第一最大运转时间。因此,优选的是,进行重新设定使得包含在该第一规定期间中的过去的第二规定期间内的实际运转时间与包含在该第一规定期间中的将来的第二规定期间内的第二目标最大运转时间之和等于第一最大运转时间。
在控制装置6设定第一最大运转时间和/或第二目标最大运转时间或者重新设定第二目标最大运转时间时,能够考虑负荷需求的预测、能量成本削减量等各种要素。
此外,优选的是,以使能量成本削减量最大的方式进行重新设定。下面说明使能量成本削减量最大时的最大运转时间的设定方法以及重新设定方法。
首先,假设以下条件成立。此处,“燃料电池的发电效率”是指发电得到的电力的能量(热量)相对于供给至燃料电池的燃气的能量(热量)的比例。“燃料电池的热水供给效率”是指通过发电得到的作为副产物的热水的能量(热量)相对于供给至燃料电池的燃气的能量(热量)的比例。
燃气费:A[日元/kWh]
电费:B[日元/kWh]
家庭内消耗的热水的热量C[kWh]
燃料电池的发电效率:α
燃料电池的热水供给效率:β
以往的热水供给器效率:γ
为了供给与热量C(是指根据热水与城市用水[自来水]的温度差和容积求出的供给热水所需的热量)相当的热水,燃料电池所消耗的燃气的量为C/β[kWh]。燃气费为A×C/β[日元]。此时,在燃料电池中,与消耗掉的燃气量相应地进行发电。发电量为α×C/β[kWh]。因而,在本实施方式的能量供给系统1的情况下,以A×C/β[日元]的成本可以得到热量C[kWh]的热水和α×C/β[kWh]的电力。
另一方面,考虑如以往那样通过燃气热水供给器生成热水且从系统购买电力的情况。热水的生成成本是A×C/γ[日元],电力的购买成本是B×α×C/β[日元]。成本合计为A×C/γ+B×α×C/β[日元]。
假设生成的热水的量相等并且由燃料电池产生的电力全部被家庭消耗,则根据下面的式(2)求出利用能量供给系统1时的能量成本削减量。
能量成本削减量=([以往的成本]-[能量供给系统1的成本])=(A×C/γ+B×α×C/β-A×C/β)…(2)
此外,以上的计算方法始终只是一个例子,当然可以使用其它方法计算能量削减量。
控制装置6例如也可以事先存储实际设置有能量供给系统1的家庭内的电力消耗量和热水消耗量的经时变化(例如随时间段、各天的变化),据此预测需要电力和热水的时间段、各天以及需要的电力量和热水量。例如根据过去10周(第一规定期间的10倍)的电力消耗量和热水消耗量的经时变化,预测下一周的各天(包含在第一规定期间中的各个第二规定期间)以及各时间段的电力消耗量和热水消耗量。根据该预测结果,通过运算来决定各天的第二目标最大运转时间使得例如整个第一规定期间内的第二目标最大运转时间的总和不超过第一最大运转时间并且每单位时间(例如每第一规定期间)的能量成本削减量最大。根据运算结果,设定或者重新设定各天的第二目标最大运转时间。
控制装置6也可以根据预先决定的模式来改变包含在一个第一规定期间中的第二规定期间的个数。作为预先决定的模式,例如考虑以下模式:在燃料电池系统的使用年数较少时,增加包含在一个第一规定期间中的第二规定期间的个数,随着使用年数增加,减少包含在一个第一规定期间中的第二规定期间的个数等。或者也可以根据环境条件改变包含在一个上述第一规定期间中的上述第二规定期间的个数。环境条件可以是日历信息、季节信息、大气温度以及城市用水温度中的至少一个。但是,也可以将包含在一个第一规定期间中的第二规定期间的个数设为不变的固定值(常数)。此外,在以上的情况下,优选的是,包含在某个第一规定期间中的第二规定期间都相同且是不变的固定值。在这种情况下,包含在某个第一规定期间中的第二规定期间的个数越多,第一规定期间则越长。
第一规定期间优选为小于或等于一年的期间。第二规定期间优选为小于或等于一个月的期间。通过这样设定规定期间,能够设定更合适的运转计划。
虽然第一最大运转时间和/或第二目标最大运转时间可以是固定值,但是也可以由控制装置6根据环境条件改变第一最大运转时间和/或第二目标最大运转时间。环境条件可以是日历信息、季节信息、大气温度以及城市用水温度中的至少一个。
作为基于日历信息进行控制的例子,考虑以下例子:在节日的热水消耗量与平日相比多的情况下,缩短平日的第二目标最大运转时间,并延长节日的第二目标最大运转时间。
作为基于季节信息进行控制的例子,考虑以下例子:在冬天的热水消耗量与夏天相比多的情况下,缩短夏季(6~9月)的第一最大运转时间,并延长冬季(12~3月)的第一最大运转时间。
作为基于大气温度或城市用水温度进行控制的例子,考虑以下例子:在大气温度或城市用水温度低于规定阈值温度的日子的热水消耗量多的情况下,缩短大气温度或城市用水温度大于或等于规定阈值温度的日子的第二目标最大运转时间,并延长大气温度或城市用水温度低于规定阈值温度的日子的第二目标最大运转时间。
控制装置也可以根据预先决定的模式改变第一规定期间、第二规定期间。例如,也可以随着累计使用时间变长而逐渐缩短第一规定期间、第二规定期间。
也可以具备用于输入燃料电池单元1a的起动时刻和停止时刻的远程控制器7(例如参照图8)。此时,控制装置6也可以构成为:在通过远程控制器7输入的起动时刻至停止时刻的时间不超过第二目标最大运转时间的情况下,将通过远程控制器7输入的起动时刻和停止时刻设定为燃料电池单元1a的起动时刻和停止时刻、即装置起动时刻和装置停止时刻,并且在通过远程控制器7输入的起动时刻至停止时刻的时间超过第二目标最大运转时间的情况下,不将通过远程控制器7输入的起动时刻和停止时刻设定为装置起动时刻和装置停止时刻。
控制装置6在装置起动时刻起动燃料电池单元1a,在装置停止时刻停止燃料电池单元1a。
也可以具备通知器,该通知器构成为:在通过远程控制器7输入的起动时刻至停止时刻的时间(预定运转时间)超过第二目标最大运转时间的情况下,通知预定运转时间超过第二目标最大运转时间的意思。通知器也可以与远程控制器7形成为一体,在画面上显示通知用的消息。
控制装置6也可以根据燃料电池单元1a的累计运转时间来更新第一最大运转时间。在这种情况下,作为一例,控制装置6具备提供时刻的日历电路(未图示)和存储器(未图示),能够根据通过日历电路(例如后述的实时计数器)获取的起动时刻和停止时刻来计算实际运转燃料电池单元1a的时间、即实际运转时间,将实际运转时间与存储在存储器中的累计运转时间相加,再将相加得到的和作为累计运转时间存储到存储器中,由此对累计运转时间进行累计。
在实际设定的起动时刻至停止时刻的时间比第二目标最大运转时间短,或者由操作者强制结束运转,或者即使发电也不会在家庭内消耗的状态持续长时间的结果导致效率过度下降等的情况下,有时在某个第一规定期间结束时还未达到该第一规定期间内的第一最大运转时间,就停止了燃料电池单元1a的运转。在这种情况下,由于燃料电池单元1a只运转了比预定时间短的时间,因此可认为即使将来根据需要运转其剩余时间,在动作保证期间之前达到运转时间寿命的可能性也不大。因此,在实际的运转时间比预定时间短的情况下,“储存”多出来的剩余时间,只要能够在将来的运转中分配使用就是有利的。
因此,控制装置6也可以在第一规定期间经过之后,如果该第一规定期间内的燃料电池单元1a的实际运转时间小于第二目标最大运转时间,则计算第一最大运转时间与该实际运转时间之差并将该差进行累计,将累计得到的时间作为累计剩余运转时间而存储。
只要没有特殊原因,动作保证期间和运转时间寿命就不会变更。另一方面,如果累计剩余运转时间增加,则即使运转时间超过以前设定的最大运转时间,也几乎不会在动作保证期间之前达到运转时间寿命。因此,优选的是,如果储存累计剩余运转时间到一定程度,就通过增加第一最大运转时间来提高能量供给系统1在运转上的自由度。具体地说,例如控制装置6也可以构成为:在累计剩余运转时间变为预先设定的第三规定期间(例如100小时)的情况下,更新第一最大运转时间。在进行更新时,将从更新的时刻到出售时的保证期间结束时为止的时间作为新的动作保证期间,将累计剩余运转时间作为运转时间寿命,通过将其代入到上述式(1),能够再次求出第一最大运转时间。
如后述的实施方式、变形例那样,也可以设为在满足规定条件的情况下,不限制最大运转时间(第一最大运转时间和/或第二目标最大运转时间的设定)。
[变形例]
接着,参照附图来说明以上所述的根据热负荷预测需求和电力负荷预测需求进行的燃料电池热电联产系统1的控制装置6的动作的一例。
图2是表示本实施方式的热电联产系统的动作例的流程图。
首先,控制装置6的运转计划器6c获取存储在存储器6a中的规定期间(例如一天)内的电力负荷预测需求和热负荷预测需求(步骤S1)。
该电力负荷预测需求和热负荷预测需求可以是基于在将燃料电池热电联产系统1设置到家庭中时预先存储在存储器6a中的代表性的电力负荷的电力消耗历史记录和热负荷的热消耗历史记录的预测需求,也可以是基于为了与各家庭的生活周期相适应而随着燃料电池热电联产系统1的运转经过由需求预测器6b改变后的电力负荷的电力消耗历史记录和热负荷的热消耗历史记录的预测需求。
接着,最大运转时间设定器6d在设定了规定期间(例如一天)内的燃料电池热电联产系统1的最大运转时间Mh之后(步骤S2),将燃料电池热电联产系统1的多个起动时刻和停止时刻的组合之一设定为临时的起动时刻和停止时刻(步骤S3)。
接着,运转计划器6c根据在步骤S3中临时设定的燃料电池热电联产系统1的起动时刻和停止时刻以及从存储器6a获取的规定期间(例如一天)内的电力负荷预测需求和热负荷预测需求,计算假设在临时设定的该起动时刻和停止时刻之间的期间运转热电联产系统时在运转期间内由燃料电池热电联产系统1产生的发电量和供给至热水储存单元1b的热量(与该热相当的热水量,以下称为“热水储存单元供给热水量”)的总和,并且将进行该运算时预测出的热水储存单元供给热水量随时间的变化存储到存储器6a中。然后,根据从存储器6a获取的热负荷预测需求和该热水储存单元供给热水量随时间的变化的预测数据,在只要热水储存罐中有热水就对热负荷供给热水来维持热负荷预测需求的前提下,预测储存在燃料电池热电联产系统1中的热水储存单元1b的热水量(以下称为“热水储存单元热水量”)随时间的变化,将通过该预测得到的数据与临时设定的起动时刻和停止时刻的组合相对应地存储到存储器6a中。然后,运转计划器6c计算生成运转期间内的上述发电量和热水储存单元供给热水量的总量所需的燃料电池热电联产系统1的消耗能量(B)(步骤S4)。
该消耗能量(B)是将燃料电池热电联产系统1引入家庭中时该家庭的消耗能量的削减目标,是指在生成上述发电量和热水储存单元供给热水量时运转燃料电池热电联产系统1所需的原材料能量(通过运转燃料电池热电联产系统1所消耗的原料燃气、运转燃料电池热电联产系统1的电力等的总能量)。
接着,运转计划器6c使用在步骤S3中由运转计划器6c预测出的临时设定的运转期间(起动时刻与停止时刻之间的期间)内的燃料电池热电联产系统1的发电量和热水储存单元供给热水量来计算消耗能量(A)(步骤S5)。
该消耗能量(A)是将燃料电池热电联产系统1引入家庭中时该家庭的消耗能量削减量的基准,是指假设利用电力公司以及燃气公司的现有基础设施而不是燃料电池热电联产系统1所供给的电力和燃气来供给所有由运转计划器6c预测出的燃料电池热电联产系统1的发电量和热水储存单元供给热水量时的总能量。
接着,运转计划器6c计算从步骤S5的消耗能量(A)中减去步骤S3的消耗能量(B)得到的值(A-B),将该值视为燃料电池热电联产系统1的消耗能量削减量,并将该数值(A-B)与在步骤S3中临时设定的起动时刻和停止时刻的组合相对应地存储到存储器6a中(步骤S6)。
在此,运转计划器6c判断是否针对所有的起动时刻和停止时刻的组合完成了消耗能量削减量(A-B)的运算(步骤S7),如果没有完成消耗能量削减量(A-B)的所有运算(在步骤S7中:“否”),重复步骤S3、步骤S4、步骤S5以及步骤S6的处理,如果完成了消耗能量削减量(A-B)的所有运算(在步骤S7中:“是”),进入下一步骤。
并且,运转计划器6c从存储器6a中读出在步骤S6中存储在存储器6a中的多个起动时刻和停止时刻的组合之中使消耗能量削减量(A-B)最大的起动时刻和停止时刻的组合并进行设定(步骤S8)。
之后,运转计划器6c重新设定通过步骤S8设定的燃料电池热电联产系统1的起动/停止时刻之间的将燃料电池热电联产系统的运转时间限制为Mh时使每单位运转时间的消耗能量削减量(A-B)最大的起动/停止时刻,在此基础上运转燃料电池热电联产系统1(步骤S9)。
图3示出了针对某一例的电力负荷和热负荷运转本实施方式的燃料电池热电联产系统时的发电电力历史记录和热水储存单元热水量历史记录的一例。
在图3中横轴表示时刻(1~24点),上图的纵轴表示电力,下图的纵轴表示热水量。
本实施方式的燃料电池热电联产系统从系统起动到开始发电为止需要一个小时,在从起动到发电的期间消耗相同的起动能量(例如500W)。
在本例中,示出了以下结果:将图2的流程图所示的步骤S2中的规定期间(例如一天)内的燃料电池热电联产系统1的最大运转时间Mh设定为13个小时,在步骤S8中起动时刻为4点,停止时刻为21点,运转时间为17个小时。
示出以下结果:为了在4点到21点的期间进行13个小时的运转,起动时刻被限定在4点~8点的期间,同样地停止时刻也与起动时刻相应地被限定为17点~21点,在图2的流程图所示的步骤S9中,在以使每单位运转时间的消耗能量削减量(A-B)最大的方式重新设定起动时刻时,在本例中起动时刻为7点时每单位运转时间的消耗能量削减量(A-B)最大。
在图3中,本实施方式的燃料电池热电联产系统在7点起动,其结果,在7点的阶段只有消耗起动能量,而发电电力为负。
另外,从图3可知,本实施方式的燃料电池热电联产系统在20点停止,从起动到停止经过了13个小时。
此时,观察图3的下图可知,由于在20点产生的较大的热水供给负荷而热水储存单元的热水量变为零,有效地实施了燃料电池热电联产系统的运转。
