CN102089891A - 太阳能电池及其制造方法 - Google Patents

太阳能电池及其制造方法 Download PDF

Info

Publication number
CN102089891A
CN102089891A CN2009801252596A CN200980125259A CN102089891A CN 102089891 A CN102089891 A CN 102089891A CN 2009801252596 A CN2009801252596 A CN 2009801252596A CN 200980125259 A CN200980125259 A CN 200980125259A CN 102089891 A CN102089891 A CN 102089891A
Authority
CN
China
Prior art keywords
semiconductor layer
type
thickness
solar cell
noncrystal semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801252596A
Other languages
English (en)
Other versions
CN102089891B (zh
Inventor
浅海利夫
坂田仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN102089891A publication Critical patent/CN102089891A/zh
Application granted granted Critical
Publication of CN102089891B publication Critical patent/CN102089891B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供太阳能电池及其制造方法。该太阳能电池(10),具有半导体基板(11)和形成在半导体基板(11)背面上的i型非晶半导体层(12),其中,i型非晶半导体层(12)包括在平面视图中露出的露出部(12A),和被p型非晶半导体层(13)和n型非晶半导体层(14)覆盖的被覆部(12B)。露出部(12A)的厚度T1比被覆部(12B)的厚度T2小。

Description

太阳能电池及其制造方法
技术领域
本发明涉及背面结型太阳能电池及其制造方法,其中该太阳能电池包括形成在半导体基板的背面上的n型半导体层和p型半导体层。
背景技术
由于太阳能电池能够将清洁且无限地提供的太阳光直接转换为电能,所以期待将其作为新的能源。
目前,提出了包括形成在半导体基板的背面上的n型半导体层和p型半导体层的所谓的背面结型太阳能电池(参照日本特开2005-101240号公报)。具体地,n型半导体层和p型半导体层分别在形成在半导体基板的背面的实质上的本征非晶半导体层上线状地交替形成。实质上的本征非晶半导体层具有抑制半导体基板背面中的载流子再结合的钝化特性。
但是,由于上述非晶半导体层具有导电性,所以在n型半导体层与p型半导体层之间可能会产生短路。特别是,当为了提高载流子的收集效率而使n型半导体层和p型半导体层之间的间隔变得狭窄时,很容易发生这样的短路。
此外,虽然也考虑仅在n型半导体层和p型半导体层各自与半导体基板之间插入非晶半导体层,但是在这种情况下,会降低半导体基板的背面的钝化特性。
本发明是鉴于上述情况而完成的,其目的是提供能够抑制形成在半导体基板的背面上的非晶半导体层的短路发生的背面结型太阳能电池及其制造方法。
发明内容
本发明的特征的太阳能电池,其特征在于,包括:半导体基板,其具有受光面和设置在上述受光面的相反侧的背面;形成在上述背面上的实质上的本征非晶半导体层;形成在上述非晶半导体层上的p型半导体层;和形成在上述非晶半导体层上的n型半导体层,其中,上述非晶半导体层包括:从上述背面侧观看时,在平面视图中露出的露出部;和在上述平面视图中被上述p型半导体层和上述n型半导体层覆盖的被覆部,作为上述露出部的厚度的第一厚度,比作为上述被覆部的厚度的第二厚度小。
根据本发明的特征的太阳能电池,在与半导体基板背面平行的方向上,能够使露出部的电阻比被覆部的电阻大。因此,能够抑制形成在被覆部上的p型半导体层和形成在被覆部上的n型半导体层之间的短路的产生。此外,由于在半导体基板的背面上,不仅形成被覆部,而且形成露出部,所以能够维持半导体基板的背面的钝化特性。
在本发明的特征的太阳能电池中,优选上述第一厚度与上述第二厚度的比为0.48以上且不到1。
在本发明的特征的太阳能电池中,优选上述第一厚度为1.44nm以上且不到25nm。
本发明的特征的太阳能电池的制造方法,该太阳能电池包括具有受光面和设置在上述受光面的相反侧的背面的半导体基板,该太阳能电池的制造方法的特征在于,包括:在上述背面上形成实质上的本征第一非晶半导体层的工序;在设置在上述第一非晶半导体层表面的第一区域和第二区域,形成实质上的本征第二非晶半导体层的工序;在形成在上述第一区域的上述第二非晶半导体层上形成p型半导体层的工序;和在形成在上述第二区域的上述第二非晶半导体层上形成n型半导体层的工序。
