CN102113114B - 互补型逻辑门器件 - Google Patents

互补型逻辑门器件 Download PDF

Info

Publication number
CN102113114B
CN102113114B CN200980128161.6A CN200980128161A CN102113114B CN 102113114 B CN102113114 B CN 102113114B CN 200980128161 A CN200980128161 A CN 200980128161A CN 102113114 B CN102113114 B CN 102113114B
Authority
CN
China
Prior art keywords
fet
mentioned
grid
potential
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980128161.6A
Other languages
English (en)
Other versions
CN102113114A (zh
Inventor
尾辻泰一
佐野荣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Hokkaido University NUC
Original Assignee
Tohoku University NUC
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Hokkaido University NUC filed Critical Tohoku University NUC
Publication of CN102113114A publication Critical patent/CN102113114A/zh
Application granted granted Critical
Publication of CN102113114B publication Critical patent/CN102113114B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H01L21/8213
    • H01L21/8228
    • H01L27/11807
    • H01L27/1203
    • H01L29/78684
    • H01L27/092
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种用于打破半导体集成逻辑电路,尤其是以硅CMOS(互补型金属氧化膜半导体)逻辑电路为代表的互补型逻辑门器件构成的超高集成、超低功耗型集成逻辑电路的速度性能极限的互补型逻辑门器件。不使用N沟道FET和P沟道FET,只利用由石墨烯33形成电子运行层,具有双极特性,且门限值不同的第一FET 1和第二FET 2的两个FET。将第一FET 1的栅极11和第二FET 2的栅极21短路连接作为输入端,将第一FET 1的源极12设为低电位;将第一FET 1的漏极13和第二FET 2的漏极22连接作为输出端,将第二FET 2的漏极23设为高电位。