另外,成为如下结果:此时的燃料电池热电联产系统的每单位运转时间的发电电力量为大约583Wh。
在此,作为比较,在图4中示出针对与图3相同的电力负荷和热负荷运转使用现有技术的燃料电池热电联产系统时的发电电力历史记录和热水储存单元热水量历史记录。
在图4中,横轴表示时刻(1~24点),上图的纵轴表示电力,下图的纵轴表示热水量。
现有技术的燃料电池热电联产系统也与本实施方式的燃料电池热电联产系统同样地,从系统的起动到开始发电为止需要一个小时,从起动到发电为止的期间消耗相同的起动能量(例如500W)。
不限制运转时间的现有技术的燃料电池热电联产系统在4点起动,在4点的时刻消耗了起动能量,发电电力为负。
之后,现有技术的燃料电池热电联产系统从5点起进行发电,直到在21点停止为止进行了16个小时的发电,其结果,即使在21点系统停止时,在热水储存单元内还是剩余有温水。
另外,成为如下结果:此时的燃料电池热电联产系统的每单位运转时间的发电电力量为大约556Wh。
如上所述,将图3所示的本实施方式的燃料电池热电联产系统与图4所示的使用了现有技术的燃料电池热电联产系统相比可知,运转时间短的系统的每单位运转时间的发电量较大。
每单位运转时间的发电电力量越大,则每单位运转时间的消耗能量削减量也越大,这是显而易见的。
因此,根据本实施方式的燃料电池热电联产系统,由最大运转时间设定器6d设定系统的最大运转时间,在最大运转时间内的条件下由运转计划器6c设定系统的起动时刻、停止时刻,在此基础上进行燃料电池热电联产系统的运转,由此在能够抑制运转时间的同时能够维持设置有系统的对象中的消耗能量削减量大。
此外,在本实施方式中说明了最大运转时间为13小时的情况,但是也存在最佳的最大运转时间根据设置燃料电池热电联产系统的对象的电力负荷、热负荷而不同的情况,即使设定了与本实施方式不同的最大运转时间,也不会超出本发明的范围,这是显而易见的。
另外,作为能量供给系统的例子,说明了燃料电池热电联产系统,但是使用发动机的发动机热电联产系统、通过燃气使涡轮机旋转来进行发电的涡轮机型发电系统也能够获得相同的效果,这是理所当然的。
[变形例1]
在本实施方式中,说明了通过期间设定器6e将在图2所示的流程图的步骤S1中获取电力负荷预测需求和热负荷预测需求的规定期间固定为一天的情况下的燃料电池热电联产系统1的运转计划例。
但是,获取电力负荷预测需求和热负荷预测需求的规定期间也可以不是固定的,例如可以随季节而改变。
在图5所示的流程图中代替图2所示的流程图的步骤S1而进行步骤S11。
图5所示的流程图的其它步骤与图2所示的流程图相同,省略说明。
在步骤S11中,通过期间设定器6e将中间期(例如3月到5月的春季和9月到11月的秋季)的规定期间设定为一天,获取一天的电力负荷预测需求和热负荷预测需求,并设定一天内的起动时刻和停止时刻。
在冬季(12月到次年2月),由于热负荷趋于变大,因此通常燃料电池热电联产系统1的运转时间趋于变长。并且,也考虑到会发生以下情况:当考虑消耗能量削减量(A-B)时,希望运转一整天。在这种情况下,例如,在冬季,由期间设定器6e将规定期间设定为两天,获取两天的电力负荷预测需求和热负荷预测需求,在此基础上计算两天的运转计划,设定燃料电池热电联产系统1的起动时刻和停止时刻。
在夏季(6月到8月),由于热负荷趋于变小,因此通常燃料电池热电联产系统1的运转时间趋于缩短。并且,考虑到会发生以下情况:当考虑消耗能量削减量(A-B)时,不要特意为了起动而使用起动能量为好。在这种情况下,例如,在夏季,由期间设定器6e将规定期间设定为两天,获取两天的电力负荷预测需求和热负荷预测需求,在此基础上计算两天的运转计划,设定燃料电池热电联产系统1的起动时刻和停止时刻。
由此,能够针对季节变化灵活地设定起动时刻和停止时刻。
[变形例2]
在本实施方式中,说明了在图2所示的流程图的步骤S2中由最大运转时间设定器6d将燃料电池热电联产系统1的最大运转时间Mh设为固定值的运转计划例。
但是,也可以不将最大运转时间Mh设为固定值,例如可以随季节而改变最大运转时间Mh。
在图6所示的流程图中代替图2所示的流程图的步骤S2而进行步骤S22。
图6所示的流程图的其它步骤与图2所示的流程图相同,省略说明。
一般来说,与冬季(12月到次年2月)相比,中间期(例如3月到5月的春季和9月到11月的秋季)的热负荷更趋于变小,与中间期(例如3月到5月的春季和9月到11月的秋季)相比,夏季(6月到8月)的热负荷更趋于变小,因此运转燃料电池热电联产系统1时的消耗能量削减量(A-B)一般按冬季、中间期、夏季的顺序变小。
因此,为了通过燃料电池热电联产系统1获得更多的全年消耗能量削减量(A-B),希望在夏季将燃料电池热电联产系统1的运转时间抑制为比较短的时间,在冬季将燃料电池热电联产系统1运转比较长的时间。
在图6的步骤S22中,在冬季通过燃料电池热电联产系统1的最大运转时间设定器6d将最大运转时间Mh设定为16个小时,在中间期和夏季将燃料电池热电联产系统1的最大运转时间Mh分别设定为12个小时和8个小时。
由此,能够通过燃料电池热电联产系统1获得更多的全年消耗能量削减量(A-B)。
[变形例3]
在本实施方式中,说明了在图2所示的流程图的步骤S9中重新设定使每单位运转时间的消耗能量削减量(A-B)最大的起动/停止时刻的运转计划例,但是在重新设定起动/停止时刻时也可以考虑消耗能量(B)。
在图7所示的流程图中代替图2所示的流程图的步骤S9而进行步骤S39。
图7所示的流程图的其它步骤与图2所示的流程图相同,省略说明。
在步骤S39中,在将燃料电池热电联产系统1的最大运转时间限制为Mh时,由运转计划器6c重新设定使消耗能量(B)最小的起动时刻和停止时刻,来运转燃料电池热电联产系统1。
此时,考虑到已经在步骤S8中设定了使消耗能量削减量(A-B)最大的起动/停止时刻,在重新设定起动/停止时刻时,即使简单地重新设定使消耗能量(B)最小的起动/停止时刻,也能够获得与本实施方式同样的效果。
(实施方式2)
图8是表示本发明的第二实施方式的热电联产(热电联供)系统的结构例的框图,作为本实施方式的热电联产系统的一例,示出发动机热电联产系统。
图8所示的本实施方式的发动机热电联产系统11具备发动机单元11a来代替图1所示的实施方式1的燃料电池热电联产系统1中的燃料电池单元1a,还具备使用者能够任意地设定发动机热电联产系统11的起动时刻和停止时刻的远程控制器7,除此之外的结构要素与图1相同,附加与图1相同的编号。
本实施方式的热电联产系统11具备通过发动机进行发电的发动机单元11a和使用通过发动机单元11a的发动机的发电同时产生的热来将城市用水升温到温水并储存的热水储存单元1b,由发动机单元11a产生的电力与来自电力系统2的电力一起被供给至电力消耗设备3。
由电力计4测量电力消耗设备3所消耗的电力负荷量,并由位于控制装置6中的存储器6a依次存储该电力负荷量。
另外,储存在热水储存单元1b中的温水从自来水管的水龙头等作为温水被供给,由热量计5测量作为温水所利用的热负荷量,并由位于控制装置6中的存储器6a依次存储该热负荷量。
热量计5例如包括测量城市用水温度的温度传感器(未图示)、测量从热水储存单元1b供给的温水的温度的温度传感器(未图示)以及测量从热水储存单元1b供给的温水的流量的流量计(未图示),根据城市用水与温水之间的温度差和温水的流量之积,来运算作为温水所利用的热负荷量。
另外,在发动机热电联产系统11中配备有备用热水供给器(未图示)使得即使在热水储存单元1b内的温水用完的情况下也能够供给温水。
远程控制器7具有由使用者进行操作来设定发动机热电联产系统11的起动时刻和停止时刻的功能,所设定的起动时刻和停止时刻被存储到存储器6a中。
控制装置6还具有:需求预测器6b,其根据存储在存储器6a中的电力负荷和热负荷的产生历史记录,预测将来电力负荷和热负荷产生的时间序列模式;以及运转计划器6c,其根据由需求预测器6b预测出的电力负荷和热负荷产生的时间序列模式的预测值,决定由远程控制器7设定的起动时刻与停止时刻之间的期间内的发动机热电联产系统1的起动时刻和停止时刻。
需求预测器6b读出存储在存储器6a中的固定期间(例如一年)内的热负荷的产生历史记录和电力负荷的产生历史记录,根据该历史记录,估计并运算在将来的规定期间(例如一天)内随着时间推移而改变的电力负荷的预测需求以及在将来的规定期间(例如一天)内随着时间推移而改变的热负荷的预测需求(下面将它们简称为“电力负荷预测需求”和“热负荷预测需求”),并将这些电力负荷预测需求和热负荷预测需求依次存储到存储器6a中。
此外,期望的是估计电力负荷预测需求和热负荷预测需求所需的过去的电力负荷的电力消耗历史记录和热负荷的热消耗历史记录的存储期间为系统能够适当地掌握设置有本实施方式的发动机热电联产系统1的对象中的电力和热的消耗周期的期间,例如在将发动机热电联产系统1设置在普通家庭中的情况下,所述过去的电力负荷的电力消耗历史记录和热负荷的热消耗历史记录的存储期间是几天~几个月左右。
图9是表示实施方式2的热电联产系统的动作例的流程图。
首先,控制装置6的运转计划器6c获取存储在存储器6a中的由远程控制器7设定的起动时刻和停止时刻(步骤S40)。
接着,在最大运转时间设定器6d设定了规定期间(例如一天)内的发动机热电联产系统11的最大运转时间Mh之后(步骤S41),运转计划器6c将在步骤S40中获取的起动时刻至停止时刻的时间与最大运转时间Mh进行比较(步骤S42)。
在此,在起动时刻至停止时刻的时间比最大运转时间短或者与最大运转时间相同的情况下,以由远程控制器7设定的起动时刻和停止时刻运转发动机热电联产系统(步骤S43)。
相反,在起动时刻至停止时刻的时间比最大运转时间长的情况下,将由上述远程控制器设定的起动时刻至停止时刻的期间内的使最大运转时间小于或等于Mh的起动时刻和停止时刻的多个组合中的一个组合设定为临时的起动时刻和停止时刻(步骤S44)。接着,运转计划器6c根据在步骤S44中临时设定的发动机热电联产系统11的起动时刻和停止时刻以及从存储器6a获取的规定期间(例如一天)内的电力负荷预测需求和热负荷预测需求,来计算在假设在临时设定的该起动时刻和停止时刻之间的期间运转热电联产系统时在运转期间内由发动机热电联产系统11产生的发电量和供给至热水储存单元1b的热量(与该热相当的热水量,下面称为“热水储存单元供给热水量”)的总和,并且将进行该运算时预测出的热水储存单元供给热水量随时间的变化存储到存储器6a中。然后,根据从存储器6a获取的热负荷预测需求和该热水储存单元供给热水量随时间的变化的预测数据,在只要热水储存罐中有热水就对热负荷供给热水来维持热负荷预测需求的前提下,预测储存在发动机热电联产系统11中的热水储存单元1b的热水量(以下称为“热水储存单元热水量”)随时间的变化,将通过该预测得到的数据与临时设定的起动时刻和停止时刻的组合相对应地存储到存储器6a中。然后,运转计划器6c计算生成运转期间内的上述发电量和热水储存单元供给热水量的总量所需的发动机热电联产系统11的规定期间(例如一天)内的消耗能量(B)(步骤S45)。
该规定期间(例如一天)内的消耗能量(B)是将发动机热电联产系统11引入家庭中时该家庭的消耗能量削减的目标,是指在生成上述发电量和热水储存单元供给热水量时运转发动机热电联产系统11所需的原材料能量(通过运转发动机热电联产系统11所消耗的原料燃气、运转发动机热电联产系统11的电力等的总能量)。
接着,运转计划器6c使用在步骤S44中由运转计划器6c预测出的临时设定的运转期间(起动时刻与停止时刻之间的期间)内的发动机热电联产系统11的发电量和热水储存单元供给热水量,来计算规定期间(例如一天)内的消耗能量(A)(步骤S46)。
该规定期间(例如一天)内的消耗能量(A)是将发动机热电联产系统11引入家庭中时该家庭的消耗能量削减量的基准,是指假设利用电力公司以及燃气公司的现有基础设施而不是发动机热电联产系统11所供给的电力和燃气来供给所有由运转计划器6c预测的发动机热电联产系统11的发电量和热水储存单元供给热水量时的总能量。
接着,运转计划器6c计算从步骤S46的规定期间(例如一天)内的消耗能量(A)中减去步骤S44的规定期间(例如一天)内的消耗能量(B)得到的值(A-B),将该值视为发动机热电联产系统11的规定期间(例如一天)内的消耗能量削减量,并将该数值(A-B)与在步骤S44中临时设定的起动时刻和停止时刻的组合相对应地存储到存储器6a中(步骤S47)。
在此,运转计划器6c判断是否针对所有的起动时刻和停止时刻的组合完成了规定期间(例如一天)内的消耗能量削减量(A-B)的运算(步骤S48),如果没有完成规定期间(例如一天)内的消耗能量削减量(A-B)的所有运算(在步骤S48中:“否”),重复步骤S44、步骤S45、步骤S46以及步骤S47的处理,如果完成了规定期间(例如一天)内的消耗能量削减量(A-B)的所有运算(在步骤S48中:“是”),进入下一步骤。
并且,运转计划器6c从存储器6a中读出在步骤S47中存储在存储器6a中的多个起动时刻和停止时刻的组合之中使规定期间(例如一天)内的消耗能量削减量(A-B)最大的起动时刻和停止时刻的组合并进行设定,在此基础上运转发动机热电联产系统11(步骤S49)。
如上所述,根据实施方式2的发动机热电联产系统,在使用者设定了系统的起动时刻和停止时刻的情况下,如果系统的运转时间超过规定的最大运转时间(在实施方式2的例子中是13小时),则也通过运转计划器6c重新设定由使用者设定的起动时刻至停止时刻的期间内的使运转时间小于或等于最大运转时间且使规定期间(例如一天)内的消耗能量削减量最大的起动时刻和停止时刻的组合,来满足使用者的起动停止要求,同时能够兼顾运转时间的抑制和消耗能量削减量。
