CN102095267A - 空调装置 - Google Patents

空调装置 Download PDF

Info

Publication number
CN102095267A
CN102095267A CN2011100465448A CN201110046544A CN102095267A CN 102095267 A CN102095267 A CN 102095267A CN 2011100465448 A CN2011100465448 A CN 2011100465448A CN 201110046544 A CN201110046544 A CN 201110046544A CN 102095267 A CN102095267 A CN 102095267A
Authority
CN
China
Prior art keywords
cold
producing medium
heat exchanger
supercooling
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100465448A
Other languages
English (en)
Other versions
CN102095267B (zh
Inventor
濑户口隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of CN102095267A publication Critical patent/CN102095267A/zh
Application granted granted Critical
Publication of CN102095267B publication Critical patent/CN102095267B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Abstract

一种空调装置,利用超临界制冷剂,容易对制冷剂的循环量进行调整。制冷装置(1b)是一种利用在超临界区域内工作的制冷剂的制冷装置,包括:压缩机(21)、第一热交换器(23)、第一膨胀机构(V2)、过冷却热交换器(24)、第二膨胀机构(V3)、第二热交换器(31)、以及控制部(5)。压缩机压缩制冷剂。第一热交换器对被压缩机压缩后的高压的制冷剂进行冷却。第一膨胀机构使制冷剂减压至临界压力以下。过冷却热交换器对被第一膨胀机构减压后的制冷剂进行过冷却。第二膨胀机构使被过冷却热交换器冷却后的制冷剂减压至低压。第二热交换器对被第二膨胀机构减压后的制冷剂进行加热。控制部进行第一控制,对第一膨胀机构和第二膨胀机构进行调整,以在过冷却热交换器中积存液体制冷剂。