Description

互补型逻辑门器件
技术领域
本发明涉及一种互补型逻辑门器件,该互补型逻辑门器件用于打破半导体集成逻辑电路,尤其是以硅CMOS(互补型金属氧化膜半导体)逻辑电路为代表的互补型逻辑门器件构成的超高集成、超低功耗型集成逻辑电路的速度性能极限。
背景技术
由于硅CMOS逻辑门器件兼具超高集成性和超低功耗性能,所以成为当今半导体集成电路技术的核心。如图6所示的现有技术的逻辑门器件的结构例,CMOS逻辑门具有下述特征,如图7所示的工作电流、输出电压特性,通过将N沟道MOSFET(金属氧化物半导体场效应管)和P沟道MOSFET组合起来互补性工作,使输入输出逻辑电平在低电平及高电平时,工作电流不流动,仅在逻辑电平迁移期间,工作电流流动,由此得到超低功耗性能。通常,MOSFET利用所谓的沟道掺杂技术掺杂施主或受主杂质,形成N型半导体及P型半导体。
迄今为止,通过利用元件的微型化来缩短电子空穴在电极间移动的距离和时间,提高晶体管FET进而提高逻辑门器件的速度。但是,在FET(场效应管)的特征尺寸逼近引起量子力学隧道效应的10nm的今天,已经难以通过元件的微型化来实现高速化。为此,与当前所利用的以硅为代表的半导体材料相比,导入可高速传输电子空穴的载荷传输特性优异的材料,已逐渐成为提高速度的有效方法。
在这样的背景下,由于构成六环结构的碳的单层薄膜:石墨烯与现有的所有半导体相比,电子传输特性非常优异,所以作为可飞跃式提高微型化极限所面临的晶体管性能的速度性能的新型半导体材料而备受关注。石墨烯是价电子带的最高点在K点,与传导带的最低点相接。即,不存在带间隙。同时,由于在K点附近,传导带、价电子带均具有对称的线性分散特性,因此电子/空穴均不存在有效质量,所以,电子迁移率与以往的半导体材料相比提高了一个位数以上,而且空穴迁移率也是如此,具有以往半导体材料不能实现的优异的载荷传输特性(例如,参考非专利文献1、2、3)。
但是,由于下述2点,石墨烯不能直接置换MOSFET来实现与CMOS等效的逻辑工作。第1,杂质的掺杂极其困难,仅具有所谓的本征半导体特性,很难实现具有充分载荷浓度的N型或P型半导体特性(例如,参考非专利文献1、4、5)。第2,由于石墨烯不存在带间隙,而电子空穴同样存在,所以FET工作具有所谓的双极特性(单极双向特性),即:兼具在栅极偏置高于栅极门限值电位时,以电子模式工作的区域与在栅极偏置低于栅极门限值电位时,以空穴模式工作的区域。因此,即使栅极值偏置低于门限值,FET也不会成为截止状态(例如,参考非专利文献6、7、8、9)。基于上述理由,将石墨烯材料用作电子运行层(沟道)的FET至今不能实现由P沟道FET和N沟道FET所构成的CMOS逻辑门结构,因此,也不能构成与现在的可实现超低功耗、超大规模集成的CMOS互换的互补型门电路。
现有技术文献
【非专利文献】
【非专利文献1】K.S.Novoselov,et al.,“Two-dimensional gas ofmassless Dirac fermions in graphene”,Nature,10 November 2005,Vol.438,p.197-200
【非专利文献2】Mikhail I.Katsnelson,“Graphene:carbon in twodimensions”,Materials today,January 2007,Vol.10,No.1-2,p.20-27
【非专利文献3】安藤恒也,“石墨稀的特异物理”,表面科学,2008,Vol.29,No.5,p.296-303
【非专利文献4】M.I.Katsnelson,et al.,“Chiral tunnelling and theKlein paradox in graphene”,Nature Physics,September 2006,Vol.2,p.620-625
【非专利文献5】Yu-Ming Lin,et al.,“Chemical Doping ofGraphene Nanoribbon Field-Effect Devices”,66th Device ResearchConference Digest,Santa Barbara,CA,June 2008,p.27-28
【非专利文献6】Barbaros Ozyilmaz,et al.,“Electronic transport inlocally gated graphene nanoconstrictions”,Physical Review Letters,2007,Vol.98,Iss.206805
【非专利文献7】Max C.Lemme,et al.,“A Graphene Field-EffectDevice”,IEEE Electron Device Letters,April 2007,Vol.28,No.4,p.282-284