此外,在本实施方式中说明了最大运转时间为13小时的情况,说明了计算消耗能量削减量的规定期间为一天的情况,但是也存在最佳的最大运转时间、计算消耗能量削减量的期间根据设置发动机热电联产系统的对象的电力负荷、热负荷而不同的情况,即使设定了与本实施方式不同的最大运转时间、计算消耗能量削减量的期间,也不会超出本发明的范围,这是显而易见的。
另外,作为能量供给系统的例子,说明了发动机热电联产系统,但是使用燃料电池的燃料电池热电联产系统、通过使涡轮机旋转来进行发电的涡轮机型发电系统也能够获得相同的效果,这是理所当然的。
(实施方式3)
本发明的第三实施方式的热电联产(热电联供)系统与实施方式2相同,由图8所示的发动机热电联产系统11构成,关于进行与实施方式2相同的动作的结构要素,省略说明。
本实施方式的远程控制器7通过由使用者进行操作,能够根据热水储存单元1b的热水量来设定进行发动机热电联产系统11的起动和停止的运转模式(热水储存模式)。
下面说明设定该热水储存模式时的发动机热电联产系统11的动作。
在由远程控制器7设定了热水储存模式的情况下,能够由远程控制器7设定最大热水储存量和最小热水储存量。
例如,在铅直方向上将热水储存单元四等分,从而能够将热水储存量设定为从上至下的满罐、3/4、1/2、1/4、0的情况下,当由远程控制器7设定成起动热水储存量为1/2、停止热水储存量为满罐时,如果热水储存量减少至1/2,则起动系统,如果热水储存量变为满罐,则停止系统。
图10是表示实施方式3的热电联产系统的动作例的流程图。
此外,针对进行与实施方式2的图9相同的操作的结构要素附加了相同的编号。
首先,控制装置6的运转计划器6c根据存储在存储器6a中的由远程控制器7设定的起动热水储存量和停止热水储存量以及电力负荷的预测需求和热负荷的预测需求,来预测发动机热电联产系统11的起动时刻和停止时刻。
接着,在最大运转时间设定器6d设定了规定期间(例如一天)内的发动机热电联产系统11的最大运转时间Mh之后(步骤S41),运转计划器6c将在步骤S50中预测出的起动时刻至停止时刻的时间与最大运转时间Mh进行比较(步骤S52)。
在此,在起动时刻至停止时刻的时间比最大运转时间短或者与最大运转时间相同的情况下,以根据热水储存量预测出的起动时刻和停止时刻运转发动机热电联产系统(步骤S53)。
相反,在起动时刻至停止时刻的时间比最大运转时间长的情况下,将当初作为上述热水储存模式而预测出的起动时刻至停止时刻的期间内的使运转时间小于或等于Mh的起动时刻和停止时刻的多个组合中的一个组合设定为临时的起动时刻和停止时刻(步骤S44)。
接下来的步骤S45到步骤S49的动作与实施方式2相同,因此在此省略说明。
如上所述,根据实施方式3的发动机热电联产系统,在使用者设定成根据热水储存量起动和停止系统的情况下,如果系统的运转时间超过规定的最大运转时间(在实施方式3的例子中是10小时),则也通过运转计划器6c重新设定当初作为热水储存模式而预测出的起动时刻至停止时刻的期间内的使运转时间小于或等于最大运转时间且使规定期间(例如一天)内的消耗能量削减量最大的起动时刻和停止时刻的组合,来满足使用者的起动停止要求,同时能够兼顾运转时间的抑制和消耗能量削减量。
此外,在本实施方式中说明了最大运转时间为10小时的情况,说明了计算消耗能量削减量的规定期间为一天的情况,但是也存在最佳的最大运转时间、计算消耗能量削减量的期间根据设置发动机热电联产系统的对象的电力负荷、热负荷而不同的情况,即使设定了与本实施方式不同的最大运转时间、计算消耗能量削减量的期间,也不会超出本发明的范围,这是显而易见的。
另外,作为能量供给系统的例子,说明了发动机热电联产系统,但是使用燃料电池的燃料电池热电联产系统、通过使涡轮机旋转进行发电的涡轮机型发电系统也能够获得相同的效果,这是理所当然的。
(实施方式4)
本发明的第四实施方式的热电联产(热电联供)系统与实施方式1相同,由图1所示的燃料电池热电联产系统1的结构构成,关于进行与实施方式1相同的动作的结构要素,省略说明。
图11是表示本实施方式的热电联产系统的动作例的流程图。
首先,控制装置6的运转计划器6c获取存储在存储器6a中的规定期间(例如一天)内的电力负荷预测需求和热负荷预测需求(步骤S61)。
接着,在最大运转时间设定器6c设定了规定期间(例如一天)内的燃料电池热电联产系统1的最大运转时间Mh之后(步骤S62),运转计划器6c将燃料电池热电联产系统1的多个起动时刻和停止时刻的组合之中使最大运转时间小于或等于Mh的组合之一设定为临时的起动时刻和停止时刻(步骤S63)。
接着,运转计划器6c根据在步骤S63中临时设定的燃料电池热电联产系统1的起动时刻和停止时刻以及从存储器6a获取的规定期间(例如一天)内的电力负荷预测需求和热负荷预测需求,计算在假设在临时设定的该起动时刻和停止时刻之间的期间运转热电联产系统时在运转期间内由燃料电池热电联产系统1产生的发电量和供给至热水储存单元1b的热量(热水储存单元供给热水量)的总和,并且将进行该运算时预测出的热水储存单元供给热水量随时间的变化存储到存储器6a中。然后,根据从存储器6a获取的热负荷预测需求和该热水储存单元供给热水量随时间的变化的预测数据,在只要热水储存罐中有热水就对热负荷供给热水来维持热负荷预测需求的前提下,预测储存在燃料电池热电联产系统1中的热水储存单元1b的热水量(热水储存单元热水量)随时间的变化,将该预测数据与临时设定的起动时刻和停止时刻的组合相对应地存储到存储器6a中。然后,运转计划器6c计算生成运转期间内的上述发电量和热水储存单元供给热水量的总量所需的燃料电池热电联产系统1的消耗能量(B)(步骤S64)。
接着,运转计划器6c使用在步骤S63中由运转计划器6c预测出的临时设定的运转期间(起动时刻与停止时刻之间的期间)内的燃料电池热电联产系统1的发电量和热水储存单元供给热水量来计算消耗能量(A)(步骤S65)。
接着,运转计划器6c计算从步骤S65的消耗能量(A)中减去步骤S63的消耗能量(B)得到的值(A-B),将该值视为燃料电池热电联产系统1的消耗能量削减量,并将该数值(A-B)与在步骤S63中临时设定的起动时刻和停止时刻的组合相对应地存储到存储器6a中(步骤S66)。
在此,运转计划器6c判断是否针对所有使运转时间小于或等于Mh的起动时刻和停止时刻的组合完成了消耗能量削减量(A-B)的运算(步骤S67),如果没有完成消耗能量削减量(A-B)的所有运算(在步骤S67中:“否”),重复步骤S63、步骤S64、步骤S65以及步骤S66的处理,如果完成了消耗能量削减量(A-B)的所有运算(在步骤S67中:“是”),进入接下来的判断步骤。
并且,运转计划器6c从存储器6a中读出并获取在步骤S66中存储在存储器6a中的多个起动时刻和停止时刻的组合之中使消耗能量削减量(A-B)最大的起动时刻和停止时刻的组合,将所获取的起动时刻和停止时刻的组合设定给燃料电池热电联产系统1,在此基础上运转燃料电池热电联产系统1(步骤S68)。
如上所述,根据本实施方式,在图11的流程图中的步骤S63中,在选择燃料电池热电联产系统的临时的起动时刻和停止时刻的组合时,在运转时间小于或等于Mh的条件下选择起动时刻和停止时刻的组合,由此,与实施方式1的燃料电池热电联产系统相比,具有步骤S64到S66的运算重复次数少的优点,即使存储器6a的容量也比较小,也能够兼顾运转时间的抑制和消耗能量削减量。
另外,通过上述方法决定的本实施方式的燃料电池热电联产系统的运转计划和以往的燃料电池热电联产系统的运转计划的差异与在实施方式1的燃料电池热电联产系统中例示的图3和图4相同。
从以上内容可知,在本实施方式的燃料电池热电联产系统中,通过设定系统的最大运转时间,在处于最大运转时间内的条件下,由运转计划器6c设定系统的起动时刻、停止时刻,在此基础上进行燃料电池热电联产系统的运转,由此能够提供一种使每单位运转时间的消耗能量削减量最大的燃料电池热电联产系统。
此外,在本实施方式中说明了最大运转时间为13个小时的情况,但是也存在最佳的最大运转时间根据设置燃料电池热电联产系统的对象的电力负荷、热负荷而不同的情况,即使设定了与本实施方式不同的最大运转时间,也不会超出本发明的范围,这是显而易见的。
另外,作为能量供给系统的例子,说明了燃料电池热电联产系统,但是使用发动机的发动机热电联产系统、通过燃气使涡轮机旋转来进行发电的涡轮机型发电系统也能够获得相同的效果,这是理所当然的。
(实施方式5)
本发明的第五实施方式的燃料电池系统具有与实施方式1相同的结构要素,使用图1和图8进行了说明,从而省略其说明。
接着,使用图12说明本实施方式的热电联产系统的动作例。
首先,控制装置6的运转计划器6c获取存储在存储器6a中的规定期间(例如一天)内的电力负荷预测需求和热负荷预测需求(步骤S401)。
该电力负荷预测需求和热负荷预测需求既可以是基于将燃料电池热电联产系统1设置到家庭中时预先存储在存储器6a中的代表性的电力负荷的电力消耗历史记录和热负荷的热消耗历史记录的预测需求,也可以是基于为了与各家庭的生活周期相适应而随着燃料电池热电联产系统1的运转经过由需求预测器6b改变后的电力负荷的电力消耗历史记录和热负荷的热消耗历史记录的预测需求。
接着,在最大运转时间设定器6c设定了规定期间(例如一天)内的燃料电池热电联产系统1的最大运转时间Mh之后(步骤S402),运转计划器6c将燃料电池热电联产系统1的多个起动时刻和停止时刻的组合之一设定为临时的起动时刻和停止时刻(步骤S403)。
接着,运转计划器6c根据在步骤S403中临时设定的燃料电池热电联产系统1的起动时刻和停止时刻以及从存储器6a获取的规定期间(例如一天)内的电力负荷预测需求和热负荷预测需求,计算假设在临时设定的该起动时刻和停止时刻之间的期间运转热电联产系统时在运转期间内由燃料电池热电联产系统1产生的发电量和供给至热水储存单元1b的热量(与该热相当的热水量,以下称为“热水储存单元供给热水量”)的总和,并且将进行该运算时预测出的热水储存单元供给热水量随时间的变化存储到存储器6a中。然后,根据从存储器6a获取的热负荷预测需求和该热水储存单元供给热水量随时间的变化的预测数据,在只要热水储存罐中有热水就对热负荷供给热水来维持热负荷预测需求的前提下,预测储存在燃料电池热电联产系统1中的热水储存单元1b的热水量(以下称为“热水储存单元热水量”)随时间的变化,将通过该预测得到的数据与临时设定的起动时刻和停止时刻的组合相对应地存储到存储器6a中。然后,运转计划器6c计算生成运转期间内的上述发电量和热水储存单元供给热水量的总量所需的燃料电池热电联产系统1的消耗能量(B)(步骤S404)。
该消耗能量(B)是将燃料电池热电联产系统1引入家庭中时该家庭的消耗能量削减的目标,是指在生成上述发电量和热水储存单元供给热水量时运转燃料电池热电联产系统1所需的原材料能量(通过运转燃料电池热电联产系统1所消耗的原料燃气、运转燃料电池热电联产系统1的电力等的总能量)。
接着,运转计划器6c使用通过步骤S403由运转计划器6c预测出的临时设定的运转期间(起动时刻与停止时刻之间的期间)内的燃料电池热电联产系统1的发电量和热水储存单元供给热水量来计算消耗能量(A)(步骤S405)。
该消耗能量(A)是将燃料电池热电联产系统1引入家庭中时该家庭的消耗能量削减量的基准,是指假设利用电力公司以及燃气公司的现有基础设施而不是燃料电池热电联产系统1所供给的电力和燃气来供给所有由运转计划器6c预测的燃料电池热电联产系统1的发电量和热水储存单元供给热水量时的总能量。
接着,运转计划器6c计算从步骤S405的消耗能量(A)中减去步骤S403的消耗能量(B)得到的值(A-B),将该值视为燃料电池热电联产系统1的消耗能量削减量,并将该数值(A-B)与在步骤S403中临时设定的起动时刻和停止时刻的组合相对应地存储到存储器6a中(步骤S406)。
在此,运转计划器6c判断是否针对所有的起动时刻和停止时刻的组合完成了消耗能量削减量(A-B)的运算(步骤S407),如果没有完成消耗能量削减量(A-B)的所有运算(在步骤S407中:“否”),重复步骤S403、步骤S404、步骤S405以及步骤S406的处理,如果完成了消耗能量削减量(A-B)的所有运算(在步骤S407中:“是”),进入接下来的判断步骤。
并且,运转计划器6c从存储器6a中读出在步骤S406中存储在存储器6a中的多个起动时刻和停止时刻的组合之中使消耗能量削减量(A-B)最大的起动时刻和停止时刻的组合并进行设定(步骤S408)。
接着,运转计划器6c根据预先决定的条件判断是否将通过步骤S402设定的最大运转时间Mh适用于在步骤S408中设定的起动时刻和停止时刻的组合(步骤S488)。在不满足条件的情况下(在步骤S488中:“否”),进入接下来的判断步骤。
运转计划器6c重新设定通过步骤S408设定的燃料电池热电联产系统1的起动/停止时刻之间的将燃料电池热电联产系统的运转时间限制为Mh时使每单位运转时间的消耗能量削减量(A-B)最大的起动/停止时刻,在此基础上运转燃料电池热电联产系统1(步骤S409)。
另外,在步骤S488中满足条件的情况下(在步骤S488中:“是”),以在步骤S408中设定的起动/停止时刻运转燃料电池热电联产系统1(步骤S499)。
如上所述,期望的是根据电力负荷、热负荷的状况来设定最大运转时间Mh,在电力负荷大幅增加且热负荷较大的冬季等,设定最大运转时间会使有效地削减消耗能量的运转时间有限,起动停止所需要的能量损失在每单位运转时间中所占的比例变大,因此要使每单位运转时间的消耗能量削减量最大化则不期望设定最大运转时间,在上述条件的情况下,通过使最大运转时间比较长,能够使每单位时间的消耗能量削减量最大化。因此,在最大运转时间大于或等于步骤S1中的规定期间的情况下,不需要限制最大运转时间,因此在步骤S488中判断是否需要限制最大运转时间Mh。