Description

空调装置
本发明专利申请是国际申请号为PCT/JP2007/071616,国际申请日为2007年11月7日,进入中国国家阶段的申请号为200780040942.0,名称为“空调装置”的发明专利申请的分案申请。
技术领域
本发明涉及一种利用在超临界域内工作的超临界制冷剂、且容易调整制冷能力的空调装置。
背景技术
以往,已知有一种使制冷剂循环来进行蒸汽压缩式制冷循环的制冷装置,其作为空调装置等得到了广泛利用。作为这种制冷装置,例如像专利文献1披露的那样,有一种将二氧化碳作为制冷剂并将制冷循环的高压设定成制冷剂的临界压力以上的、进行所谓的超临界制冷循环的制冷装置。
专利文献1:日本专利特开平10-54617号公报
然而,在使用二氧化碳制冷剂等超临界制冷剂的冷冻机中,由于高压侧的制冷剂处于超临界状态而不是液态,因此即便设置储液罐也很难积存制冷剂。因此,对制冷剂的蒸发量进行调整的功能几乎不起作用,能力控制和COP(性能系数)最佳控制等很难奏效。
发明内容
本发明的目的在于提供一种利用超临界制冷剂并容易对制冷剂的循环量进行调整的空调装置。
解决技术问题所采用的技术方案
第一发明的制冷装置是一种利用在超临界区域内工作的制冷剂的制冷装置,包括:压缩机、第一热交换器、第一膨胀机构、过冷却热交换器、第二膨胀机构、第二热交换器、以及控制部。压缩机对制冷剂进行压缩。第一热交换器对被压缩机压缩后的高压的制冷剂进行冷却。第一膨胀机构使制冷剂减压至临界压力以下。过冷却热交换器对被第一膨胀机构减压后的制冷剂进行过冷却。第二膨胀机构使被过冷却热交换器冷却后的制冷剂减压至低压。第二热交换器对被第二膨胀机构减压后的制冷剂进行加热。控制部进行第一控制,该第一控制是对第一膨胀机构和第二膨胀机构进行调整,以在过冷却热交换器内积存液体制冷剂的控制。
在本发明中,在作为气体冷却器起作用的第一热交换器的出口侧追加设置过冷却热交换器,并在它们之间追加设置使制冷剂减压至临界压力以下的第一膨胀机构。
因此,可控制第一膨胀机构的开度,并调整中间压力。因此,可在过冷却热交换器中积存液体制冷剂,并调整制冷剂量。由此,可将高压控制成最佳值,并进行高效的运行。
第二发明的制冷装置是在第一发明的制冷装置中,还包括过冷信息获取装置。过冷信息获取装置能获得可计算出过冷却热交换器中的制冷剂的过冷度的过冷信息。控制部基于过冷信息来计算过冷度。第一控制是基于过冷度来进行的。
在本发明中,还包括能获得过冷信息的过冷信息获取装置,控制部基于根据过冷信息计算出的过冷度来进行第一控制。因此,可对第一膨胀机构和第二膨胀机构进行控制,以使过冷却热交换器内的制冷剂处于过冷状态,可控制成使过冷却热交换器内的制冷剂成为液体制冷剂。因此,可对制冷剂量进行调整。
第三发明的制冷装置是在第二发明的制冷装置中,过冷信息获取装置包括入口温度传感器和出口温度传感器。在过冷却热交换器中,入口温度传感器可检测出制冷剂入口温度。出口温度传感器可检测出制冷剂出口温度。
在本发明中,用入口温度传感器来检测过冷却热交换器的入口温度,并用出口温度传感器来检测过冷却热交换器的出口温度。由于是气液两相状态的制冷剂,因此用入口温度传感器检测出的温度与饱和液温度相等。因此,可根据获得的饱和液温度和出口温度来计算过冷度。
第四发明的制冷装置是在第二发明的制冷装置中,过冷信息获取装置包括入口压力传感器和出口温度传感器。入口压力传感器可检测出过冷却热交换器的制冷剂入口压力。出口温度传感器可检测出过冷却热交换器的制冷剂出口温度。
在本发明中,用入口压力传感器来检测过冷却热交换器的入口压力,并用出口温度传感器来检测过冷却热交换器的出口温度。因此,可根据检测出的入口压力来计算饱和液温度,并根据饱和液温度和出口温度来计算过冷度。
第五发明的制冷装置是一种利用在超临界区域内工作的制冷剂的制冷装置,包括:压缩机、第一热交换器、第一膨胀机构、过冷却热交换器、第二膨胀机构、第二热交换器、切换机构、以及控制部。压缩机对制冷剂进行压缩。第一热交换器使制冷剂进行热交换。第一膨胀机构使制冷剂减压。过冷却热交换器使制冷剂过冷却。第二膨胀机构使制冷剂减压。第二热交换器使制冷剂进行热交换。切换机构可在第一状态与第二状态之间进行切换。第一状态是指在第二热交换器中蒸发的制冷剂流入压缩机、且被压缩机压缩后的制冷剂流入第一热交换器的状态。第二状态是指在第一热交换器中蒸发的制冷剂流入压缩机、且被压缩机压缩后的制冷剂流入第二热交换器的状态。控制部进行第一控制和第二控制。第一控制是指在切换机构处于第一状态时,用第一膨胀机构使高压的制冷剂减压成超临界压力以下的中间压力,并用第二膨胀机构使被过冷却热交换器过冷却的中间压力的制冷剂减压成低压,由此在过冷却热交换器中积存液体制冷剂的控制。第二控制是指在切换机构处于第二状态时,用第二膨胀机构使高压的制冷剂减压成超临界压力以下的中间压力,并用第一膨胀机构使被过冷却热交换器过冷却的中间压力的制冷剂减压成低压,由此在过冷却热交换器中积存液体制冷剂的控制。
在本发明中,包括切换机构,该切换机构可在使第一热交换器作为气体冷却器并使第二热交换器作为蒸发器起作用的第一状态与使第一热交换器作为蒸发器并使第二热交换器作为气体冷却器起作用的第二状态之间切换。在第一热交换器作为气体冷却器起作用时,在第一热交换器的制冷剂出口侧追加设置有过冷却热交换器,并在第一热交换器与过冷却热交换器之间追加设置有使制冷剂减压至临界压力以下的第一膨胀机构。另外,在第二热交换器作为气体冷却器起作用时,在第二热交换器的制冷剂出口侧连接有过冷却热交换器,在第二热交换器与过冷却热交换器之间追加设置有使制冷剂减压至临界压力以下的第二膨胀机构。
因此,例如在制冷运行时,可通过控制第一膨胀机构的开度来调整中间压力,在供暖运行时,可通过控制第三膨胀机构的开度来调整中间压力。因此,可在室外过冷却热交换器(例如制冷时)或室内过冷却热交换器(例如供暖时)中积存液体制冷剂,对制冷剂量进行调整,可将高压控制成最佳值。
第六发明的制冷装置是在第五发明的制冷装置中,还包括过冷信息获取装置。过冷信息获取装置能获得可计算出过冷却热交换器中的制冷剂的过冷度的过冷信息。控制部基于过冷信息来计算过冷度。第一控制或第二控制是基于过冷度来进行的。
在本发明中,还包括能获得过冷信息的过冷信息获取装置,控制部基于根据过冷信息计算出的过冷度来进行第一控制或第二控制。因此,可对第一膨胀机构和第二膨胀机构进行控制以使过冷却热交换器内的制冷剂处于过冷状态,可控制成使过冷却热交换器内的制冷剂成为液体制冷剂。因此,可对制冷剂量进行调整。
第七发明的制冷装置是一种利用在超临界区域内工作的制冷剂的制冷装置,包括:热源单元、利用单元、以及控制部。热源单元具有:压缩机、热源侧热交换器、第一膨胀机构、热源侧辅助热交换器、第二膨胀机构、以及切换机构。压缩机对制冷剂进行压缩。热源侧热交换器使制冷剂与第一流体进行热交换。第一膨胀机构可使制冷剂减压。热源侧辅助热交换器使制冷剂进行热交换。第二膨胀机构可使制冷剂减压。切换机构可在第一状态与第二状态之间进行切换。第一状态是指在利用侧热交换器中进行热交换后的制冷剂流入压缩机、且被压缩机压缩后的制冷剂流入热源侧热交换器的状态。第二状态是指在热源侧热交换器中进行热交换后的制冷剂流入压缩机、且被压缩机压缩后的制冷剂流入利用侧热交换器的状态。
利用单元具有:利用侧热交换器、第三膨胀机构、以及利用侧辅助热交换器。利用侧热交换器使制冷剂进行热交换。第三膨胀机构可使制冷剂减压。利用侧辅助热交换器使制冷剂进行热交换。控制部进行第一控制、第二控制和第三控制。第一控制是指在切换机构处于第一状态且第一流体的温度未达到制冷剂的临界温度时,使热源侧辅助热交换器作为过冷却器起作用,并对第一膨胀机构和第二膨胀机构进行调整,以使液体制冷剂积存在热源侧辅助热交换器中的控制。第二控制是指在切换机构处于第一状态且第一流体的温度为制冷剂的临界温度以上时,使利用侧辅助热交换器作为过冷却器起作用,并对第二膨胀机构和第三膨胀机构进行调整,以使液体制冷剂积存在利用侧辅助热交换器中的控制。第三控制是指在切换机构处于第二状态时,使利用侧辅助热交换器作为过冷却器起作用,并对第二膨胀机构和第三膨胀机构进行调整,以使液体制冷剂积存在利用侧辅助热交换器中的控制。
在本发明中,热源单元还具有可在第一状态与第二状态之间切换的切换机构(例如四通切换阀)。控制部在切换机构处于第一状态时(例如制冷运行时)对第一膨胀机构和第二膨胀机构进行控制,在切换机构处于第二状态时(例如供暖运行时)对第二膨胀机构和第三膨胀机构进行控制。例如当制冷运行中外部气体温度为制冷剂的临界温度以上时,控制部对第二膨胀机构和第三膨胀机构进行第三控制,以使液体制冷剂不积存在热源侧过冷却热交换器中,而是积存在利用侧过冷却热交换器中。
因此,控制部可在制冷运行时通过控制第一膨胀机构来调整中间压力,在供暖运行时通过控制第三膨胀机构来调整中间压力。控制部通过控制第二膨胀机构,可在制冷运行时对热源侧过冷却热交换器中的液体制冷剂的量进行调整,在供暖运行时对利用侧过冷却热交换器中的液体制冷剂的量进行调整。制冷剂一旦超过临界点便会成为超临界状态,很难对制冷剂量进行控制。因此,在第一流体的温度为临界温度以上时,在热源侧过冷却热交换器中不容易积存制冷剂。另外,由于利用侧热交换器作为蒸发器起作用,因此第二流体常常为临界温度以下。因此,通过控制部对第二膨胀机构和第三膨胀机构进行第三控制,可在利用侧过冷却热交换器中积存液体制冷剂。