【非专利文献8】Walt A.de Heer,et al.,“Pionics:the EmergingScience and Technology of Graphene-based Nanoelectronics”,International Electron Device Meeting(IEDM)Technical Digest,Washington DC.,Dec.2007,p.199-202
【非专利文献9】Zhihong Chen and Phaedon Avouris,“Semiconducting Graphene Ribbon Transistor”,65th Device ResearchConference Digest,Notre Dome,June 2007,p.265-266
发明内容
(一)发明目的
本发明的目的在于,解决现有问题,提供一种用于打破半导体集成逻辑电路,尤其是以硅CMOS(互补型金属氧化膜半导体)逻辑电路为代表的互补型逻辑门器件构成的超高集成、超低功耗型集成逻辑电路的速度性能极限的互补型逻辑门器件。
(二)技术方案
为了实现上述目的,本发明所涉及的互补型逻辑门器件,其特征在于,利用石墨烯材料形成电子运行层,具有双极特性,且具有门限值不同的第一FET和第二FET,将上述第一FET的栅极和上述第二FET的栅极短路连接,作为输入端,将上述第一FET的源极设成低电位,将上述第一FET的漏极和上述第二FET的源极连接,作为输出端,将上述第二FET的漏极设成高电位。
本发明所涉及的互补型逻辑门器件优选不使用N沟道FET和P沟道FET,仅使用具有双极特性(单极双向特性)且门限值不同的2个FET,将2个FET的栅极短路连接作为输入端,将第一FET的源极设成低电位,将上述第一FET的漏极和第二FET的源极连接作为输出端,将上述第二FET的漏极设成高电位。另外,上述第一FET及上述第二FET优选为仅由以石墨烯为原材料的本征状态的半导体形成电子运行层。
本发明所涉及的互补型逻辑门器件优选为将上述第一FET的门限值设成第一电平,将上述第二FET的门限值设成第二电平,且第二电平高于上述第一电平,使输入信号的逻辑低电平及逻辑高电平分别与上述第一电平及上述第二电平一致。
本发明所涉及的互补型逻辑门器件,上述第一FET及上述第二FET分别是上述电子运行层被夹在一对绝缘层之间,在一绝缘层的表面形成第一栅极,在另一绝缘层的表面形成第二栅极,利用施加给上述第一栅极的电压,可控制上述的门限值电压,利用施加给上述第二栅极的电压来控制上述电子运行层内的电流。
本发明所涉及的互补型逻辑门器件中,上述第一FET及上述第二FET分别是把电子运行层夹在绝缘性薄层之间,在半导体绝缘层的反面形成第一栅极,在另一绝缘层的反面形成第二栅极,利用施加给上述第一栅极的电压,控制各个门限值电压,利用施加给上述第二栅极的电压,控制电子运行层内的电流。
(三)有益效果
本发明不使用N型、P型半导体,以及P沟道FET和N沟道FET,而是将石墨烯导入到FET的电子运行层(将其称为石墨烯沟道FET),有效利用石墨烯材料所具有的双极特性(以电子模式和空穴模式进行工作的单极双向特性),用门限值不同的2个石墨烯沟道FET,置换现有的CMOS逻辑门的P沟道FET和N沟道FET,从而实现与CMOS等效的互补逻辑工作。
附图说明
图1表示本发明的第一实施例互补型逻辑门器件的电路图。
图2表示图1所示的互补型逻辑门器件第一及第二FET电流电压特性的图。
图3表示通过对图1所示的互补型逻辑门器件的数值分析所得出的工作电流输出电压特性的图。
图4表示通过对图1所示的互补型逻辑门器件的数值分析所得出的输入输出电压特性的图。
图5表示本发明的第二实施例互补型逻辑门器件的第一及第二FET结构的截面图。
图6表示利用现有的硅CMOS构成的互补型逻辑门器件的电路图。
图7表示利用现有的硅CMOS构成的互补型逻辑门器件的工作电流输出电压特性的图。
图标说明:
1:第一FET       11:栅极
12:源极         13:漏极
2:第二FET       21:栅极
22:源极         23:漏极
31:半导体基板   32:绝缘膜
33:石墨稀       34:绝缘层
具体实施方式
下面结合附图就本发明互补型逻辑门器件的实施例进行说明。
图1表示本发明第一种实施例的互补型逻辑门器件的结构例。例如:预备像利用石墨烯形成电子运行层那样的、具有双极特性(单极双向特性),且门限值不同的第一FET1及第二FET2的2个FET。如果将第一FET1及第二FET2的门限值电压分别设成Vth1,Vth2,则第一FET1及第二FET2的漏极电流-漏极电压特性具有所谓的单极双向特性,即如图2所示的本发明的第一实施例的互补型逻辑门器件的FET电流电压特性,兼具分别以Vth1、Vth2为边界,在区域Vds>Vth1,2上为电子传输的FET特性,在区域Vds<Vth1,2上为空穴传输的FET特性。