期望的是根据作为与电力负荷的大小、热负荷的大小有较大关联的因子的日历等日历信息、将日历汇总得到的季节信息等环境条件,来设定是否需要限制最大运转时间(例如在12月、1月、2月这三个月不实施最大运转时间的限制等)。虽然没有图示,但是对日历等的日历信息、季节信息进行管理的实时计数器位于控制装置6的内部,根据其信息,在步骤S488中判断是否需要限制。并且,上述实时计数器也可以如图8的远程控制器7那样构成为独立于燃料电池1a、热水储存单元1b的另外的设备,此时经由与控制装置6进行通信等的单元来传递信息。
另外,作为与电力负荷的大小、热负荷的大小有较大关联的因子,使用大气温度、城市用水温度等来作为环境条件也是有效的。虽然没有图示,但是具有能够管理大气温度、城市用水温度的结构的温度传感器位于控制装置6的内部,根据其信息,在步骤S488中判断是否需要限制(例如在大气温度小于或等于10℃的情况下,不实施最大运转时间的限制等)。并且,上述温度传感器也可以如图8的远程控制器7那样构成为独立于燃料电池1a、热水储存单元1b的另外的设备,此时经由与控制装置6进行通信等的单元来传递信息。
另外,通过具有使用者能够输入与使用负荷电力的大小、热负荷需求的大小有较大关联的环境条件(例如季节信息、日历信息、大气温度信息、城市用水温度、家族构成信息、来客信息等能量消耗信息)的单元,来由使用者任意地输入信息也是有效的。虽然没有图示,但是环境条件输入器位于控制装置6的内部,根据其信息,由控制装置6发出发电指令。并且,环境条件输入器可以如图8的远程控制器7那样构成为独立于燃料电池1a、热水储存单元1b的另外的设备,此时经由与控制装置6进行通信等的单元来传递信息。
以上,根据本实施方式的燃料电池热电联产系统,能够在夏季等时设定系统的最大运转时间来抑制运转时间的同时维持消耗能量削减量大,同时能够在冬季等时不限制最大运转时间,通过不抑制运转时间来维持消耗能量削减量大。
此外,在本实施方式中,说明了在步骤S2中设定最大运转时间Mh并在步骤S488中判断是否需要限制最大运转时间Mh的的结构,但是即使是如在步骤S2中设定最大运转时间Mh的时刻判断是否需要限制最大运转时间Mh的结构的情况下,也能够获得同样的效果,且不超出本发明的范围,这是显而易见的。
另外,作为能量供给系统的例子,说明了燃料电池热电联产系统,但是使用发动机的发动机热电联产系统、通过燃气使涡轮机旋转来进行发电的涡轮机型发电系统也能够获得相同的效果,这是理所当然的。
[变形例4]
在本实施方式中说明了在图12所示的流程图的步骤S488中根据季节信息、日历信息、大气温度、城市用水温度信息等环境条件判断是否需要限制最大运转时间Mh的燃料电池热电联产系统1的运转计划例。
但是,不仅是环境条件,也可以根据燃料电池热电联产系统1的状态来判断是否需要限制最大运转时间Mh。由于只是图12所示的流程图的步骤S488的预先决定的条件不同,因此其它步骤相同,省略说明。
如上所述,期望的是根据燃料电池热电联产系统1的状态设定最大运转时间Mh,在系统发生性能劣化以前系统运转效率较高时,设定最大运转时间会使有效地削减消耗能量的运转时间有限,起动停止所需要的能量损失在每单位运转时间中所占的比例变大,因此要使每单位运转时间的消耗能量削减量最大化则不期望设定最大运转时间,在上述条件的情况下,通过使最大运转时间比较长,能够使每单位时间的消耗能量削减量最大化。因此,在最大运转时间大于或等于步骤S1中的规定期间的情况下,不需要限制最大运转时间,因此在步骤S488中判断是否需要限制最大运转时间Mh。
期望的是根据作为与系统的运转效率有较大关联的因子的总通电时间、总发电时间等在安装之后从接通电源起的系统动作历史记录信息,来判断是否需要限制最大运转时间(例如若总发电时间小于2万小时则不实施最大运转时间的限制等)。虽然没有图示,但是对总通电时间、总发电时间等系统动作历史记录信息进行管理的实时计数器位于控制装置6的内部,根据其信息,在步骤S488中判断是否需要限制最大运转时间Mh。并且,上述实时计数器也可以如图8的远程控制器7那样构成为独立于燃料电池1a、热水储存单元1b的另外的设备,此时经由与控制装置6进行通信等的单元来传递信息。
另外,期望的是根据作为与系统的运转效率有较大关联的因子的从工厂生产时刻起的寿命期限,来判断是否需要限制最大运转时间(例如若从工厂生产时刻起不足5年则不实施最大运转时间的限制等)。虽然没有图示,但是对系统的寿命期限进行管理的实时计数器位于控制装置6的内部,根据其信息,在步骤S488中判断是否需要限制最大运转时间Mh。并且,上述实时计数器也可以如图8的远程控制器7那样构成为独立于燃料电池1a、热水储存单元1b的另外的设备,此时经由与控制装置6进行通信等的单元来传递信息。
另外,期望的是直接监视系统的运转效率,根据系统的运转效率判断是否需要限制最大运转时间(例如在运转效率从初始效率起下降30%之前不实施最大运转时间的限制等)。虽然没有图示,但是对系统的运转效率进行管理的实时计数器位于控制装置6的内部,根据其信息,在步骤S488中判断是否需要限制最大运转时间Mh。并且,上述实时计数器也可以如图8的远程控制器7那样构成为独立于燃料电池1a、热水储存单元1b的另外的设备,此时经由与控制装置6进行通信等的单元来传递信息。
以上,根据本实施方式的燃料电池热电联产系统,能够在系统的运转效率下降的寿命后期设定最大运转时间,能够在抑制运转时间的同时维持消耗能量削减量较大,同时在系统的运转效率没有下降的寿命初期不限制最大运转时间,通过不抑制运转时间,能够维持消耗能量削减量较大。
并且,通过根据从工厂生产时刻起的寿命期限,来判断是否需要限制最大运转时间,还考虑到生产后的库存状态下的运转效率劣化,能够进一步维持消耗能量削减量较大。
此外,在本实施方式中,说明了在步骤S2中设定最大运转时间Mh并在步骤S488中判断是否需要限制最大运转时间Mh的结构,但是即使是如在步骤S2中设定最大运转时间Mh的时刻判断是否需要限制最大运转时间Mh那样的结构的情况下,也能够获得同样的效果,且不超出本发明的范围,这是显而易见的。
另外,作为能量供给系统的例子,说明了燃料电池热电联产系统,但是使用发动机的发动机热电联产系统、通过燃气使涡轮机旋转来进行发电的涡轮机型发电系统也能够获得相同的效果,这是理所当然的。
(实施方式6)
对与实施方式1、2、3、4相同的结构要素应用本发明的第六实施方式的燃料电池系统。使用图1和图8说明了将代表例应用于实施方式1的例子,从而省略其说明。
在上述实施方式1中,期望的是根据使用的电力负荷需求、热负荷需求来设定由期间设定器6e设定的规定期间。
例如,在电力负荷需求大幅增加而热负荷需求不大的夏季等,如果将规定期间设为一天,则导致与供给使用电力的发电电力相对应的热负荷超过热负荷需求。因此,达到热水储存单元的储热极限,燃料电池发电装置停止发电,在储存的热负荷低于储热极限的阶段重新起动。在考虑此时的起动所需要的能量损失的情况下,在夏季时能够由期间设定器6e将规定期间设定为多天(例如2天),针对在该规定期间产生的热负荷需求,以增大消耗能量削减量的方式制定运转计划。
并且,在电力负荷需求大幅增加且热负荷需求较大的冬季等,与供给使用电力的发电电力相对应的热负荷不会超过热负荷需求,即使连续运转也不会达到热水储存单元的储热极限,因此能够连续运转。因此,如果将规定期间限定为一天,则会进行不必要的起动停止,在考虑此时需要的进行起动停止所需的能量损失的情况下,在冬季等时能够由期间设定器6e将规定期间设定为多天(例如5天),在相协调地应对在该规定期间内产生的热负荷需求来使用的情况下能够使消耗能量削减量更大。
另外,在上述条件中没有的春、秋等中间期等的电力负荷需求、热负荷需求近似于燃料电池发电装置的电力/热输出的比例的情况下,当将规定期间延长多天等时,电力负荷需求低的时间变长,其结果,设备效率低的低输出的运转时间变长。因此,与在电力负荷需求小的时间停止运转的情况相比,每单位运转时间的消耗能量削减量变小。因此,通过将规定期间设定为一天等较短的期间,能够从运转计划中排除电力负荷需求小的期间的运转,其结果,能够增大燃料电池系统的运转输出,并能够增大每单位运转时间的消耗能量削减量。
因此可知,由期间设定器6e根据电力负荷需求的大小、热负荷需求的大小来改变上述规定期间,这对于增大消耗能量削减量是有效的。
因此,采用了以下结构:将作为与电力负荷需求的大小、热负荷需求的大小有关的因子的日历等日历信息、将日历汇总得到的季节信息等设为环境条件,由期间设定器6e随时设定与环境条件相应的规定期间。在本实施方式中,由期间设定器6e将7月~9月的规定期间设定为2天,将10月~11月以及4月~6月的规定期间设定为1天,将11月~3月的规定期间设定为7天。相比来说,在将规定期间一律设定为1天的情况下,夏季由于热量剩余而导致起动停止增大,其结果,消耗能量削减量减少,冬季与由于起动停止引起的能量损失相当的消耗能量削减量减少。此外,在本实施方式中,将7月~9月的规定期间设定为2天,将10月~11月以及4月~6月的规定期间设定为1天,将11月~3月的规定期间设定为7天,但是根据设备的使用环境(地区、家族构成、设备的输出)的不同,该值不同,因此存在最佳的设定,根据状况的不同,设定不同。虽然没有图示,但是在控制装置6内具有对日历等的日历信息、季节信息进行管理的实时计数器,由期间设定器6e根据其信息随时变更规定期间并制定运转计划,由此能够使规定期间随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,即使上述实时计数器不构成在控制装置6中,只要能够将其信息反映给运转计划器6c即可,只要能够进行信息传递,构成在哪里都可以。
[变形例5]
还采用了以下结构:将作为与使用负荷电力的大小、热负荷需求的大小有关的因子的大气温度作为环境条件,由期间设定器6e随时设定与大气温度相对应的规定期间。在本变形例中,在一天的平均大气温度大于或等于21℃的情况下,由期间设定器6e将规定期间设定为2天,在一天的平均大气温度超过12℃且不足21℃的情况下,将规定期间设定为1天,在一天的平均大气温度小于或等于12℃的情况下,将规定期间设定为7天。相比来说,在将规定期间一律设定为一天的情况下,在一天的平均大气温度大于或等于21℃的期间,由于热量剩余而导致起动停止增大,其结果,消耗能量削减量减少,在一天的平均大气温度小于或等于12℃的期间,与由于起动停止引起的能量损失相当的消耗能量削减量减少。
此外,在本变形例中,将一天的平均大气温度大于或等于21℃的情况下的规定期间设定为2天,将一天的平均大气温度超过12℃且不足21℃的情况下的规定期间设定为1天,将一天的平均大气温度小于或等于12℃的情况下的规定期间设定为7天,但是根据设备的使用环境(地区、家族构成、设备的输出)的不同,该规定期间的值不同,因此存在最佳的设定,根据状况的不同,设定不同。虽然没有图示,但是具有能够管理大气温度的结构的温度传感器位于控制装置6内,由期间设定器6e根据大气温度信息随时变更规定期间并由运转计划器6c制定运转计划,由此能够使规定期间随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,即使上述温度传感器不构成在控制装置6中,只要能够将其信息反映给运转计划器6c即可,只要能够进行信息传递,构成在哪里都可以。
[变形例6]
还采用了以下结构:将作为与使用负荷电力的大小、热负荷需求的大小有关的因子的城市用水温度作为环境条件,由期间设定器6e随时设定与城市用水温度相对应的规定期间。
在本变形例中,在一天的平均城市用水温度大于或等于20℃的情况下,由期间设定器6e将规定期间设定为2天,在一天的平均城市用水温度超过15℃且不足20℃的情况下,将规定期间设定为1天,在一天的平均城市用水温度小于或等于15℃的情况下,将规定期间设定为7天。相比来说,在将规定期间一律设定为一天的情况下,在一天的平均城市用水温度大于或等于20℃的期间,由于热量剩余而导致起动停止增大,其结果,消耗能量削减量减少,在一天的平均城市用水温度小于或等于15℃的期间,与由于起动停止引起的能量损失相当的消耗能量削减量减少。此外,在本变形例中,将一天的平均城市用水温度大于或等于20℃的情况下的规定期间设定为2天,将一天的平均城市用水温度超过15℃且不足20℃的情况下的规定期间设定为1天,将一天的平均城市用水温度小于或等于15℃的情况下的规定期间设定为7天,但是根据设备的使用环境(地区、家族构成、设备的输出)的不同,该值不同,因此存在最佳的设定,根据状况的不同,设定不同。虽然没有图示,但是具有能够管理城市用水温度的结构的城市用水温度传感器位于控制装置6内,由期间设定器6e根据城市用水温度信息随时变更规定期间并由运转计划器6c制定运转计划,由此能够使规定期间随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,即使上述城市用水温度传感器不构成在控制装置6中,只要能够将其信息反映给运转计划器6c即可,只要能够进行信息传递,构成在哪里都可以。
[变形例7]
还采用了以下结构:将作为与使用负荷电力的大小、热负荷需求的大小有关的因子的、直接控制能量消耗量的值的进行能量供给的对象的能量消耗量(消耗能量A)作为环境条件,由期间设定器6e随时设定与能量消耗量相对应的规定期间。在本变形例中,期间设定器6e在每一天的电力负荷预测需求超过10.7kwh且不足17.2kwh或者热负荷预测需求不足10.6kwh的情况下,将规定期间设定为2天,在每一天的电力负荷预测需求小于或等于10.7kwh或者热负荷预测需求超过10.6kwh且不足21.3kwh的情况下,将规定期间设定为1天,在每一天的电力负荷预测需求大于或等于17.2kwh或者热负荷预测需求大于或等于21.3kwh的情况下,将规定期间设定为7天。相比来说,在将规定期间一律设定为一天的情况下,在每一天的电力负荷预测需求超过10.7kwh且不足17.2kwh或者热负荷预测需求不足10.6kwh的情况下的期间,由于热量剩余而导致起动停止增大,其结果,消耗能量削减量减少,在每一天的电力负荷预测需求大于或等于17.2kwh或者热负荷预测需求大于或等于21.3kwh的情况下的期间,与由于起动停止引起的能量损失相当的消耗能量削减量减少。