第八发明的制冷装置是在第七发明的制冷装置中,热源单元还具有热源侧过冷信息获取装置。热源侧过冷信息获取装置可检测出热源侧辅助热交换器的第一过冷度。利用单元还具有利用侧过冷信息获取装置。利用侧过冷信息获取装置可检测出利用侧辅助热交换器的第二过冷度。第一控制是基于第一过冷度来进行的。第二控制和第三控制是基于第二过冷度来进行的。
在本发明中,为了检测过冷度,热源单元在热源侧过冷却热交换器的制冷剂的出入口还具有第二入口压力检测装置以及第二出口温度检测装置。利用这些检测装置,可获得中间压力即第二入口压力以及第二出口温度。
因此,控制部可基于这些第二入口压力和第二出口温度来计算过冷度。因此,控制部可基于过冷度在第一过冷却热交换器中积存液体制冷剂,对制冷剂量进行调整。
第九发明的制冷装置是在第八发明的制冷装置中,热源侧过冷信息获取装置包括:第一入口温度传感器、以及第一出口温度传感器。第一入口温度传感器可检测出热源侧辅助热交换器的制冷剂入口温度。第一出口温度传感器是可检测出热源侧辅助热交换器的制冷剂出口温度的第一出口温度传感器。
在本发明中,在热源侧辅助热交换器的制冷剂的出入口利用第一入口温度传感器和第一出口温度传感器作为热源侧过冷信息获取装置。因此,可利用第一入口温度传感器来检测制冷剂的饱和液温度,并可基于该饱和液温度和由第一出口温度传感器检测出的制冷剂出口温度来计算第一过冷度。
第十发明的制冷装置是在第八发明或第九发明的制冷装置中,利用侧过冷信息获取装置包括:第二入口温度传感器、以及第二出口温度传感器。第二入口温度传感器可检测出利用侧辅助热交换器的制冷剂入口温度。第二出口温度传感器可检测出利用侧辅助热交换器的制冷剂出口温度。
在本发明中,在利用侧辅助热交换器的制冷剂的出入口利用第二入口温度传感器和第二出口温度传感器作为利用侧过冷信息获取装置。因此,可利用第二入口温度传感器来检测制冷剂的饱和液温度,并可基于该饱和液温度和由第二出口温度传感器检测出的制冷剂出口温度来计算第二过冷度。
第十一发明的制冷装置是在第一发明至第十发明的任一个制冷装置中,制冷剂是二氧化碳制冷剂。
在本发明中,制冷剂利用的是二氧化碳制冷剂。与以往的制冷剂、例如碳氟化合物制冷剂等相比,二氧化碳制冷剂的地球气候变暖系数为1,远低于地球气候变暖系数为几百到一万左右的碳氟化合物制冷剂。
通过利用环境负载小的二氧化碳制冷剂,可抑制地球环境恶化。
发明效果
在第一发明的制冷装置中,可控制第一膨胀机构的开度,并调整中间压力。因此,可在过冷却热交换器中积存液体制冷剂,并对制冷剂量进行调整。由此,可将高压控制成最佳值,并进行高效的运行。
在第二发明的制冷装置中,可对第一膨胀机构和第二膨胀机构进行控制以使过冷却热交换器内的制冷剂处于过冷状态,并可控制成使过冷却热交换器内的制冷剂成为液体制冷剂。因此,可对制冷剂量进行调整。
在第三发明的制冷装置中,可根据获得的饱和液温度和出口温度来计算过冷度。
在第四发明的制冷装置中,可根据检测出的入口压力来计算饱和液温度,并根据饱和液温度和出口温度来计算过冷度。
在第五发明的制冷装置中,例如在制冷运行时,可通过控制第一膨胀机构的开度来调整中间压力,另外,在供暖运行时,可通过控制第三膨胀机构的开度来调整中间压力。因此,可在室外过冷却热交换器(例如制冷时)或室内过冷却热交换器(例如供暖时)中积存液体制冷剂,对制冷剂量进行调整,可将高压控制成最佳值。
在第六发明的制冷装置中,可对第一膨胀机构和第二膨胀机构进行控制以使过冷却热交换器内的制冷剂处于过冷状态,并可控制成使过冷却热交换器内的制冷剂成为液体制冷剂。因此,可对制冷剂量进行调整。
在第七发明的制冷装置中,控制部可在制冷运行时通过控制第一膨胀机构来调整中间压力,在供暖运行时通过控制第三膨胀机构来调整中间压力。控制部通过控制第二膨胀机构,可在制冷运行时对热源侧过冷却热交换器中的液体制冷剂的量进行调整,在供暖运行时对利用侧过冷却热交换器中的液体制冷剂的量进行调整。制冷剂一旦超过临界点便会成为超临界状态,很难对制冷剂量进行控制。因此,当第一流体的温度为临界温度以上时,在热源侧过冷却热交换器中不容易积存制冷剂。另外,由于利用侧热交换器作为蒸发器起作用,因此第二流体常常为临界温度以下。因此,通过控制部对第二膨胀机构和第三膨胀机构进行第三控制,可在利用侧过冷却热交换器中积存液体制冷剂。
在第八发明的制冷装置中,控制部可基于这些第二入口压力和第二出口温度来计算过冷度。因此,控制部可基于过冷度在第一过冷却热交换器中积存液体制冷剂,对制冷剂量进行调整。
在第九发明的制冷装置中,可利用第一入口温度传感器来检测制冷剂的饱和液温度,并可根据该饱和液温度和由第一出口温度传感器检测出的制冷剂出口温度来计算第一过冷度。
在第十发明的制冷装置中,可利用第二入口温度传感器来检测制冷剂的饱和液温度,并可根据该饱和液温度和由第二出口温度传感器检测出的制冷剂出口温度来计算第二过冷度。
在第十一发明的制冷装置中,通过利用环境负载小的二氧化碳制冷剂,可抑制地球环境恶化。
附图说明
图1是本发明的一实施方式所涉及的空调装置的制冷剂回路图。
图2是表示本发明的空调装置的利用二氧化碳制冷剂的两级膨胀制冷循环的p-h线图。
图3是变形例(1)所涉及的空调装置的制冷剂回路图。
图4是变形例(5)所涉及的制冷专用的空调装置的制冷剂回路图。
图5是变形例(5)所涉及的供暖专用的空调装置的制冷剂回路图。
图6是变形例(6)所涉及的空调装置的制冷剂回路图。
(符号说明)
1、1a~1d 空调装置
2、2a、2b 室外单元(热源单元)
3、3a~3c、3d 室内单元(利用单元)
21 压缩机
23 室外热交换器(第一热交换器、热源侧热交换器)
24 室外过冷却热交换器(过冷却热交换器、热源侧辅助热交换器)
31、31a~31c 室内热交换器(第二热交换器、利用侧热交换器)
32、32a~32c 室内过冷却热交换器(利用侧辅助热交换器)
T1 第一室外过冷却温度传感器(第一入口温度传感器)
T2 第二室外过冷却温度传感器(第一出口温度传感器)
T1 第一室内过冷却温度传感器(第二入口温度传感器、第二出口温度传感器)
T2 第二室内过冷却温度传感器(第二入口温度传感器、第二出口温度传感器)
V1 四通切换阀(切换机构)
V2 第一室外膨胀阀(第一膨胀机构)
V3 第二室外膨胀阀(第二膨胀机构)
V6、V6a~V6c 室内膨胀阀(第三膨胀机构)
具体实施方式
下面,参照附图,对本发明的空调装置的实施方式进行说明。
<空调装置的结构>
图1是本发明的一实施方式所涉及的空调装置1的概略结构图。空调装置1是通过进行两级膨胀制冷循环运行来对大楼等的室内进行制冷、供暖用的装置。在本发明中,制冷剂利用的是作为超临界制冷剂的二氧化碳制冷剂。空调装置1主要包括:一个作为热源单元的室外单元2、与其连接的作为利用单元的室内单元3、以及将室外单元2与室内单元3连接的制冷剂连通配管4。制冷剂连通配管4包括液体制冷剂连通配管41和气体制冷剂连通配管42。即,本实施方式的空调装置1的制冷剂回路10由室外单元2、室内单元3和制冷剂连通配管4连接而构成。
(1)室外单元
室外单元2设置在大楼等的室外,通过制冷剂连通配管4与室内单元3连接,构成制冷剂回路10。
下面,对室外单元2的结构进行说明。室外单元2主要具有构成制冷剂回路10的一部分的室外侧制冷剂回路20。该室外侧制冷剂回路20主要具有:压缩机21、四通切换阀V1、作为热源侧热交换器的室外热交换器23、作为膨胀机构的第一室外膨胀阀V2、作为热源侧的过冷却热交换器的室外过冷却热交换器24、作为膨胀机构的第二室外膨胀阀V3、液体侧截止阀V4、以及气体侧截止阀V5。
压缩机21是可改变运行容量的压缩机,在本实施方式中,是由电动机22驱动的容积式压缩机,电动机22的转速Rm受逆变器控制。在本实施方式中,压缩机21只有一台,但并不局限于此,也可根据室内单元的连接个数等,将两台以上的压缩机并列连接。
四通切换阀V1是为了使室外热交换器23作为气体冷却器和蒸发器起作用而设置的阀。四通切换阀V1与室外热交换器23、压缩机21的吸入侧、压缩机21的排出侧、气体制冷剂配管42连接。在使室外热交换器23作为气体冷却器起作用时,四通切换阀V1将压缩机21的排出侧与室外热交换器23连接,并将压缩机21的吸入侧与气体制冷剂连通配管42连接(图1中的实线的状态)。反之,在使室外热交换器23作为蒸发器起作用时,四通切换阀V1将室外热交换器23与压缩机21的吸入侧连接,并将压缩机21的排出侧与气体制冷剂连通配管42连接(图1中的虚线的状态)。
室外热交换器23是可作为气体冷却器和蒸发器起作用的热交换器,在本实施方式中,是将空气作为热源与制冷剂进行热交换的交叉翅片式的翅片管式热交换器。室外热交换器23的一侧与四通切换阀V1连接,另一侧通过第一室外膨胀阀V2与室外过冷却热交换器24连接。
第一室外膨胀阀V2是为了对在室外侧制冷剂回路20内流动的制冷剂的压力和流量等进行调节而连接在室外热交换器23与室外过冷却热交换器24之间的电动膨胀阀。该第一室外膨胀阀V2在制冷运行时作为两级膨胀制冷循环中的第一级膨胀机构起作用,在供暖运行时完全打开,使制冷剂直接流入室外热交换器23。第一室外膨胀阀V2在作为第一级膨胀机构起作用时,使高压Ph的制冷剂减压成临界压力Pk以下的中间压力Pm。但是,当制冷运行中外部气体温度为二氧化碳制冷剂的临界温度即31℃以上时,第一室外膨胀阀V2完全打开。
室外过冷却热交换器24是可作为过冷却器和蒸发器起作用的热交换器,在本实施方式中,是将空气作为热源与制冷剂进行热交换的交叉翅片式的翅片管式热交换器。室外过冷却热交换器24的一侧通过第一室外膨胀阀V2与室外热交换器23连接,另一侧通过第二室外膨胀阀V3与液体制冷剂连通配管41连接。但是,当制冷运行中外部气体温度为作为二氧化碳制冷剂的临界温度的31℃以上时,室外过冷却热交换器24与室外热交换器23同样作为气体冷却器起作用。