如图1所示连接上述第一FET1及第二FET2,构成互补反相器逻辑门。即,将第一FET1的栅极11和第二FET2的栅极21短路作为输入端,将第一FET1的源极12设成低电位,将第一FET1的漏极13和第二FET2的源极22连接作为输出端,将第二FET2的漏极23设成高电位。在与一般CMOS逻辑门同样的电源条件下,即第一FET1的源极12接地,对第二FET2的漏极23施加电源电压Vdd的情况进行说明。在此情况下,分别将Vth1设定为第一FET1的源极电位0V,将Vth2设定为第二FET2的漏极电压Vdd。另外,第一FET1及第二FET2的沟道电阻在导通状态下理想为零,在截止状态下理想为无限大。
图3表示将Vdd=2.5V时的在漏极偏置为0V(=Vth1)至Vdd(=Vth2)的范围,第一FET1的电子模式的电流电压特性(从横轴0V至向右上方的扫帚状特性)和第二FET2的空穴模式的电流电压特性(从横轴Vdd至向左上方的扫帚状特性)勾画在一起。横轴读成第一FET1的漏/源极电位,即输出电位Vout。需要注意的是,由于该逻辑门的输入电位及输出电位同时满足图3所示的第一FET1及第二FET2的任何一个FET的电流电压特性,所以第一FET1及第二FET2的电流电压特性的交点则成为工作点。
当输入端施加电位为0V时,第一FET1由于其栅极电位与Vth1相等,所以为截止状态,第二FET2由于其栅极电位一直比Vth2(仅Vdd)低,所以为空穴模式的导通状态。因此,此时的工作点是图3中的1(圆圈数字),输出电位与处于导通状态的第二FET2的漏极电位Vdd相等。由于第一FET1为截止状态,所以漏极电流(即,逻辑门的工作电流)不流动。
将输入电位从0V逐渐升高,则第一FET1栅极电位从Vth1逐渐升高,所以呈电子模式的导通状态,漏电流变大。第二FET2栅极电位逐渐接近Vth2,所以空穴模式的导通状态渐渐转向截止状态,漏极电流变小。由于满足上述两个条件,第一FET1的漏电流变得与第二FET2的漏电流相等,所以如图3所示,经2(圆圈数字)~5(圆圈数字)所示的工作点,输出电位从Vdd逐渐降低。
输入电位达到Vdd时,由于第一FET1成为导通状态,第二FET2成为截止状态,所以工作点为图3中的6(圆圈数字),输出电位与第一FET1的源极电位相同为0V。此时,逻辑门的工作电流不流动。
图4表示假定图3所示的电流电压特性,对该逻辑门器件的输入输出电压特性进行数值分析的结果。在本器件中,如果将逻辑低电平输入赋予第一FET1的门限值Vth1(=0V),将逻辑高电平输入赋予第二FET2的门限值Vth2(=Vdd),则可得到逻辑反相输出,即可得到逻辑高电平输出Vth2(=Vdd),逻辑低电平输出Vth1(=0V),而且,可以实现与CMOS反相器逻辑门完全等效的互补逻辑工作,即逻辑电平为高/低电平时,工作电流不流动,仅在逻辑电平迁移期间,工作电流流动。
作为实现上述的逻辑门器件的方法,正如图5所示的本发明的第二实施例中的第一FET1及第二FET2的结构例那样,可形成具有单极双向特性,并且利用背栅电位可控制门限值的FET结构。在半绝缘性的半导体基板31上作为绝缘膜32例如生成SiC,在其上面的晶体管形成区域内作为电子运行层形成石墨烯33。石墨烯33的两端形成源极12、22,漏极13、23。在晶体管形成部的SiC的下面形成导电性的第一栅极11a、21a。这是一般被称作背栅的栅极。另一方面,在石墨烯33的上面介于绝缘层34形成第二栅极11b、21b。这是一般被称作顶栅的栅极。第一栅(背栅)极11a、21a用于控制门限值,第二栅(顶栅)极11b、21b作为普通的栅极用于控制漏电流。下面对其进行说明。
首先,由石墨烯33形成第一FET1及第二FET2的电子运行层,因石墨烯固有的特性可以实现单极双向特性。其次,通过施加给第一栅(背栅)极11a、21a的电位,可以调制电子运行层内的电子/空穴浓度,如果不在第二栅(顶栅)极11b、21b上施加仅抵消因向第一栅(背栅)极11a、21a施加电位而在电子运行层内诱发产生的电子或空穴电荷的电位,就不能实现电子运行层内的载荷中性条件。即,这意味着门限值仅偏移了施加在第一栅(背栅)11a、21a极的电位部分。因此,通过施加给第一栅(背栅)11a、21a的偏置电位,可以控制第一FET1及第二FET2的门限值。而且,石墨烯材料显示出电子/空穴完全对称的传输特性,在理想情况下有效质量消失,从而实现电子/空穴均与一般的硅半导体相比,具有2位数以上,与化合物半导体相比,具有1位数以上的高迁移率,这个已经从理论、实验两方面得到了验证。因此,在可以实现如现有的硅CMOS逻辑集成电路那样,超高集成和超低功耗的同时,同时还可实现大幅度提高现有的硅CMOS逻辑集成电路的工作速度的、极其优良的超高速性能。
另外,作为FET门限值的控制方法,除了上述之外,通过适用一般公知的绝缘膜厚度控制,选择工作函数不同的门金属材料等技术,当然也可以实现。
根据本发明,既可享有石墨烯材料所具有的超高速特性,又可同时实现现有的CMOS集成电路所具有的超低功耗、超高集成特性。本发明是解决当前半导体技术路线图面临的技术饱合的突破点的、极其有力的发明。