此外,在本变形例中,在每一天的电力负荷预测需求超过10.7kwh且不足17.2kwh或者热负荷预测需求不足10.6kwh的情况下,将规定期间设定为2天,将每一天的电力负荷预测需求小于或等于10.7kwh或者热负荷预测需求超过10.6kwh且不足21.3kwh的情况下的规定期间设定为1天,将每一天的电力负荷预测需求大于或等于17.2kwh或者热负荷预测需求大于或等于21.3kwh的情况下的规定期间设定为7天,但是根据设备的使用环境(地区、家族构成、设备的输出)的不同,该值不同,因此存在最佳的设定,根据状况的不同,设定不同。虽然没有图示,但是能够根据基于预测部6b和存储部6a的电力负荷预测需求和热负荷预测需求计算出的消耗能量A的信息随时变更规定期间并制定运转计划,由此能够使规定期间随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
[变形例8]
还设为如下结构:具有使用者能够输入与使用负荷电力的大小、热负荷需求的大小有关的条件、例如输入季节信息、日历信息、大气温度信息、城市用水温度、家族构成信息、来客信息等能量消耗信息等来作为环境条件的单元,由使用者任意地输入信息,并由期间设定器6随时设定与能量消耗信息相对应的规定期间。虽然没有图示,但是环境条件输入单元(例如远程控制器等的操作基板)位于控制装置6内,由运转计划器6c根据其信息随时变更规定期间并制定运转计划,由此能够使规定期间随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,即使上述环境条件输入单元不构成在控制装置6中,只要能够将其信息反映给运转计划器6c即可,只要能够进行信息传递,构成在哪里都可以。
此外,针对上述的实施方式1进行了本实施方式6的说明,但是即使应用于上述的实施方式2、3、4也能够获得同样的效果,这是显而易见的。
另外,通过将表示上述规定期间、负荷预测需求当前被设定为哪个等级的设备运转状态经由环境条件输入单元、设备主体以及其它信号显示在显示机上,能够掌握当前的设备运转状态,使用者不会误认为是设备的运转故障,并且留心遵循该状况的生活,从而电力负荷预测需求、热负荷预测需求与实际使用的电力负荷、热负荷之间的误差变小,结果产生如下效果:由于对正确的预测负荷需求制定运转计划,因此使消耗能量削减量更多。
(实施方式7)
对与实施方式1、2、3、4相同的结构要素应用本发明的第七实施方式的燃料电池系统。使用图1和图8说明了将代表例应用于实施方式1的例子,从而省略其说明。
对于上述实施方式1,期望的是根据要使用的电力负荷、热负荷来设定上述最大运转时间Mh。
也就是说,在以往的燃料电池发电装置的动作判断中,指示进行如下动作判断:即使产生很少的消耗能量削减量也进行运转。如上所述那样,在以高输出运转燃料电池发电系统的情况下,能够进行提高了设备效率的运转,在基于以往的动作判断进行运转的情况下,有时以设备效率比较低的输出来制定运转计划,在这种情况下,在规定期间内产生的消耗能量削减量的每单位运转时间的消耗能量削减量有时是较低的值。因此,通过根据负荷状况来设定最大运转时间Mh,能够从包含低输出的运转燃料电池发电系统的运转的运转计划变更为高输出的运转较多的运转计划,其结果,能够使在根据设备的耐久性得出的能够运转的寿命期限内产生的消耗能量削减量最大化。
因此,在规定期间内的运转合计时间不超过上述最大运转时间Mh的范围内,设定各种运转计划(运转开始时刻和运转停止时刻的组合),计算在该期间预测的各个消耗能量削减量,设定将在规定期间内获得的消耗能量削减量的总和除以规定期间内的运转合计时间得到的、规定期间内的每单位运转时间的消耗能量削减量最大的运转计划,并将该运转计划输出给燃料电池发电系统,由此能够使该设备在寿命期限内产生的消耗能量削减量最大化。
通过将最大运转时间Mh设定为与电力负荷需求状况、热负荷需求状况相应的长度,可以使消耗能量削减量变大。
例如,在电力负荷需求大幅增加而热负荷需求不大的夏季等,如果将Mh设为规定期间内的最大运转时间,则导致与供给电力需求的发电电力相对应的热负荷超过热负荷需求。因此,达到了热水储存单元的储热极限,燃料电池发电装置停止发电,在储存的热负荷低于储热极限的阶段重新起动,难以使设备优先在输出大的区域运转。
并且,关于夏季的电力负荷,随时间段的变化而导致负荷的变动较大(白天与晚上的差异等),平均电力负荷来说不大时也很难使设备在输出高的区域运转。为了尽可能地避免此时的起动所需要的能量损失、小输出区域,而尽量进行短期间的Mh的限制,由此进行运转动作判断使得选择性地在输出大的使用电力预测值的区域运转以满足规定期间内的热负荷需求预测值,并能够使每单位运转时间的消耗能量削减量最大化。
并且,在电力负荷需求大幅增加且热负荷需求较大的冬季等,当将Mh设为一天等时,与供给使用电力的发电电力相对应的热负荷不会超过热负荷需求,即使连续运转也不会达到热水储存单元的储热极限。并且,由于电力负荷需求和输出都大,因此能够在运转时的设备效率也高的区域运转。因此,在与规定期间相比大幅缩短地设定Mh的情况下,会使有效地削减消耗能量的运转时间有限,起动停止所需要的能量损失在每单位运转时间中所占的比例变大,要使每单位运转时间的消耗能量削减量最大化则不期望与规定期间相比大幅缩短地设定Mh,在上述条件的情况下,通过使Mh比较长,能够使每单位时间的消耗能量削减量最大化。
另外,在上述条件中没有的春、秋等中间期等的电力负荷需求、热负荷需求近似于燃料电池发电装置的电力/热输出的比例的情况下,当延长Mh时,电力负荷需求低的时间变长,其结果,设备效率低的低输出的运转时间变大。因此,与在电力负荷需求小的时间停止运转时相比,每单位时间的消耗能量削减量变小。因此,期望的是将Mh设定为处于上述夏季的Mh与冬季的Mh的中间的时间。
因此,期望的是与规定期间同样地,由最大运转时间设定器6d根据电力负荷需求状况、热负荷需求状况来设定最大运转时间Mh。
因此,采用了以下结构:将作为与电力负荷需求的大小、热负荷需求的大小有关的因子的日历等日历信息、将日历汇总得到的季节信息等作为环境条件,随时设定与环境条件相应的Mh。在本实施方式中,将7月~9月的Mh设定为2天,将10月~11月以及4月~6月的Mh设定为1天,将11月~3月的Mh设定为7天。相比来说,在将Mh一律设定为1天的情况下,夏季由于热量剩余而导致起动停止增大,其结果,消耗能量削减量减少,在冬季与由于起动停止引起的能量损失相当的消耗能量削减量减少。此外,在本实施方式中,将7月~9月的Mh设定为2天,将10月~11月以及4月~6月的Mh设定为1天,将11月~3月的Mh设定为7天,但是根据设备的使用环境(地区、家族构成、设备的输出)的不同,该值不同,因此存在最佳的设定,根据状况的不同,设定不同。虽然没有图示,但是在控制装置6内具有对日历等的日历信息、季节信息进行管理的实时计数器,由运转计划器6c根据其信息随时变更Mh并制定运转计划,由此能够使Mh随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,即使上述实时计数器不构成在控制装置6中,只要能够将其信息反映给运转计划器6c即可,只要能够进行信息传递,构成在哪里都可以。
[变形例9]
还采用了以下结构:将作为与使用负荷电力的大小、热负荷需求的大小有关的因子的大气温度作为环境条件,随时设定与大气温度相应的Mh。在本变形例中,将一天的平均大气温度大于或等于21℃的情况下的Mh设定为2天,将一天的平均大气温度超过12℃且不足21℃的情况下的Mh设定为1天,将一天的平均大气温度小于或等于12℃的情况下的Mh设定为7天。相比来说,在将Mh一律设定为一天的情况下,在一天的平均大气温度大于或等于21℃的期间,由于热量剩余而导致起动停止增大,其结果,消耗能量削减量减少,在一天的平均大气温度小于或等于12℃的期间,与由于起动停止引起的能量损失相当的消耗能量削减量减少。此外,在本变形例中,将一天的平均大气温度大于或等于21℃的情况下的Mh设定为2天,将一天的平均大气温度超过12℃且不足21℃的情况下的Mh设定为1天,将一天的平均大气温度小于或等于12℃的情况下的Mh设定为7天,但是根据设备的使用环境(地区、家族构成、设备的输出)的不同,该值不同,因此存在最佳的设定,根据状况的不同,设定不同。虽然没有图示,但是具有能够管理大气温度的结构的温度传感器位于控制装置6内,由运转计划器6c根据其信息随时变更Mh并制定运转计划,由此能够使Mh随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,即使上述温度传感器不构成在控制装置6中,只要能够将其信息反映给运转计划器6c即可,只要能够进行信息传递,构成在哪里都可以。
[变形例10]
还采用了以下结构:将作为与使用负荷电力的大小、热负荷需求的大小有关的因子的城市用水温度作为环境条件,随时设定与城市用水温度相对应的Mh。在本变形例中,将一天的平均城市用水温度大于或等于20℃的情况下的Mh设定为2天,将一天的平均城市用水温度超过15℃且不足20℃的情况下的Mh设定为1天,将一天的平均城市用水温度小于或等于15℃的情况下的Mh设定为7天。相比来说,在将Mh一律设定为一天的情况下,在一天的平均城市用水温度大于或等于20℃的期间,由于热量剩余而导致起动停止增大,其结果,消耗能量削减量减少,在一天的平均城市用水温度小于或等于15℃的期间,与由于起动停止引起的能量损失相当的消耗能量削减量减少。此外,在本变形例中,将一天的平均城市用水温度大于或等于20℃的情况下的Mh设定为2天,将一天的平均城市用水温度超过15℃且不足20℃的情况下的Mh设定为1天,将一天的平均城市用水温度小于或等于15℃的情况下的Mh设定为7天,但是根据设备的使用环境(地区、家族构成、设备的输出)的不同,该值不同,因此存在最佳的设定,根据状况的不同,设定不同。虽然没有图示,但是具有能够管理城市用水温度的结构的城市用水温度传感器位于控制装置6内,由运转计划器6c根据其信息随时变更Mh并制定运转计划,由此能够使Mh随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,即使上述城市用水温度传感器不构成在控制装置6中,只要能够将其信息反映给运转计划器6c即可,只要能够进行信息传递,构成在哪里都可以。
[变形例11]
还采用了以下结构:将作为与使用负荷电力的大小、热负荷需求的大小有关的因子的直接控制能量消耗量值的进行能量供给的对象的能量消耗量(消耗能量A)作为环境条件,随时设定与能量消耗量相对应的Mh。在本变形例中,在每一天的电力负荷预测需求超过10.7kwh且不足17.2kwh或者热负荷预测需求不足10.6kwh的情况下,将规定期间设定为2天,在每一天的电力负荷预测需求小于或等于10.7kwh或者热负荷预测需求超过10.6kwh且不足21.3kwh的情况下,将规定期间设定为1天,在每一天的电力负荷预测需求大于或等于17.2kwh或者热负荷预测需求大于或等于21.3kwh的情况下,将规定期间设定为7天。相比来说,在将规定期间一律设定为一天的情况下,在每一天的电力负荷预测需求超过10.7kwh且不足17.2kwh或者热负荷预测需求不足10.6kwh的情况下的期间,由于热量剩余而导致起动停止增大,其结果,消耗能量削减量减少,在每一天的电力负荷预测需求大于或等于17.2kwh或者热负荷预测需求大于或等于21.3kwh的情况下的期间,与由于起动停止引起的能量损失相当的消耗能量削减量减少。
此外,在本变形例中,在每一天的电力负荷预测需求超过10.7kwh且不足17.2kwh或者热负荷预测需求不足10.6kwh的情况下,将规定期间设定为2天,将每一天的电力负荷预测需求小于或等于10.7kwh或者热负荷预测需求超过10.6kwh且不足21.3kwh的情况下的规定期间设定为1天,将每一天的电力负荷预测需求大于或等于17.2kwh或者热负荷预测需求大于或等于21.3kwh的情况下的规定期间设定为7天,但是根据设备的使用环境(地区、家族构成、设备的输出)的不同,该值不同,因此存在最佳的设定,根据状况的不同,设定不同。能够根据基于预测部6b和存储部6a的电力负荷预测需求和热负荷预测需求计算出的消耗能量A的信息随时变更Mh并制定运转计划,由此能够使Mh随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
[变形例12]
还设为如下结构:具有使用者能够输入与使用负荷电力的大小、热负荷需求的大小有关的条件、例如输入季节信息、日历信息、大气温度信息、城市用水温度、家族构成信息、来客信息等能量消耗信息等来作为环境条件的单元,由使用者任意地输入信息,并随时设定与环境条件相对应的Mh。虽然没有图示,但是环境条件输入单元(例如远程控制器等的操作基板)位于控制装置6内,由运转计划器6c根据其信息随时变更Mh并制定运转计划,由此能够使Mh随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,即使上述环境条件输入单元不构成在控制装置6中,只要能够将其信息反映给运转计划器6c即可,只要能够进行信息传递,构成在哪里都可以。
此外,针对上述的实施方式1进行了本实施方式7的说明,但是即使应用于上述的实施方式2、3、4也能够获得同样的效果,这是显而易见的。