第二室外膨胀阀V3是为了对在室外侧制冷剂回路20内流动的制冷剂的压力和流量等进行调节而与室外过冷却热交换器24的液体侧连接的电动膨胀阀。该第一室外膨胀阀V2无论在制冷运行时还是在供暖运行时均作为两级膨胀制冷循环中的第二级膨胀机构起作用,使中间压力Pm的制冷剂减压成低压Pl。但是,当制冷运行中外部气体温度为作为二氧化碳制冷剂的临界温度的31℃以上时,第二室外膨胀阀V3作为两级膨胀制冷循环中的第一级膨胀机构起作用,使高压Ph的制冷剂减压成临界压力Pk以下的中间压力Pm。
另外,室外单元2具有作为送风风扇的室外风扇25,该室外风扇25用于将室外空气吸入单元内,使其在室外热交换器23中与制冷剂进行热交换,之后将其朝室外排出。该室外风扇25是可改变朝室外热交换器23供给的空气的风量的风扇,在本实施方式中,是受由直流风扇电动机形成的电动机26驱动的螺旋桨风扇等。
另外,在室外单元2上设置有各种传感器。在室外过冷却热交换器24与第一室外膨胀阀V2之间设置有检测制冷剂的温度的第一室外过冷却温度传感器T1。在室外过冷却热交换器24与第二室外膨胀阀V3之间设置有检测制冷剂的温度的第二室外过冷却温度传感器T2。在本实施方式中,第一室外过冷却温度传感器T1和第二室外过冷却温度传感器T2由热敏电阻形成。
另外,室外单元2具有室外侧控制部27,该室外侧控制部27对构成室外单元2的各部分的动作进行控制。室外侧控制部27具有为了控制室外单元2而设置的微型计算机、存储器、控制电动机22等的变换器电路等,可通过传输线51与后述的室内单元3的室内侧控制部35进行控制信号等的交换。即,由室外侧控制部27、室内侧控制部35以及将各控制部彼此连接的传输线51构成了进行空调装置1整体的运行控制的控制部5。
控制部5连接成可接收各种传感器(未图示)的检测信号,并连接成可根据这些检测信号等来控制各种设备21、25、33和阀V1、V2、V3、V6。
(2)室内单元
室内单元3通过埋入大楼等的室内的天花板中或从天花板上吊下等、或者挂在室内的壁面上等进行设置。室内单元3通过制冷剂连通配管4与室外单元2连接,构成制冷剂回路10的一部分。
下面,对室内单元3的结构进行说明。室内单元3主要具有构成制冷剂回路10的一部分的室内侧制冷剂回路30。该室内侧制冷剂回路30主要具有:作为利用侧热交换器的室内热交换器31、作为膨胀机构的室内膨胀阀V6、以及作为利用侧的过冷却器的室内过冷却热交换器32。
室内热交换器31是由传热管和许多翅片构成的交叉翅片式的翅片管式热交换器,是在制冷运行时作为制冷剂的蒸发器起作用而将室内空气冷却、在供暖运行时作为制冷剂的气体冷却器起作用而将室内空气加热的热交换器。
室内膨胀阀V6与第一室外膨胀阀V2一样,是为了对在室内侧制冷剂回路30内流动的制冷剂的压力和流量等进行调节而与室内热交换器31的液体侧连接的电动膨胀阀。该室内膨胀阀V6在制冷运行时完全打开,使制冷剂直接流入室内热交换器31,在供暖运行时作为两级膨胀制冷循环中的第一级膨胀机构起作用。该室内膨胀阀V6与第一室外膨胀阀V2一样,也在作为第一级膨胀机构起作用时使高压Ph的制冷剂减压成中间压力Pm。但是,当制冷运行中外部气体温度为作为二氧化碳制冷剂的临界温度的31℃以上时,室内膨胀阀V6作为两级膨胀制冷循环中的第二级膨胀机构起作用,使中间压力Pm的制冷剂减压成低压Pl。
室内过冷却热交换器32是可作为过冷却器和蒸发器起作用的热交换器,在本实施方式中,是将空气作为热源与制冷剂进行热交换的交叉翅片式的翅片管式热交换器。室内过冷却热交换器32的一侧通过室内膨胀阀V6与室内热交换器31连接,另一侧与液体制冷剂连通配管41连接。但是,当制冷运行中外部气体温度为作为二氧化碳制冷剂的临界温度的31℃以上时,室内过冷却热交换器32与室内热交换器31同样作为蒸发器起作用。
另外,室内单元3具有作为送风风扇的室内风扇33,该室内风扇33将室内空气吸入单元内,使其在室内热交换器31内与制冷剂进行热交换,之后将其作为供给空气朝室内供给。室内风扇33是可改变朝室内热交换器31的空气的风量的风扇,在本实施方式中,是受由直流风扇电动机形成的电动机34驱动的离心式风扇和多翼风扇等。
另外,在室内单元3上设置有各种传感器。在室内过冷却热交换器32与室内膨胀阀V6之间设置有检测制冷剂的温度的第一室内过冷却温度传感器T3。另外,在室内过冷却热交换器32的液体制冷剂连通配管41侧设置有检测制冷剂的温度的第二室内过冷却温度传感器T4。在本实施方式中,第一室内过冷却温度传感器T3和第二室内过冷却温度传感器T4由热敏电阻形成。
另外,室内单元3包括室内侧控制部35,该室内侧控制部35对构成室内单元3的各部分的动作进行控制。室内侧控制部35具有为了控制室内单元3而设置的微型计算机和存储器等,可与用于单独操作室内单元3的遥控器(未图示)彼此进行控制信号等的交换,可通过传输线51与室外单元2彼此进行控制信号等的交换等。
(3)制冷剂连通配管
制冷剂连通配管4是在大楼等设置场所设置空调装置1时进行现场施工的制冷剂配管,根据设置场所、室外单元2与室内单元3的组合等设置条件,使用具有各种长度和管径的制冷剂配管。
<空调装置的动作>
下面,对本实施方式的空调装置1的动作进行说明。
作为本实施方式的空调装置1的运行模式,根据室内单元3的制冷、供暖的负载,有进行室内单元3的制冷的制冷运行以及进行室内单元3的供暖的供暖运行。下面,对空调装置1在各运行模式下的动作进行说明。
(1)制冷运行
首先,参照图1和图2对制冷运行进行说明。制冷运行时,在室外单元2的室外侧制冷剂回路20中,四通切换阀V1被切换成图1的实线所示的状态,使室外热交换器23作为气体冷却器起作用,并使室内热交换器31作为蒸发器起作用。
在该制冷剂回路10的状态下启动压缩机21、室外风扇25和室内风扇33时,低压Pl的气体制冷剂被吸入压缩机21而压缩成高压Ph的气体制冷剂。被压缩成高压Ph的气体制冷剂流入室外热交换器23。此时,室外热交换器23作为气体冷却器起作用,朝由室外风扇25供给来的室外空气放出热量,将制冷剂冷却。接着,制冷剂被第一室外膨胀阀V2从高压Ph的状态减压至制冷剂的临界压力Pk以下的中间压力Pm的状态。被减压成中间压力Pm的制冷剂成为气液两相状态的制冷剂,流入室外过冷却热交换器24。在室外过冷却热交换器24中,制冷剂被进一步冷却成液体制冷剂,成为过冷却状态。在室外过冷却热交换器24中,液体制冷剂积存,室外过冷却热交换器24内的液体制冷剂的量受第二室外膨胀阀V3控制。对该积存在室外过冷却热交换器24内的液体制冷剂量进行的控制是基于制冷剂的过冷度来进行的,制冷剂的过冷度根据由第一室外过冷却温度传感器T1和第二室外过冷却温度传感器T2检测出的温度计算得出。此处,成为过冷却状态的制冷剂被第二室外膨胀阀V3减压至压缩机21的吸入压力附近,成为低压Pl的气液两相状态的制冷剂。
接着,低压Pl的制冷剂经由液体侧截止阀V4和液体制冷剂连通配管41被送往室内单元3。被送往该室内单元3的低压Pl的液体制冷剂在室内过冷却热交换器32和室内热交换器31中与室内空气进行热交换而蒸发,成为低压Pl的气体制冷剂。此时,室内膨胀阀V6处于完全打开状态。低压Pl的气体制冷剂经由气体制冷剂连通配管42被送往室外单元2,通过气体侧截止阀V5而再次被压缩机21吸入。
另外,在外部气体温度达到31℃(二氧化碳制冷剂的临界温度)以上时,进行与上述场合不同的控制。下面对该控制进行说明。将第一室外膨胀阀V2完全打开,使室外热交换器23和室外过冷却热交换器24作为气体冷却器起作用。在第二室外膨胀阀V3中,将被室外热交换器23和室外过冷却热交换器24冷却的高压Ph的制冷剂减压至临界压力Pk以下的中间压力Pm。被减压至中间压力Pm的制冷剂送往室内单元3,在室内过冷却热交换器32中被进一步冷却成液体制冷剂,成为过冷状态。在室内过冷却热交换器32中,液体制冷剂积存,室内过冷却热交换器32内的液体制冷剂的量受室内膨胀阀V6控制。对该积存在室内过冷却热交换器32内的液体制冷剂量进行的控制是基于制冷剂的过冷度来进行的,制冷剂的过冷度根据由第一室内过冷却温度传感器T3和第二室内过冷却温度传感器T4检测出的温度计算得出。成为过冷状态的制冷剂被室内膨胀阀V6减压至压缩机21的吸入压力附近,成为低压Pl的气液两相状态的制冷剂。接着,低压Pl的制冷剂在室内热交换器31中与室内空气进行热交换而蒸发,成为低压Pl的气体制冷剂。低压Pl的气体制冷剂经由气体制冷剂连通配管42被送往室外单元2,通过气体侧截止阀V5而再次被压缩机21吸入。
(2)供暖运行
供暖运行时,在室外单元2的室外侧制冷剂回路20中,四通切换阀V1被切换成图1的虚线所示的状态,使室外热交换器23作为蒸发器起作用,并使室内热交换器31作为气体冷却器起作用。
在该制冷剂回路10的状态下启动压缩机21、室外风扇25和室内风扇33时,低压Pl的气体制冷剂被压缩机21吸入而压缩成高压Ph的气体制冷剂,经由四通切换阀V1、气体侧截止阀V5被送往气体制冷剂连通配管42。
接着,被送往气体制冷剂连通配管42的高压Ph的气体制冷剂被送往室内单元3。被送往该室内单元3的高压Ph的气体制冷剂被送往室内热交换器31。该制冷剂在室内热交换器31中与室内空气进行热交换,被冷却成高压Ph的液体制冷剂,之后,在流过室内膨胀阀V6时,对应于室内膨胀阀V6的阀开度而被减压至中间压力Pm。