Claims (2)

1.一种互补型逻辑门器件,其特征在于:
具有利用石墨烯材料形成电子运行层,有双极特性,且门限值不同的第一FET和第二FET,将上述第一FET的栅极和上述第二FET的栅极短路连接作为输入端,将上述第一FET的源极设为低电位;将上述第一FET的漏极和上述第二FET的源极连接作为输出端,将上述第二FET的漏极设为高电位;
将上述第一FET门限值设为第一电平,将上述第二FET的门限值设为高于上述第一电平的第二电平,使输入信号的逻辑低电平及逻辑高电平分别与上述第一电平及上述第二电平一致。
2.如权利要求1所述的互补型逻辑门器件,其特征在于:
上述第一FET及上述第二FET,分别是上述电子运行层被夹在一对绝缘层之间,在一绝缘层的表面形成第一栅极,在另一绝缘层的表面形成第二栅极,利用施加给上述第一栅极的电压,可控制上述门限值电压,利用施加给上述第二栅极的电压来控制上述电子运行层内的电流。
CN200980128161.6A 2008-07-25 2009-07-24 互补型逻辑门器件 Expired - Fee Related CN102113114B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008192162 2008-07-25
JP2008-192162 2008-07-25
PCT/JP2009/063264 WO2010010944A1 (ja) 2008-07-25 2009-07-24 相補型論理ゲート装置

Publications (2)

Publication Number Publication Date
CN102113114A CN102113114A (zh) 2011-06-29
CN102113114B true CN102113114B (zh) 2013-08-28

Family

ID=41570404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980128161.6A Expired - Fee Related CN102113114B (zh) 2008-07-25 2009-07-24 互补型逻辑门器件

Country Status (6)

Country Link
US (1) US8227794B2 (zh)
EP (1) EP2320456A4 (zh)
JP (1) JP5424274B2 (zh)
KR (1) KR101549286B1 (zh)
CN (1) CN102113114B (zh)
WO (1) WO2010010944A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5513955B2 (ja) * 2010-03-31 2014-06-04 株式会社東芝 半導体装置およびその製造方法
WO2013014547A1 (en) 2011-07-22 2013-01-31 International Business Machines Corporation Tunnel field-effect transistor
KR101813181B1 (ko) * 2011-08-26 2017-12-29 삼성전자주식회사 튜너블 배리어를 포함하는 그래핀 전계효과 트랜지스터를 구비한 인버터 논리소자
KR101878745B1 (ko) 2011-11-02 2018-08-20 삼성전자주식회사 에어갭을 구비한 그래핀 트랜지스터, 그를 구비한 하이브리드 트랜지스터 및 그 제조방법
KR101532311B1 (ko) 2012-04-27 2015-06-29 삼성전자주식회사 그래핀을 이용한 광검출기와 그 제조방법
KR102059131B1 (ko) 2013-04-05 2019-12-24 삼성전자주식회사 그래핀 소자 및 이의 제조 방법
KR102210325B1 (ko) 2013-09-06 2021-02-01 삼성전자주식회사 Cmos 소자 및 그 제조 방법
KR102163725B1 (ko) * 2013-12-03 2020-10-08 삼성전자주식회사 반도체 소자 및 그 제조방법
US9431353B2 (en) * 2014-04-09 2016-08-30 Infineon Technologies Ag Method for manufacturing a digital circuit and digital circuit
KR102266615B1 (ko) 2014-11-17 2021-06-21 삼성전자주식회사 전계 효과 트랜지스터를 포함하는 반도체 소자 및 그 제조 방법
KR101849360B1 (ko) * 2016-01-29 2018-04-16 한화테크윈 주식회사 그래핀 기반 적층체 및 이의 제조방법
US11616053B2 (en) * 2018-09-05 2023-03-28 Tokyo Electron Limited Method to vertically route a logic cell incorporating stacked transistors in a three dimensional logic device
WO2020129134A1 (ja) * 2018-12-17 2020-06-25 シャープ株式会社 電界発光素子および表示デバイス
DE102019123555B4 (de) 2019-09-03 2022-12-01 Infineon Technologies Ag Physisch obfuskierter schaltkreis
CN111584484B (zh) * 2019-12-24 2023-09-29 苏州大学 一种低压、低功率互补电路、一种反相器和一种nand器件
CN113472343B (zh) * 2021-07-14 2024-07-23 山东大学 一种逻辑门的构建方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726588A (zh) * 2002-12-20 2006-01-25 前进应用科学股份有限公司 N沟道上拉元件和逻辑电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379050B2 (ja) 1993-11-15 2003-02-17 富士通株式会社 半導体装置
JP3420168B2 (ja) * 2000-04-07 2003-06-23 株式会社東芝 電界効果トランジスタ及びこれを用いた集積化論理回路
US20040144972A1 (en) * 2002-10-04 2004-07-29 Hongjie Dai Carbon nanotube circuits with high-kappa dielectrics
JP4501339B2 (ja) * 2002-11-29 2010-07-14 ソニー株式会社 pn接合素子の製造方法
JP4810650B2 (ja) * 2004-05-11 2011-11-09 国立大学法人名古屋大学 カーボンナノチューブfet
JP2008135415A (ja) 2005-03-17 2008-06-12 Univ Of Tokushima 電子装置及びその製造方法
JP2008135413A (ja) 2005-03-17 2008-06-12 Univ Of Tokushima 半導体装置及びその製造方法
JP2008135414A (ja) * 2005-03-17 2008-06-12 Univ Of Tokushima 電子装置及びその製造方法
JP2007123657A (ja) * 2005-10-31 2007-05-17 Nec Corp 半導体装置及びその製造方法
US7492015B2 (en) * 2005-11-10 2009-02-17 International Business Machines Corporation Complementary carbon nanotube triple gate technology
US7619257B2 (en) * 2006-02-16 2009-11-17 Alcatel-Lucent Usa Inc. Devices including graphene layers epitaxially grown on single crystal substrates
JP5167479B2 (ja) * 2006-06-13 2013-03-21 国立大学法人北海道大学 グラフェン集積回路の製造方法
JP4669957B2 (ja) * 2007-03-02 2011-04-13 日本電気株式会社 グラフェンを用いる半導体装置及びその製造方法
KR101443215B1 (ko) * 2007-06-13 2014-09-24 삼성전자주식회사 앰비폴라 물질을 이용한 전계효과 트랜지스터 및 논리회로