另外,通过将表示上述Mh、负荷预测需求当前被设定为哪个等级的设备运转状态经由环境条件输入单元、设备主体以及其它信号显示在显示机上,能够掌握当前的设备运转状态,使用者不会误认为是设备的运转故障,并且留心遵循该状况的生活,从而电力负荷预测需求、热负荷预测需求与实际使用的电力负荷、热负荷之间的误差变小,结果产生如下效果:由于对正确的预测负荷需求制定运转计划、因此使消耗能量削减量更多。
(实施方式8)
对与实施方式1、2、3、4相同的结构要素应用本发明的第八实施方式的燃料电池系统。使用图1和图8说明了将代表例应用于实施方式1的例子,从而省略其说明。
对于上述实施方式1,期望的是由期间设定器6e根据使用的能量供给装置的运转状态来设定上述规定期间。
例如,在针对电力负荷预测需求、热负荷预测需求使消耗能量削减量最大的情况下,需要计算上述消耗能量B。进行该计算需要设备所具有的运转效率(发电效率和热回收效率)。在燃料电池发电装置的情况下,该发电效率和热回收效率随时间的经过而改变,具有发电效率下降、相反热回收效率增加的趋势。该趋势主要是由位于燃料电池发电装置内的将氢气能源转换为电力能源的燃料电池(未图示)的性能引起的,燃料电池的电力转换损失是由以下原因导致的:由于内部电池(发电体)的导电率随着时间的经过而上升,导致电力的电阻损失增大,或者由于催化剂的劣化导致反应速度下降,从而电动势下降,由此导致电力损失。另外,作为除此之外的代表性的随着时间的经过损失增加的主要原因,存在由于使发电、热回收所需的流体(原料燃气、冷却水等)在系统内流动的致动器类(未图示,例如泵等)的摩擦损失增加等所引起的电力损失增加。还存在由于控制各致动器的驱动电路部分的部件的劣化所引起的经年劣化,作为电力损失而增加。随着时间的经过,发电效率下降,与此相应地电力转换损失被转换为热损失,其一部分作为热而回收,从而呈现了热回收效率提高的趋势。
因此,即使是相同的电力负荷预测需求和热负荷预测需求,根据所设定的规定期间的大小,消耗能量削减量也会发生变化。
即,在从初始发电效率高、热回收效率低的状态的设备(初始状态设备)变为发电效率低、热回收效率高的状态的设备(经年状态设备)的情况下,当将规定期间设为一天等时,与供给电力需求的发电电力相对应的热负荷超过热负荷需求。因此,达到了热水储存单元的储热极限,燃料电池发电装置停止发电,在储存的热负荷低于储热极限的阶段,重新起动。当考虑此时的起动所需要的能量损失时,在经年状态设备的情况下,由期间设定器6d将规定期间设为多天(例如2天),在使用该多天中产生的热负荷需求制定运转计划的情况下,能够更增大消耗能量削减量。
并且,在电力负荷需求大幅增加且热负荷需求较大的冬季等,与供给使用电力的发电电力相对应的热负荷不会超过热负荷需求,即使连续运转也不会达到热水储存单元的储热极限,因此能够进行连续运转。因此,如果将规定期间限定为一天,则会进行不必要的起动停止,在考虑此时需要的进行起动停止所需的能量损失的情况下,在冬季等时即使是经年状态设备也由期间设定器6e将规定期间设为与初始状态设备相同的多天(例如5天),在相协调地应对该多天内产生的热负荷需求的同时进行运转计划的情况下,能够使消耗能量削减量更大。
另外,即使是上述条件中没有的春、秋等中间期等,电力负荷需求、热负荷需求、即燃料电池发电装置的电力/热输出的比例在初始状态设备和经年状态设备中也是不同的,通过与当时的设备状态和当时的负荷状态相应地设定规定期间,能够从运转计划中排除电力负荷需求小的期间的运转,其结果,能够增大燃料电池系统的运转输出,并能够增大每单位运转时间的消耗能量削减量。
因此可知,根据设备的运转效率来改变上述规定期间,这对于增大消耗能量削减量是有效的。
因此,作为与设备的运转效率有关的因子,由未图示但位于燃料电池发电装置内的消耗能量测量部测量在规定负荷时(在本实施方式中设定为500W)的燃料电池发电装置的消耗能量(原料燃气流量),并将原料燃气流量值随着时间的经过依次存储到存储部6a中。采用以下结构:在制定运转计划时,将该原料燃气流量与初始值进行比较,如果流量增加,则随时设定与原料燃气流量值相对应的规定期间。通过根据本结构制定运转计划,能够使规定期间随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,在本实施方式中,上述消耗能量测量部测量了原料燃气流量,但是当然只要能够测量例如压力变化、原料燃气供给装置的消耗电力量变化等的在规定输出的情况下的原料燃气的需要量即可。
[变形例13]
并且,使用设备停止时的消耗能量作为与设备的运转状态有关的因子也是有效的。
在燃料电池发电装置中,停止时也消耗待机电力等能量。因此,在计算消耗能量B时,停止时的待机电力也是重要的要素。由未图示但位于燃料电池发电装置内的消耗能量测量部测量停止时的消耗能量(在本变形例中测量的是待机电力量),并将待机电力量值随着时间的经过依次存储到存储部6a中。采用了以下结构:在制定运转计划时,将该待机电力量与初始值进行比较,如果增加,则随时设定与该待机电力量相对应的规定期间。通过根据本结构制定运转计划,能够使规定期间随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,当然只要上述消耗能量测量部是能够测量设备停止时产生的消耗能量的部件即可。
[变形例14]
并且,使用能量供给装置的累计运转时间作为与设备的运转状态有关的因子也是有效的。
在燃料电池发电装置中,上述设备的运转效率、停止时的消耗能量经年变化。因此,通过未图示但位于燃料电池发电装置内的运转时间测量部(实时时钟)测量设备的累计运转时间,并将累计运转时间值和与累计运转时间相应的设备的经年变化参数随着时间的经过依次存储到存储部6a中。采用了以下结构:在制定运转计划时,使用与当时的累计运转时间相对应的经年变化参数,随时设定与该值相对应的规定期间。通过根据本结构制定运转计划,能够使规定期间随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
另外,经年变化中设备的状态相对于短时间的变化是小的,因此即使将前次为止计算出的规定期间的累计运转时间用作本次的累计运转时间也能够获得相同的效果。
此外,针对上述的实施方式1进行了本实施方式8的说明,但是即使应用于上述的实施方式2、3、4也能够获得同样的效果,这是显而易见的。
另外,通过将表示上述规定期间、负荷预测需求当前被设定为哪个等级的设备运转状态经由环境条件输入单元、设备主体以及其它信号显示在显示机上,能够掌握当前的设备运转状态,使用者不会误认为是设备的运转故障,并且留心遵循该状况的生活,从而电力负荷预测需求、热负荷预测需求与实际使用的电力负荷、热负荷之间的误差变小,结果产生如下效果:由于对正确的预测负荷需求制定运转计划,因此使消耗能量削减量更多。
[实施方式9]
对与实施方式1、2、3、4相同的结构要素中应用本发明的第九实施方式的燃料电池系统。使用图1和图8说明了将代表例应用于实施方式1的例子,从而省略其说明。
对于上述实施方式1,期望的是根据使用的能量供给装置的运转状态来设定上述最大运转时间Mh。
也就是说,在以往的燃料电池发电装置的动作判断中,指示即使产生很少的消耗能量削减量也进行运转的动作判断。如上所述那样,在以高输出运转燃料电池发电系统的情况下,更能够进行提高了设备效率的运转,基于以往的动作判断的运转有时会以设备效率比较低的输出来制定运转计划,在这种情况下,在规定期间内产生的消耗能量削减量的每单位运转时间的消耗能量削减量有时是较低的值。因此,通过根据负荷状况来设定最大运转时间Mh,能够从包含低输出的燃料电池发电系统的运转的运转计划变更为高输出的运转多的运转计划,其结果,能够使在根据设备的耐久性得出的能够运转的寿命期限内产生的消耗能量削减量最大化。
因此,在规定期间内的运转合计时间不超过上述最大运转时间Mh的范围内,设定各种运转计划(运转开始时刻和运转停止时刻的组合),计算在该期间预测的各个消耗能量削减量,设定将在规定期间内获得的消耗能量削减量的总和除以规定期间内的运转合计时间得到的、规定期间内的每单位运转时间的消耗能量削减量最大的运转计划,并将该运转计划输出给燃料电池发电系统,由此能够使该设备在寿命期限内产生的消耗能量削减量最大化。
通过将最大运转时间Mh设定为与电力负荷需求状况、热负荷需求状况相应的长度,可以使消耗能量削减量变大。
例如,在针对电力负荷预测需求、热负荷预测需求使消耗能量削减量最大的情况下,需要计算上述消耗能量B。进行该计算需要设备所具有的运转效率(发电效率和热回收效率)。在燃料电池发电装置的情况下,该发电效率和热回收效率随时间的经过而改变,具有发电效率下降、相反热回收效率增加的趋势。该趋势主要是由位于燃料电池发电装置内的将氢气能源转换为电力能源的燃料电池(未图示)的性能引起的,燃料电池的电力转换损失是由以下原因导致的:由于内部电池(发电体)的导电率随着时间的经过而上升,导致电力的电阻损失增大,或者由于催化剂的劣化导致反应速度下降,从而电动势下降,由此导致电力损失。另外,作为除此之外的代表性的随着时间的经过损失增加的主要原因,存在由于使发电、热回收所需的流体(原料燃气、冷却水等)在系统内流动的致动器类(未图示,例如泵等)的摩擦损失增加等所引起的电力损失增加。还存在由于控制各致动器的驱动电路部分的部件的劣化所引起的经年劣化,作为电力损失而增加。随着时间的经过,发电效率下降,与此相应地电力转换损失被转换为热损失,其一部分作为热而回收,从而呈现了热回收效率提高的趋势。因此,即使是相同的电力负荷预测需求和热负荷预测需求,根据所设定的Mh的大小,消耗能量削减量也会发生变化。
即,在从初始发电效率高、热回收效率低的状态的设备(初始状态设备)变为发电效率低、热回收效率高的状态的设备(经年状态设备)的情况下,如果将Mh设为规定期间内的最大值等时,与供给使用电力的发电电力相对应的热负荷超过热负荷需求。因此,达到了热水储存单元的储热极限,燃料电池发电装置停止发电,在储存的热负荷低于储热极限的阶段重新起动,从而难以使设备优先在输出大的区域运转。此时,为了尽可能地避免此时的起动所需要的能量损失、小输出区域,而尽量进行短期间的Mh的限制,由此进行运转动作判断来选择性地使设备在输出大的使用电力预测值的区域运转以满足规定期间内的热负荷需求预测值,并能够使每单位运转时间的消耗能量削减量最大化。
并且,在电力负荷需求大幅增加且热负荷需求较大的冬季等,当将Mh设为一天等时,与供给使用电力的发电电力相对应的热负荷不会超过热负荷需求,即使连续运转也不会达到热水储存单元的储热极限。并且,由于电力负荷需求和输出都大,因此能够在运转时的设备效率也高的区域运转。因此,在与规定期间相比大幅缩短地设定Mh的情况下,会使有效地削减消耗能量的运转时间有限,起动停止所需要的能量损失在每单位运转时间中所占的比例变大,要使每单位运转时间的消耗能量削减量最大化则不期望与规定期间相比大幅缩短地设定Mh,在上述条件的情况下,即使是经年状态设备,也与初始状态设备同样地将Mh设定为比较长,由此能够使每单位时间的消耗能量削减量最大化。
另外,即使在上述条件中没有的春、秋等中间期等,电力负荷需求、热负荷需求、即燃料电池发电装置的电力/热输出的比例在初始状态设备和经年状态设备中也是不同的,通过与当时的设备状态和当时的负荷状态相应地设定Mh,能够从运转计划中排除电力负荷需求小的期间的运转,其结果,能够增大燃料电池系统的运转输出,并能够增大每单位运转时间的消耗能量削减量。
因此可知,根据设备的运转效率来改变上述Mh,这对于增大消耗能量削减量是有效的。
因此,作为与设备的运转效率有关的因子,由未图示但位于燃料电池发电装置内的消耗能量测量部测量在规定负荷时(在本变形例中设定为500W)的燃料电池发电装置的消耗能量(原料燃气流量),并将原料燃气流量值随着时间的经过依次存储到存储部6a中。采用了以下结构:在进行运转计划时,将该原料燃气流量与初始值进行比较,如果流量增加,则随时设定与原料燃气流量值相对应的Mh。通过根据本结构制定运转计划,能够使Mh随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,在本变形例中,上述消耗能量测量部测量了原料燃气流量,但是当然只要能够测量例如压力变化、原料燃气供给装置的消耗电力量变化等的在规定输出的情况下的原料燃气的需要量即可。
[变形例15]
并且,使用设备停止时的消耗能量作为与设备的运转状态有关的因子也是有效的。
在燃料电池发电装置中,停止时也消耗待机电力等能量。因此,计算消耗能量B时,停止时的待机电力也是重要的要素。由未图示但位于燃料电池发电装置内的消耗能量测量部测量停止时的消耗能量(在本变形例中测量的是待机电力量),并将待机电力量值随着时间的经过依次存储到存储部6a中。采用了以下结构:在进行运转计划时,将该待机电力量与初始值进行比较,如果增加,则随时设定与待机电力量值相对应的Mh。通过根据本结构制定运转计划,能够使Mh随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
此外,当然只要上述消耗能量测量部是能够测量设备停止时产生的消耗能量的部件即可。
[变形例16]
并且,使用能量供给装置的累计运转时间作为与设备的运转状态有关的因子也是有效的。
在燃料电池发电装置中,上述设备的运转效率、停止时的消耗能量经年变化。因此,通过未图示但位于燃料电池发电装置内的运转时间测量部(实时时钟)测量设备的累计运转时间,并将累计运转时间值和与累计运转时间相应的设备的经年变化参数随着时间的经过依次存储到存储部6a中。采用了以下结构:在进行运转计划时,使用与当时的累计运转时间相对应的经年变化参数,随时设定与累计运转时间值相对应的Mh。通过根据本结构制定运转计划,能够使Mh随时对应于与电力负荷需求、热负荷需求相对应的期间,这对增大消耗能量削减量是有效的。