被减压成中间压力Pm的制冷剂成为气液两相状态的制冷剂,流入室内过冷却热交换器32。在室内过冷却热交换器32中,制冷剂被进一步冷却成液体制冷剂,成为过冷状态。在室内过冷却热交换器32中,液体制冷剂积存,室内过冷却热交换器32内的液体制冷剂的量受第二室外膨胀阀V3控制。对该积存在室内过冷却热交换器32内的液体制冷剂量进行的控制是基于制冷剂的过冷度来进行的,制冷剂的过冷度根据由第一室内过冷却温度传感器T3和第二室内过冷却温度传感器T4检测出的温度计算得出。
接着,成为过冷状态的制冷剂经由液体制冷剂连通配管41被送往室外单元2。该制冷剂经由液体侧截止阀V4,被第二室外膨胀阀V3减压至压缩机21的吸入压力附近,成为低压Pl的气液两相状态的制冷剂。被减压成低压Pl的制冷剂在室外过冷却热交换器24与室外热交换器23中与外部气体进行热交换而蒸发,成为低压Pl的气体制冷剂。此时,第一室外膨胀阀V2处于完全打开状态。低压Pl的气体制冷剂经由四通切换阀V1而再次被压缩机21吸入。
<两级膨胀制冷循环>
图2利用p-h线图(焓-熵图)来表示超临界条件下的制冷循环。在本发明中,制冷剂利用的是作为超临界制冷剂的二氧化碳制冷剂。另外,采用了使用两个膨胀机构来分两级进行膨胀的两级膨胀制冷循环。如上所述,该制冷剂回路10主要由压缩机21、室外热交换器23、第一室外膨胀阀V2、室外过冷却热交换器24、第二室外膨胀阀V3、室内过冷却热交换器32、室内膨胀阀V6以及室内热交换器31构成。图2中的A、B、C、D、E和F表示的是制冷运行时与图1中的各点对应的制冷剂的状态。图2中的带括号的A、B、E、F、G和H表示的是供暖运行时与图1中的各点对应的制冷剂的状态。下面参照图1和图2,对制冷运行时(外部气体温度为二氧化碳制冷剂的临界温度以下时)的两级膨胀循环进行说明。至于供暖运行,可通过将C替换成H、将D替换成G、将E替换成F、将F替换成E进行说明。
在该制冷剂回路10中,制冷剂被压缩机21压缩成高温高压Ph(A→B)。此时,作为制冷剂的二氧化碳从气体成为超临界状态。此处所谓的“超临界状态”,是指物质在临界点K以上的温度和压力下的状态,是同时拥有气体的扩散性和液体的溶解性的状态。所谓超临界状态,在图2中是指位于临界温度等温线Tk的右侧、且位于临界压力Pk以上的区域内的制冷剂的状态。在制冷剂(物质)成为超临界状态时,气相与液相的区别消失。此处所谓的“气相”,是指位于饱和蒸汽线Sv的右侧、且位于临界压力Pk以下的区域内的制冷剂的状态。所谓“液相”,是指位于饱和液线Sl的左侧、且位于临界温度等温线Tk的左侧的区域内的制冷剂的状态。被压缩机21压缩成高温高压的超临界状态的制冷剂被成为气体冷却器的室外热交换器23散热,成为低温高压的制冷剂(B→C)。此时,制冷剂处于超临界状态,因此,在室外热交换器23的内部伴随着显热变化(温度变化)进行工作。接着,在室外热交换器23中散热后的制冷剂因第一室外膨胀阀V2被开放而膨胀,压力从高压Ph朝中间压力Pm减压(C→D)。接着,被第一室外膨胀阀V2减压后的制冷剂在保持中间压力Pm的状态下流入室外过冷却热交换器24,被进一步冷却而成为过冷状态(D→E)。成为过冷状态的制冷剂在第二室外膨胀阀V3中进一步膨胀而成为低压Pl的制冷剂(E→F)。低压Pl的制冷剂流过液体制冷剂连通配管41,在室内热交换器31和室内过冷却热交换器32中吸收热量并蒸发,然后流过气体制冷剂连通配管42并返回压缩机21(F→A)。
<特征>
(1)在本发明中,室外单元2还具有可在制冷运行与供暖运行之间切换的四通切换阀V1。控制部5在四通切换阀V1为图1中的实线的状态(制冷运行)时对第一室外膨胀阀V2和第二室外膨胀阀V3进行控制,在四通切换阀V1为图1中的虚线的状态(供暖运行)时对第二室外膨胀阀V3和室内膨胀阀V6进行控制。在制冷运行中,在外部气体温度为制冷剂的临界温度以上时,控制部5对第二室外膨胀阀V3和室内膨胀阀V6进行控制,以使液体制冷剂不积存在室外过冷却热交换器24内,而是积存在室内过冷却热交换器32内。
因此,控制部5可在制冷运行时控制第一室外膨胀阀V2来调整中间压力,并在供暖运行时控制室内膨胀阀V6来调整中间压力。另外,控制部5通过控制第二室外膨胀阀V3,可在制冷运行时对室外过冷却热交换器24的液体制冷剂的量进行调整,并在供暖运行时对室内过冷却热交换器32的液体制冷剂的量进行调整。制冷剂一旦超过临界点便会成为超临界状态,很难对制冷剂量进行控制。因此,当外部气体温度为作为二氧化碳制冷剂的临界温度的31℃以上时,在室外过冷却热交换器24中不容易积存制冷剂。另外,由于室内热交换器31作为蒸发器起作用,因此室内空气常常为作为二氧化碳制冷剂的临界温度的31℃以下。因此,通过控制部5对第二室外膨胀阀V3和室内膨胀阀V6进行控制,可在室内过冷却热交换器32内积存液体制冷剂。
(2)在本发明中,为了检测过冷度,室外单元2在室外过冷却热交换器24的制冷剂的出入口具有第一室外过冷却温度传感器T1和第二室外过冷却温度传感器T2。利用这些温度传感器T1、T2,当制冷运行中外部气体温度未达到31℃时,可获得中间压力Pm和室外过冷却热交换器24的出口温度。另外,为了检测过冷度,室内单元3在室内过冷却热交换器32的制冷剂的出入口具有第一室内过冷却温度传感器T3和第二室内过冷却温度传感器T4。利用这些温度传感器T3、T4,当制冷运行中外部气体温度为31℃以上时以及供暖运行时,可获得中间压力Pm和室内过冷却热交换器32的出口温度。
因此,控制部5可根据这些中间压力Pm以及室外过冷却热交换器24或室内过冷却热交换器32的出口温度来计算过冷度。因此,控制部5可基于过冷度在作为过冷却热交换器起作用的室外过冷却热交换器24或室内过冷却热交换器32内积存液体制冷剂,对制冷剂量进行调整。
(3)在本发明中,制冷剂利用的是二氧化碳制冷剂。与以往的制冷剂、例如碳氟化合物制冷剂等相比,二氧化碳制冷剂的地球气候变暖系数为1,远低于地球气候变暖系数为几百到一万左右的碳氟化合物制冷剂。
通过利用环境负载小的二氧化碳制冷剂,可抑制地球环境恶化。
<变形例>
(1)在本实施方式中,是在一个室外单元2上连接有一个室内单元3的、所谓的成对式空调装置1,但并不局限于此,也可以是在一个室外单元上连接有多个室内单元的多联式空调装置1a。例如像图3那样,在一个室外单元2上并列连接有三个室内单元3a、3b、3c。图3的室内单元3a、3b、3c的结构,是在对本实施方式中说明的室内单元3的各部分标注的号码上,与室内单元3a、3b、3c对应地在号码的末尾标注a、b和c。例如,室内单元3的室内风扇33与室内单元3a、3b、3c的室内风扇33a、33b、33c对应,室内单元3和室内单元3a、3b、3c是相同的结构。另外,在图3中连接有三个室内单元3a~3c,但并不局限于三个,也可以是两个、四个、五个等。
由于设置有多个室内单元3a~3c,因此可针对运行负载不同的部位,根据各负载进行运行。因此,在运行负载因场所而有差异时,与一个室内单元时相比,可高效地进行运行。
(2)在本实施方式中,作为膨胀机构,在室外单元2内设置有第一室外膨胀阀V2,在室内单元3内设置有室内膨胀阀V6,但并不局限于这些膨胀阀,例如也可以是膨胀机等。
(3)在本实施方式中,为了计算过冷度,在室外过冷却热交换器24和室内过冷却热交换器32的入口和出口分别设置有温度传感器,但在制冷剂的入口侧也可设置压力传感器,而不局限于温度传感器。即,在制冷运行时作为过冷却器起作用的室外过冷却热交换器24的靠近制冷剂流动方向入口侧的温度传感器即第一室外过冷却温度传感器T1、以及在供暖运行时作为过冷却器起作用的室内过冷却热交换器32的靠近制冷剂流动方向入口侧的温度传感器即第一室内过冷却温度传感器T3也可以是压力传感器。但是,当制冷运行时的外部气体温度达到31℃以上时,是室内过冷却热交换器32而不是室外过冷却热交换器24作为过冷却器起作用,因此,此时靠近制冷剂流动方向出口侧的第一室内过冷却温度传感器T3必须是温度传感器。因此,在本实施方式的情况下,仅可将第一室外过冷却温度传感器T1变更为压力传感器。
另外,也可在各过冷却热交换器24、32的制冷剂的流动方向入口侧追加设置压力传感器并与温度传感器一起使用。
(4)在本实施方式中,是利用室外空气作为热源,但并不局限于此,也可利用水等作为热源。
(5)在本实施方式中,是在室外单元2内设置有四通切换阀V1、并可进行制冷运行和供暖运行的空调装置1,但并不局限于此,也可像图4或图5那样,是没有四通切换阀的制冷专用的空调装置1b或者供暖专用的空调装置1c。
在图4的制冷专用的空调装置1b中,对第一室外膨胀阀V2和第二室外膨胀阀V3进行控制,以在室外过冷却热交换器24中积存液体制冷剂。另外,与制冷专用的空调装置1b一样,在图5的供暖专用的空调装置1c中,对第一室外膨胀阀V2和第二室外膨胀阀V3进行控制,以在室外过冷却热交换器24中积存液体制冷剂。
(6)在本实施方式中,在室外单元2内设置有室外过冷却热交换器24,并在室内单元3内设置有室内过冷却热交换器32,在制冷剂回路10内具有两个作为过冷却热交换器起作用的设备,但并不局限于此,也可以像图6的空调装置1d那样,作为过冷却热交换器起作用的设备是一个。
在图6的空调装置1d中,室外过冷却热交换器24仅设置在室外单元2上,且夹着室外过冷却热交换器24设置第一室外膨胀阀V2和第二室外膨胀阀V3以。在该空调装置1d中,无论是在制冷运行时还是在供暖运行时,均对第一室外膨胀阀V2和第二室外膨胀阀V3进行控制,以在室外过冷却热交换器24中积存液体制冷剂。
工业上的可利用性
本发明的空调装置通过对制冷剂的循环量进行调整,可将高压控制成最佳值,适用于利用在超临界域内工作的超临界制冷剂、容易对超临界制冷剂的循环量进行调整的空调装置等。