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726588A (zh) * 2002-12-20 2006-01-25 前进应用科学股份有限公司 N沟道上拉元件和逻辑电路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2004-179564A 2004.06.24
JP特开2005-322836A 2005.11.17
JP特开2007-335532A 2007.12.27

Also Published As

Publication number Publication date
JP5424274B2 (ja) 2014-02-26
US8227794B2 (en) 2012-07-24
EP2320456A4 (en) 2014-08-06
WO2010010944A1 (ja) 2010-01-28
KR20110050621A (ko) 2011-05-16
CN102113114A (zh) 2011-06-29
US20110156007A1 (en) 2011-06-30
KR101549286B1 (ko) 2015-09-01
EP2320456A1 (en) 2011-05-11
JPWO2010010944A1 (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
CN102113114B (zh) 互补型逻辑门器件
US8384156B2 (en) Complementary metal oxide semiconductor devices
Chau et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications
Wong Beyond the conventional transistor
CN101719501B (zh) 混合晶向反型模式全包围栅cmos场效应晶体管
Luo et al. Low on-resistance SOI dual-trench-gate MOSFET
CN101719499B (zh) 混合材料积累型圆柱体全包围栅cmos场效应晶体管
CN101710584B (zh) 混合材料积累型全包围栅cmos场效应晶体管
Colinge et al. Junctionless nanowire transistor: complementary metal-oxide-semiconductor without junctions
CN101719498B (zh) 混合材料反型模式圆柱体全包围栅cmos场效应晶体管
Robbins et al. Black phosphorus p-and n-MOSFETs with electrostatically doped contacts
Chen et al. Reconfigurable MoTe 2 field-effect transistors and its application in compact CMOS circuits
Wang et al. Ballistic transport in sub-10 nm monolayer planar GaN transistors for high-performance and low-power applications
JP3420168B2 (ja) 電界効果トランジスタ及びこれを用いた集積化論理回路
Gupta et al. A study of conventional and junctionless MOSFET using TCAD simulations
WO2019015529A1 (zh) 栅极抽取和注入场效应晶体管及其沟道载流子数量控制方法
JPWO2003063254A1 (ja) 半導体装置
Van et al. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage
CN103762229A (zh) 具有复合栅介质的横向功率器件
Chau et al. Emerging silicon and nonsilicon nanoelectronic devices: opportunities and challenges for future high-performance and low-power computational applications
Su et al. Current characteristics of double-top-gated graphene field effect transistor
Baksh et al. Design of GaAs based Junctionless field effect transistor and its performance evaluation
Lin et al. A compact single-walled carbon nanotube transistor integrated with a silicon MOSFET using a single common gate
US11631757B2 (en) Graphene spin transistor and graphene Rashba spin logic gate for all-electrical operation at room temperature
Vimala et al. MOSFET design and its optimization for low-power applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130828

Termination date: 20140724

EXPY Termination of patent right or utility model