另外,经年变化中设备的状态相对于短时间的变化是小的,因此即使将前次为止计算出的规定期间的累计运转时间用作本次的累计运转时间也能够获得相同的效果。
此外,针对上述的实施方式1进行了本实施方式8的说明,但是即使应用于上述的实施方式2、3、4也能够获得同样的效果,这是显而易见的。
另外,通过将表示上述Mh、设备的运转状态当前被设定为哪个等级的设备运转状态经由环境条件输入单元、设备主体以及其它信号显示在显示机上,能够掌握当前的设备运转状态,使用者不会误认为是设备的运转故障,并且留心依据该状况的生活,从而电力负荷预测需求、热负荷预测需求与实际使用的电力负荷、热负荷之间的误差变小,结果产生如下效果:由于对正确的预测负荷需求制定运转计划,因此使消耗能量削减量更多。
(其它方式)
如根据上述说明可理解的那样,本发明的能量供给系统可以采用以下方式。
本发明的能量供给系统也可以具有以下特征:在根据规定的运转模式供给电力和热中的至少一种的能量供给装置中,具备最大运转时间设定器,该最大运转时间设定器设定规定期间内的最大运转时间。
根据这样构成的能量供给系统,不会在动作保证期间之前达到运转时间寿命,从而能够继续运转。
另外,本发明的能量供给系统也可以具有以下特征:上述最大运转时间是固定值。
另外,本发明的能量供给系统也可以具有以下特征:根据预先决定的模式来改变上述最大运转时间。
另外,本发明的能量供给系统也可以具有以下特征:上述规定期间是固定值。
另外,本发明的能量供给系统也可以具有以下特征:根据预先决定的模式来改变上述规定期间。
另外,本发明的能量供给系统也可以具有以下特征,具有:环境负荷运算器,其随着上述能量供给装置的运转,计算环境负荷;以及运转计划器,其制定上述能量供给装置的运转计划,其中,在上述规定的运转模式下上述能量供给系统在上述规定期间内的运转时间大于上述最大运转时间的情况下,上述运转计划器以仅运转上述规定的运转模式中的上述最大运转时间的方式制定运转计划使得上述环境负荷为最小值。
另外,本发明的能量供给系统也可以具有以下特征:上述环境负荷运算器计算上述能量供给装置的每单位运转时间的能量削减量,上述运转计划器以仅运转上述规定的运转模式中的上述最大运转时间的方式制定运转计划使得上述每单位运转时间的能量削减量最大。
另外,本发明的能量供给系统也可以具有以下特征:上述环境负荷运算器计算上述规定期间内的每单位时间的能量削减量,上述运转计划器以仅运转上述规定的运转模式中的上述最大运转时间的方式制定运转计划使得上述每单位时间的能量削减量最大。
另外,本发明的能量供给系统也可以具有以下特征:上述环境负荷运算器计算预先决定的期间内的能量削减量,上述运转计划器以仅运转上述规定的运转模式中的上述最大运转时间的方式制定运转计划使得上述预先决定的期间内的能量削减量最大。
另外,本发明的能量供给系统也可以具有以下特征:上述环境负荷运算器计算上述能量供给装置的能量消耗量,上述运转计划器以仅运转上述规定的运转模式中的上述最大运转时间的方式制定运转计划使得上述能量供给装置的能量消耗量最小。
另外,本发明的能量供给系统也可以具有以下特征:上述环境负荷运算器计算进行上述能量供给的对象的消耗能量削减量,上述运转计划器决定规定的运转模式使得上述消耗能量削减量最大。
另外,本发明的能量供给系统也可以具有以下特征:能量供给系统根据在规定时刻起动并在规定时刻停止的规定的运转模式进行运转。
另外,本发明的能量供给系统也可以具有以下特征:上述能量供给装置是供给电力和热的热电联供装置,具备储存热电联产系统中产生的热的储热器,以使上述储热器所储存的热最大的方式运转上述能量供给装置。
另外,本发明的能量供给系统也可以具有以下特征:具有从外部设定规定的运转模式的运转模式设定器。
另外,本发明的能量供给系统也可以具有以下特征:在不满足预先决定的条件的情况下,上述最大运转时间设定器不设定最大运转时间。
另外,本发明的能量供给系统也可以具有以下特征:上述预先决定的条件是指,根据日历信息、季节信息以及大气温度中的至少一个外部信息设定的期间。
另外,本发明的能量供给系统也可以具有以下特征:上述预先决定的条件是指,根据上述能量供给装置的状态设定的期间。
另外,本发明的能量供给系统也可以具有以下特征:上述预先决定的条件是指,从上述能量供给装置最初运转起预先决定的期间。
另外,本发明的能量供给系统也可以具有以下特征:上述预先决定的条件是指,从上述能量供给装置的电源接通等起动时起预先决定的期间。
另外,本发明的能量供给系统也可以具有以下特征:上述预先决定的条件是指,从上述能量供给装置从故障中恢复时起预先决定的期间。
另外,本发明的能量供给系统也可以具有以下特征:上述预先决定的条件是指,上述能量供给装置的运转效率大于或等于规定值的期间。
另外,本发明的能量供给系统也可以具有以下特征:上述最大运转时间设定器根据环境条件来改变上述最大运转时间。
另外,本发明的能量供给系统也可以具有以下特征:具备设定上述规定期间的期间设定器,上述期间设定器根据环境条件来改变上述规定期间。
另外,本发明的能量供给系统也可以具有以下特征:作为环境条件,使用季节信息、日历信息中的至少一个。
另外,本发明的能量供给系统也可以具有以下特征:作为环境条件,使用大气温度。
另外,本发明的能量供给系统也可以具有以下特征:作为环境条件,使用城市用水温度。
另外,本发明的能量供给系统也可以具有以下特征:具备对由能量供给装置进行能量供给的对象的能量消耗量进行存储的能量消耗存储器,作为上述环境条件,使用上述能量消耗量。
另外,本发明的能量供给系统也可以具有以下特征:具备从外部输入环境条件的环境条件输入器。
另外,本发明的能量供给系统也可以具有以下特征:上述最大运转时间设定器根据上述能量供给装置的状态改变上述最大运转时间。
另外,本发明的能量供给系统也可以具有以下特征:具备设定上述规定期间的期间设定器,上述期间设定器根据上述能量供给装置的状态来改变上述规定期间。
另外,本发明的能量供给系统也可以具有以下特征:作为上述能量供给装置的状态,使用上述能量供给装置的运转效率。
另外,本发明的能量供给系统也可以具有以下特征:作为上述能量供给装置的状态,使用上述能量供给装置运转时的消耗能量。
另外,本发明的能量供给系统也可以具有以下特征:作为上述能量供给装置的状态,使用上述能量供给装置的累计运转时间。
另外,本发明的能量供给系统也可以具有以下特征:作为上述能量供给装置的状态,使用前次的规定期间内的能量供给装置的累计运转时间。
另外,在本发明的能量供给系统中,能够任意且适当地组合上述各实施方式、各变形例所记载的要素、事项。当然能够根据各个组合获得所期望的效果。
对于本领域技术人员来说,可以根据上述说明对本发明进行很多改进、或得到其它实施方式,这是显而易见的。因而,上述说明应解释为只是例示,是为了向本领域技术人员说明执行本发明的优选方式而提供的。在不脱离本发明的精神的情况下,可以实质地改变其结构和/或功能的详细内容。
产业上的可利用性
本发明的能量供给系统作为在制定运转计划的能量供给系统中能够根据实际的运转状况来使运转计划最优化的能量供给系统而发挥作用。

Claims (16)

1.一种能量供给系统,具备:
能量供给装置,其供给电力和热中的至少一种;以及
控制装置,其构成为:设定具有多个第二规定期间的期间、即第一规定期间内的上述能量供给装置的运转时间的上限值、即第一最大运转时间,并且,
根据所设定的上述第一最大运转时间,针对属于上述第一规定期间的各个上述第二规定期间,通过运算求出并设定上述能量供给装置的运转时间的上限值的目标值、即第二目标最大运转时间,以避免上述第一规定期间内的上述能量供给装置的运转时间超过上述第一最大运转时间,
根据在包含于某个第一规定期间中的过去的第二规定期间内上述能量供给装置实际运转的时间,重新设定包含于该第一规定期间中的将来的第二规定期间内的第二目标最大运转时间。
2.根据权利要求1所述的能量供给系统,其特征在于,
第一规定期间是比上述能量供给装置的动作保证期间短的期间,
上述控制装置构成为:设定上述第一最大运转时间以避免在上述动作保证期间之前达到上述能量供给装置的运转时间寿命。
3.根据权利要求1所述的能量供给系统,其特征在于,
上述控制装置根据预先决定的模式来改变包含在一个上述第一规定期间中的上述第二规定期间的个数。
4.根据权利要求1所述的能量供给系统,其特征在于,
包含在一个上述第一规定期间中的上述第二规定期间的个数是固定值。
5.根据权利要求1所述的能量供给系统,其特征在于,
上述第一规定期间是小于或等于一年的期间。
6.根据权利要求1所述的能量供给系统,其特征在于,
上述第二规定期间是小于或等于一个月的期间。
7.根据权利要求1所述的能量供给系统,其特征在于,
上述控制装置构成为:设定上述第一最大运转时间和/或上述第二目标最大运转时间使得每单位运转时间的能量成本削减量最大。
8.根据权利要求1所述的能量供给系统,其特征在于,
上述控制装置构成为:设定上述第一最大运转时间和/或上述第二目标最大运转时间使得上述能量供给装置的能量消耗量最小。
9.根据权利要求1所述的能量供给系统,其特征在于,
上述能量供给装置是供给电力和热的热电联供装置,具备储存热电联供系统中所产生的热的储热器,
上述控制装置构成为以使上述储热器所储存的热最大的方式进行运转。
10.根据权利要求1所述的能量供给系统,其特征在于,
还具有操作器,该操作器用于输入上述能量供给装置的起动时刻和停止时刻。
11.根据权利要求1所述的能量供给系统,其特征在于,
上述控制装置根据环境条件来改变上述第一最大运转时间和/或上述第二目标最大运转时间。
12.根据权利要求1所述的能量供给系统,其特征在于,
上述控制装置根据环境条件来改变包含在一个上述第一规定期间中的上述第二规定期间的个数。
13.根据权利要求12所述的能量供给系统,其特征在于,
上述环境条件包含从如下组中选择的至少一个:该组包含季节信息、日历信息、大气温度以及城市用水温度。
14.根据权利要求1所述的能量供给系统,其特征在于,
上述控制装置构成为根据上述能量供给装置的累计运转时间来更新上述第一最大运转时间。
15.根据权利要求14所述的能量供给系统,其特征在于,
上述控制装置构成为:在上述第一规定期间内的上述能量供给装置的运转时间小于上述第一最大运转时间的情况下,上述控制装置计算上述第一最大运转时间与上述第一规定期间内的上述能量供给装置的运转时间之差并将该差进行累计,将累计得到的时间作为累计剩余运转时间进行存储。
16.根据权利要求14所述的能量供给系统,其特征在于,
上述控制装置构成为在上述累计剩余运转时间变为预先设定的第三规定期间的情况下,重新设定上述第一最大运转时间。
CN2010800025460A 2009-03-23 2010-03-04 能量供给系统 Pending CN102149983A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009-069468 2009-03-23
JP2009069468 2009-03-23
JP2010041762 2010-02-26
JP2010-041762 2010-02-26
PCT/JP2010/001481 WO2010109781A1 (ja) 2009-03-23 2010-03-04 エネルギー供給システム

Publications (1)

Publication Number Publication Date
CN102149983A true CN102149983A (zh) 2011-08-10

Family

ID=42780481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800025460A Pending CN102149983A (zh) 2009-03-23 2010-03-04 能量供给系统

Country Status (8)

Country Link
US (2) US8577511B2 (zh)
EP (1) EP2413060A1 (zh)
JP (1) JP5314698B2 (zh)
KR (1) KR20110139184A (zh)
CN (1) CN102149983A (zh)
CA (1) CA2734712A1 (zh)
RU (1) RU2011109007A (zh)
WO (1) WO2010109781A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067476A (zh) * 2012-01-30 2014-09-24 株式会社东芝 运转计划系统
CN113710612A (zh) * 2019-04-03 2021-11-26 引能仕株式会社 氢制造装置和氢制造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8577511B2 (en) * 2009-03-23 2013-11-05 Panasonic Corporation Energy supply system
JP5789162B2 (ja) * 2011-09-28 2015-10-07 京セラ株式会社 エネルギー管理システム、ガスメータ及びエネルギー管理装置
JP5917132B2 (ja) * 2011-12-22 2016-05-11 株式会社東芝 電気機器の運転制御システム及び方法
JP2013225427A (ja) * 2012-04-23 2013-10-31 Panasonic Corp 燃料電池システム