Claims (5)

1.一种制冷装置(1),该制冷装置(1)利用在超临界区域内工作的制冷剂,其特征在于,包括:热源单元(2)、利用单元(3)、以及控制部(5),
所述热源单元(2)具有:压缩所述制冷剂的压缩机(21)、使所述制冷剂与第一流体进行热交换的热源侧热交换器(23)、可使所述制冷剂减压的第一膨胀机构(V2)、使所述制冷剂进行热交换的热源侧辅助热交换器(24)、可使所述制冷剂减压的第二膨胀机构(V3)、以及切换机构(V1),该切换机构(V1)可在第一状态与第二状态之间进行切换,
所述利用单元(3)具有:使所述制冷剂进行热交换的利用侧热交换器(31)、可使所述制冷剂减压的第三膨胀机构(V6)、以及使所述制冷剂进行热交换的利用侧辅助热交换器(32),
所述第一状态是指在所述利用侧热交换器中进行热交换后的所述制冷剂流入所述压缩机、且被所述压缩机压缩后的所述制冷剂流入所述热源侧热交换器的状态,所述第二状态是指在所述热源侧热交换器中进行热交换后的所述制冷剂流入所述压缩机、且被所述压缩机压缩后的所述制冷剂流入所述利用侧热交换器的状态,
所述控制部(5)进行第一控制、第二控制和第三控制,所述第一控制是指在所述切换机构处于所述第一状态且所述第一流体的温度未达到所述制冷剂的临界温度时,使所述热源侧辅助热交换器作为过冷却器起作用,并对所述第一膨胀机构和所述第二膨胀机构进行调整,以使液体状态的所述制冷剂积存在所述热源侧辅助热交换器中的控制;所述第二控制是指在所述切换机构处于所述第一状态且所述第一流体的温度为所述制冷剂的临界温度以上时,使所述利用侧辅助热交换器作为过冷却器起作用,并对所述第二膨胀机构和所述第三膨胀机构进行调整,以使液体状态的所述制冷剂积存在所述利用侧辅助热交换器中的控制;所述第三控制是指在所述切换机构处于所述第二状态时,使所述利用侧辅助热交换器作为过冷却器起作用,并对所述第二膨胀机构和所述第三膨胀机构进行调整,以使液体状态的所述制冷剂积存在所述利用侧辅助热交换器中的控制。
2.如权利要求1所述的制冷装置(1),其特征在于,
所述热源单元还具有热源侧过冷信息获取装置,该热源侧过冷信息获取装置可检测出所述热源侧辅助热交换器的第一过冷度,
所述利用单元还具有利用侧过冷信息获取装置,该利用侧过冷信息获取装置可检测出所述利用侧辅助热交换器的第二过冷度,
基于所述第一过冷度来进行所述第一控制,
基于所述第二过冷度来进行所述第二控制和所述第三控制。
3.如权利要求2所述的制冷装置(1),其特征在于,所述热源侧过冷信息获取装置由在所述热源侧辅助热交换器中可检测出制冷剂入口温度的第一入口温度传感器(T1)、以及可检测出所述热源侧辅助热交换器的制冷剂出口温度的第一出口温度传感器(T2)构成。
4.如权利要求2或3所述的制冷装置(1),其特征在于,所述利用侧过冷信息获取装置由在所述利用侧辅助热交换器中可检测出制冷剂入口温度的第二入口温度传感器、以及可检测出所述利用侧辅助热交换器的制冷剂出口温度的第二出口温度传感器构成。
5.如权利要求1至3中任一项所述的制冷装置(1),其特征在于,所述制冷剂是二氧化碳制冷剂。
CN2011100465448A 2006-11-13 2007-11-07 空调装置 Expired - Fee Related CN102095267B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006306746A JP5055965B2 (ja) 2006-11-13 2006-11-13 空気調和装置
JP2006-306746 2006-11-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800409420A Division CN101535737A (zh) 2006-11-13 2007-11-07 空调装置

Publications (2)

Publication Number Publication Date
CN102095267A true CN102095267A (zh) 2011-06-15
CN102095267B CN102095267B (zh) 2012-09-12

Family

ID=39401546

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011100465448A Expired - Fee Related CN102095267B (zh) 2006-11-13 2007-11-07 空调装置
CNA2007800409420A Pending CN101535737A (zh) 2006-11-13 2007-11-07 空调装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2007800409420A Pending CN101535737A (zh) 2006-11-13 2007-11-07 空调装置

Country Status (7)

Country Link
US (1) US20090301117A1 (zh)
EP (1) EP2085719A1 (zh)
JP (1) JP5055965B2 (zh)
KR (1) KR101101946B1 (zh)
CN (2) CN102095267B (zh)
AU (1) AU2007320604B9 (zh)
WO (1) WO2008059737A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570739B2 (ja) * 2009-02-25 2014-08-13 三菱重工業株式会社 マルチ型空気調和装置およびその室外機、その制御方法
JP5523817B2 (ja) * 2009-12-25 2014-06-18 三洋電機株式会社 冷凍装置
KR20110092147A (ko) * 2010-02-08 2011-08-17 삼성전자주식회사 공기조화기 및 그 제어방법
JP5724476B2 (ja) * 2011-03-10 2015-05-27 株式会社富士通ゼネラル 冷凍サイクル装置
CN102840720A (zh) * 2011-06-21 2012-12-26 叶必武 车用空调压力调整装置
JP6412702B2 (ja) * 2014-03-06 2018-10-24 東プレ株式会社 冷凍装置及び冷凍装置の運転方法
JP6657613B2 (ja) * 2015-06-18 2020-03-04 ダイキン工業株式会社 空気調和装置
CN105627470B (zh) * 2015-12-30 2018-07-03 同济大学 一种基于过冷再热的空调机组
CN108195007A (zh) * 2018-01-15 2018-06-22 杭州微光电子股份有限公司 温湿度控制和热量利用的空调系统
CN108870689B (zh) * 2018-07-17 2020-01-07 珠海格力电器股份有限公司 空调机组的压力控制方法及系统
US20220018571A1 (en) * 2018-12-07 2022-01-20 Daikin Industries, Ltd. Air-conditioner
US11137156B2 (en) * 2019-05-31 2021-10-05 Trane International Inc Refrigerant charge management with subcooling control
JP7343764B2 (ja) * 2019-09-30 2023-09-13 ダイキン工業株式会社 空気調和機
CN112944708A (zh) * 2021-02-05 2021-06-11 湖南汽车工程职业学院 一种车载空调二氧化碳制冷剂测定方法及捕获系统
JPWO2023105607A1 (zh) * 2021-12-07 2023-06-15