US9429924B2 (en) * 2012-06-26 2016-08-30 International Business Machines Corporation Controlling power generators and chillers
KR101407642B1 (ko) * 2012-11-08 2014-06-13 한국에너지기술연구원 양방향 열량계
JP6023981B2 (ja) * 2012-12-17 2016-11-09 パナソニックIpマネジメント株式会社 燃料電池システム
WO2014122930A1 (ja) * 2013-02-07 2014-08-14 日本電気株式会社 電力制御システム
JP6221337B2 (ja) * 2013-05-13 2017-11-01 富士電機株式会社 デマンド制御装置およびデマンド制御システム
JP6125961B2 (ja) * 2013-09-24 2017-05-10 トヨタ自動車株式会社 燃料電池車両及び燃料電池車両の制御方法
DK3186686T3 (en) * 2014-08-27 2018-06-25 Innosense Ag PROCEDURE FOR HEATING WATER IN AN ELECTRIC BOILER, SIMILAR DEVICE AND ELECTRICAL BOILER
JP6567302B2 (ja) * 2015-03-13 2019-08-28 株式会社東芝 エネルギー管理装置、エネルギー管理方法およびプログラム
CN105676824B (zh) * 2016-03-02 2018-05-01 山东大学 一种可再生能源冷热电联供能量优化调度系统与方法
DE102016211345A1 (de) * 2016-06-24 2017-12-28 Robert Bosch Gmbh Verfahren zum Ermitteln von Betriebsdaten einer Gasheizvorrichtung
JP7002375B2 (ja) * 2018-03-14 2022-01-20 大阪瓦斯株式会社 燃料電池システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020064328A (ko) * 2000-10-03 2002-08-07 마츠시타 덴끼 산교 가부시키가이샤 전력생성 제어시스템, 전력생성 제어방법, 프로그램 및 매체
JP2003061245A (ja) * 2001-08-09 2003-02-28 Osaka Gas Co Ltd コジェネレーション装置の運転計画方法
JP2005063903A (ja) * 2003-08-19 2005-03-10 Ebara Ballard Corp 燃料電池システム
JP2006127967A (ja) * 2004-10-29 2006-05-18 Ebara Ballard Corp コージェネレーションシステムおよびその運転方法
JP2007309598A (ja) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd コージェネレーションシステム
JP2007323843A (ja) * 2006-05-30 2007-12-13 Ebara Ballard Corp 燃料電池の運転方法及び燃料電池システム
CN101203825A (zh) * 2005-08-04 2008-06-18 达西系统股份有限公司 具有动态电压调节超级电容的存储控制器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634843A (en) * 1986-01-16 1987-01-06 General Electric Company Dual mode power control arrangement for cooking appliance
CN1125283C (zh) * 1999-02-16 2003-10-22 松下电器产业株式会社 空调机的运行控制方法
JP4626125B2 (ja) * 2003-03-14 2011-02-02 日産自動車株式会社 燃料電池システム
JP4084694B2 (ja) * 2003-04-22 2008-04-30 シャープ株式会社 洗濯機
GB2408112A (en) 2003-11-14 2005-05-18 Microgen Energy Ltd Domestic Heat and Power System
US7012223B2 (en) * 2003-11-25 2006-03-14 National Environmental Products, Ltd. Forced-air heater control system and method
CN1636860B (zh) * 2003-12-26 2011-04-20 松下电器产业株式会社 氢生成装置和使用该装置的燃料电池系统
US7101816B2 (en) * 2003-12-29 2006-09-05 Tokyo Electron Limited Methods for adaptive real time control of a thermal processing system
JP4180041B2 (ja) 2004-10-27 2008-11-12 大阪瓦斯株式会社 コージェネレーションシステム
JP4180042B2 (ja) 2004-10-27 2008-11-12 大阪瓦斯株式会社 コージェネレーションシステム
US7155318B2 (en) * 2004-11-05 2006-12-26 Hewlett-Packard Development Company, Lp. Air conditioning unit control to reduce moisture varying operations
US7444096B2 (en) * 2005-03-29 2008-10-28 Hewlett-Packard Development Company, L.P. Electronic device power supply
RU2296305C1 (ru) 2005-08-22 2007-03-27 Закрытое Акционерное Общество Российская Приборостроительная Корпорация "Системы Управления" Способ и интегрированная система индивидуального учета и регулирования потребления энергоресурсов в жилищно-коммунальном хозяйстве
WO2007081016A1 (ja) * 2006-01-13 2007-07-19 Matsushita Electric Industrial Co., Ltd. 水素生成装置、燃料電池システム及びそれらの運転方法
JP4914141B2 (ja) * 2006-08-03 2012-04-11 東邦瓦斯株式会社 コージェネレーションシステムの運転制御装置
CN101799661B (zh) * 2007-01-10 2012-12-05 株式会社日立制作所 锅炉设备的控制装置及锅炉设备的操作员训练用装置
JP2008249198A (ja) * 2007-03-29 2008-10-16 Nippon Oil Corp コジェネレーションシステム
WO2009104419A1 (ja) * 2008-02-20 2009-08-27 パナソニック株式会社 燃料電池システム
CN101919097B (zh) * 2008-11-20 2014-04-09 松下电器产业株式会社 燃料电池系统
EP2413059A1 (en) * 2009-03-23 2012-02-01 Panasonic Corporation Energy supply system
US8577511B2 (en) * 2009-03-23 2013-11-05 Panasonic Corporation Energy supply system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020064328A (ko) * 2000-10-03 2002-08-07 마츠시타 덴끼 산교 가부시키가이샤 전력생성 제어시스템, 전력생성 제어방법, 프로그램 및 매체
JP2003061245A (ja) * 2001-08-09 2003-02-28 Osaka Gas Co Ltd コジェネレーション装置の運転計画方法
JP2005063903A (ja) * 2003-08-19 2005-03-10 Ebara Ballard Corp 燃料電池システム
JP2006127967A (ja) * 2004-10-29 2006-05-18 Ebara Ballard Corp コージェネレーションシステムおよびその運転方法
CN101203825A (zh) * 2005-08-04 2008-06-18 达西系统股份有限公司 具有动态电压调节超级电容的存储控制器
JP2007309598A (ja) * 2006-05-19 2007-11-29 Matsushita Electric Ind Co Ltd コージェネレーションシステム
JP2007323843A (ja) * 2006-05-30 2007-12-13 Ebara Ballard Corp 燃料電池の運転方法及び燃料電池システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067476A (zh) * 2012-01-30 2014-09-24 株式会社东芝 运转计划系统
US9606561B2 (en) 2012-01-30 2017-03-28 Kabushiki Kaisha Toshiba Operation planning system
CN113710612A (zh) * 2019-04-03 2021-11-26 引能仕株式会社 氢制造装置和氢制造方法
CN113710612B (zh) * 2019-04-03 2024-04-02 引能仕株式会社 氢制造装置和氢制造方法

Also Published As

Publication number Publication date
RU2011109007A (ru) 2013-04-27
US20130304274A1 (en) 2013-11-14
CA2734712A1 (en) 2010-09-30
EP2413060A1 (en) 2012-02-01
US20110159389A1 (en) 2011-06-30
JP5314698B2 (ja) 2013-10-16
KR20110139184A (ko) 2011-12-28
US8577511B2 (en) 2013-11-05
JPWO2010109781A1 (ja) 2012-09-27
WO2010109781A1 (ja) 2010-09-30
US8862282B2 (en) 2014-10-14

Similar Documents

Publication Publication Date Title
CN102149983A (zh) 能量供给系统
CN102149984A (zh) 能量供给系统
US8224495B2 (en) Control of power generation system having thermal energy and thermodynamic engine components
JP5086968B2 (ja) 定検計画策定装置、方法、及びその制御プログラム
CN100495791C (zh) 燃料电池发电装置的控制装置及控制方法
CN103825304A (zh) 控制电力网的方法
JP2007129873A (ja) エネルギー需要管理装置および方法
JP5254500B1 (ja) 分散型発電システム及び分散型発電システムの制御方法
JP2015099417A (ja) エネルギーシステム最適化方法、エネルギーシステム最適化装置およびプログラム
JP5948217B2 (ja) 集合住宅における燃料電池の稼動制御方法および稼動制御システム
US20120070755A1 (en) Fuel cell power generation system
JP6678347B2 (ja) 電力管理システム
JP6513520B2 (ja) 燃料電池制御システム
US20210233185A1 (en) Energy management system and energy management method
JP6280736B2 (ja) エネルギー管理システム及びエネルギー管理方法
JP2017127129A (ja) 蓄電池制御方法
JP5494282B2 (ja) 火力発電機の運転計画立案装置
CN106921173B (zh) 包括电力负载的微型电网系统
JP2013186950A (ja) 燃料電池システム
JP2017017808A (ja) 電力管理装置及び管理サーバ
WO2012132198A1 (ja) 発電システム及び発電システムの運転方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110810