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334459A (ja) * 1986-07-29 1988-02-15 株式会社東芝 空気調和機
JP2997487B2 (ja) * 1989-12-13 2000-01-11 株式会社日立製作所 冷凍装置及び冷凍装置における冷媒量表示方法
JPH06103130B2 (ja) * 1990-03-30 1994-12-14 株式会社東芝 空気調和機
JP2909190B2 (ja) * 1990-11-02 1999-06-23 株式会社東芝 空気調和機
US5109677A (en) * 1991-02-21 1992-05-05 Gary Phillippe Supplemental heat exchanger system for heat pump
US5431026A (en) * 1994-03-03 1995-07-11 General Electric Company Refrigerant flow rate control based on liquid level in dual evaporator two-stage refrigeration cycles
CN1135341C (zh) * 1994-05-30 2004-01-21 三菱电机株式会社 制冷循环系统
EP0854329B1 (en) * 1994-07-21 2002-06-05 Mitsubishi Denki Kabushiki Kaisha Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
JP3341500B2 (ja) * 1994-11-25 2002-11-05 株式会社日立製作所 冷凍装置およびその運転方法
JP3655681B2 (ja) * 1995-06-23 2005-06-02 三菱電機株式会社 冷媒循環システム
JP3331102B2 (ja) * 1995-08-16 2002-10-07 株式会社日立製作所 冷凍サイクルの容量制御装置
JP3582185B2 (ja) * 1995-10-24 2004-10-27 ダイキン工業株式会社 熱搬送装置
WO1997015789A1 (en) * 1995-10-24 1997-05-01 Daikin Industries, Ltd. Air conditioner
EP0837291B1 (en) * 1996-08-22 2005-01-12 Denso Corporation Vapor compression type refrigerating system
JPH10197171A (ja) * 1996-12-27 1998-07-31 Daikin Ind Ltd 冷凍装置及びその製造方法
JPH11211250A (ja) * 1998-01-21 1999-08-06 Denso Corp 超臨界冷凍サイクル
US6073454A (en) * 1998-07-10 2000-06-13 Spauschus Associates, Inc. Reduced pressure carbon dioxide-based refrigeration system
JP4045654B2 (ja) * 1998-07-15 2008-02-13 株式会社日本自動車部品総合研究所 超臨界冷凍サイクル
JP4202505B2 (ja) * 1999-01-11 2008-12-24 サンデン株式会社 蒸気圧縮式冷凍サイクル
US6510698B2 (en) * 1999-05-20 2003-01-28 Mitsubishi Denki Kabushiki Kaisha Refrigeration system, and method of updating and operating the same
JP2001004235A (ja) * 1999-06-22 2001-01-12 Sanden Corp 蒸気圧縮式冷凍サイクル
US6343482B1 (en) * 2000-10-31 2002-02-05 Takeshi Endo Heat pump type conditioner and exterior unit
JP2002168536A (ja) * 2000-11-29 2002-06-14 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2003028542A (ja) * 2001-07-16 2003-01-29 Daikin Ind Ltd 冷凍装置
ES2443644T3 (es) * 2002-03-18 2014-02-20 Daikin Industries, Ltd. Sistema de aire acondicionado
EP1498668B1 (en) * 2002-03-29 2013-11-06 Daikin Industries, Ltd. Heat source unit of air conditioner and air conditioner
JP3714304B2 (ja) * 2002-07-10 2005-11-09 ダイキン工業株式会社 冷凍装置
WO2004013550A1 (ja) * 2002-08-02 2004-02-12 Daikin Industries, Ltd. 冷凍装置
WO2004013549A1 (ja) * 2002-08-02 2004-02-12 Daikin Industries, Ltd. 冷凍装置
KR100447204B1 (ko) * 2002-08-22 2004-09-04 엘지전자 주식회사 냉난방 동시형 멀티공기조화기 및 그 제어방법
JP2004100979A (ja) * 2002-09-05 2004-04-02 Matsushita Electric Ind Co Ltd ヒートポンプ装置
US7493775B2 (en) * 2002-10-30 2009-02-24 Mitsubishi Denki Kabushiki Kaisha Air conditioner
JP4069733B2 (ja) * 2002-11-29 2008-04-02 三菱電機株式会社 空気調和機
JP4208620B2 (ja) * 2003-03-27 2009-01-14 三洋電機株式会社 冷媒サイクル装置
KR100496376B1 (ko) * 2003-03-31 2005-06-22 한명범 냉동사이클용 에너지효율 개선장치
JP3858015B2 (ja) * 2003-09-30 2006-12-13 三洋電機株式会社 冷媒回路及びヒートポンプ給湯機
US7096679B2 (en) * 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
JP4273493B2 (ja) * 2004-02-16 2009-06-03 三菱電機株式会社 冷凍空調装置
JP4269323B2 (ja) * 2004-03-29 2009-05-27 三菱電機株式会社 ヒートポンプ給湯機
BRPI0511969B1 (pt) * 2004-06-11 2018-11-27 Daikin Ind Ltd condicionador de ar
JP3781046B2 (ja) * 2004-07-01 2006-05-31 ダイキン工業株式会社 空気調和装置
NL1026728C2 (nl) * 2004-07-26 2006-01-31 Antonie Bonte Verbetering van koelsystemen.
US7159408B2 (en) * 2004-07-28 2007-01-09 Carrier Corporation Charge loss detection and prognostics for multi-modular split systems
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
JP2006283989A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 冷暖房システム
DE602007001038D1 (de) * 2006-01-31 2009-06-18 Sanyo Electric Co Klimaanlage
KR101199382B1 (ko) * 2006-02-17 2012-11-09 엘지전자 주식회사 공기 조화기 및 그 제어방법
US20070251256A1 (en) * 2006-03-20 2007-11-01 Pham Hung M Flash tank design and control for heat pumps

Also Published As

Publication number Publication date
AU2007320604B9 (en) 2010-11-25
JP2008121986A (ja) 2008-05-29
AU2007320604B2 (en) 2010-07-22
KR101101946B1 (ko) 2012-01-02
US20090301117A1 (en) 2009-12-10
JP5055965B2 (ja) 2012-10-24
KR20090082235A (ko) 2009-07-29
CN101535737A (zh) 2009-09-16
AU2007320604A1 (en) 2008-05-22
EP2085719A1 (en) 2009-08-05
WO2008059737A1 (fr) 2008-05-22
CN102095267B (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
CN102095267B (zh) 空调装置
US11175076B2 (en) Free cooling refrigeration system
CN101535735B (zh) 空调装置
CN100434840C (zh) 空调装置
CN102844630B (zh) 空调热水供给复合系统
JP4486133B2 (ja) 通信装置用冷房装置及びその冷房制御方法
JP5373964B2 (ja) 空調給湯システム
CN101512249B (zh) 制冷装置
CN103229006B (zh) 供热水空调复合装置
CN104024764B (zh) 制冷装置
CN101512245B (zh) 制冷装置
CN101821560A (zh) 空气调节装置
EP2489965A1 (en) Air-conditioning hot-water supply system
CN102762932B (zh) 空调装置
CN102753910B (zh) 冷冻循环装置
CN101858667B (zh) 制冷装置
CN103154622B (zh) 热介质转换机以及搭载该热介质转换机的空调装置
CN103968589B (zh) 冷冻循环装置
CN106032949A (zh) 制冷装置
JPS6219659A (ja) ヒ−トポンプ式冷暖房装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120912

Termination date: 20131107