附图说明
图1是从背面侧观察根据本发明的实施方式的太阳能电池10的平面图。
图2是沿着图1的A-A线的放大截面图。
图3是用于说明本发明的实施方式的太阳能电池10的制造方法的图。
图4是用于说明本发明的实施方式的太阳能电池10的制造方法的图。
图5是用于说明本发明的实施方式的太阳能电池10的制造方法的图。
图6是表示i型非晶Si层的层厚与太阳能电池特性的关系的曲线图。
图7是表示比值(T1/T2)与太阳能电池特性的关系的曲线图。
具体实施方式
接下来,使用附图来说明本发明的实施方式。在下面附图的记载中,对相同或类似的部分标注相同或类似的附图标记。其中,必须注意附图是示意性的,各尺寸的比率等与现实的不同。因此,具体的尺寸等应该参考下面的说明进行判断。此外,当然也包括各附图之间相互的尺寸关系和比率不同的部分。
(太阳能电池的结构)
参照图1和图2,说明本发明的实施方式的太阳能电池10的结构。图1是从背面侧观察本实施方式的太阳能电池10的平面图。图2是沿着图1的A-A线的放大截面图。
如图1和图2所示,太阳能电池10包括半导体基板11、i型非晶半导体层12、p型非晶半导体层13、n型非晶半导体层14、p侧电极15和n侧电极16。
半导体基板11具有接收太阳光的受光面和设置在受光面的相反侧的背面。半导体基板11通过由受光面接收光照而产生光生载流子。所谓的光生载流子是指光被半导体基板11吸收而产生的空穴和电子。
半导体基板11具有n型或p型导电类型,能够由单晶Si、多晶Si等结晶类半导体材料和包含GaAs、InP等化合物半导体材料的一般的半导体材料构成。另外,在半导体基板11的受光面和背面,可以形成有微小的凹凸(纹理(texture))。
i型非晶半导体层12是通过不添加掺杂剂或者添加微量的掺杂剂而形成的实质上的本征非晶半导体层。如图1所示,i型非晶半导体层12形成为覆盖半导体基板11的大致整个背面。i型非晶半导体层12具有抑制半导体基板11的背面的载流子的再结合的钝化特性(passivation)。
在本实施方式中,在从背面侧观察半导体基板11的平面视图中,i型非晶半导体层12具有从p型非晶半导体层13和n型非晶半导体层14露出的露出部12A,和被p型非晶半导体层13和n型非晶半导体层14覆盖的被覆部12B。即,如图2所示,在被覆部12B上,形成p型非晶半导体层13和n型非晶半导体层14。另一方面,在露出部12A上,不形成p型非晶半导体层13和n型非晶半导体层14,如图1所示,露出部12A在平面视图中露出。露出部12A和被覆部12B分别沿第一方向线状地形成在半导体基板11的背面上。此外,露出部12A和被覆部12B在与第一方向大致正交的第二方向上交替地形成。
在此,在与半导体基板11的背面正交的正交方向上,作为露出部12A的厚度的第一厚度T1比作为被覆部12B的厚度的第二厚度T2小。因此,如图2所示,i型非晶半导体层12的截断面具有凹凸形状。
另外,如下所述,露出部12A的第一厚度T1优选为1.44nm以上且不到25nm。此外,露出部12A的第一厚度T1与被覆部12B的第二厚度T2的比(T1/T2)优选为0.48以上且不到1。
p型非晶半导体层13是通过添加p型掺杂剂而形成的非晶半导体层。p型非晶半导体层13在被覆部12B上沿第一方向形成为线状。这样,通过在半导体基板11与p型非晶半导体层13之间插入实质上的本征i型非晶半导体层12(被覆部12B)的结构(HIT结构),能够提高pn结特性。
n型非晶半导体层14是通过添加n型掺杂剂而形成的非晶半导体层。n型非晶半导体层14在被覆部12B上沿第一方向形成为线状。这样,通过在半导体基板11的背面上依次层叠i型非晶半导体层12和n型非晶半导体层14的结构(BSF结构),能够有效地抑制半导体基板11的背面的载流子的再结合。
p侧电极15是收集集中在p型非晶半导体层13中的空穴的收集电极。p侧电极15在p型非晶半导体层13上沿第一方向形成为线状。p侧电极15例如能够通过印刷树脂型或烧结型导电性膏而形成。
n侧电极16是收集集中在n型非晶半导体层14中的电子的收集电极。n侧电极16在n型非晶半导体层14上沿第一方向形成为线状。n侧电极16与p侧电极15能够同样地形成。
另外,每个具有以上结构的太阳能电池10的输出是数W左右。因此,当将太阳能电池10作为电源使用时,采用通过将多个太阳能电池10电连接来提高输出的太阳能电池模块。具体地,通过用配线材连接一个太阳能电池10的p侧电极15和另一个太阳能电池10的n侧电极16,将一个太阳能电池10与另一个太阳能电池10电连接。
(太阳能电池的制造方法)
接下来,参照图3~图5,说明太阳能电池10的制造方法。另外,各图(a)是从背面侧观察半导体基板11的平面图。
首先,如图3(a)所示,在半导体基板11的大致整个背面,采用CVD法形成实质上的本征第一i型非晶半导体层121。如图3(b)所示,该第一i型非晶半导体层121在正交方向即厚度方向上具有第一厚度T1。另外,图3(b)是沿图3(a)的B-B线的放大截面图。
接下来,在第一i型非晶半导体层121的表面内,在图3(a)所示的第一区域S1和第二区域S2以外的区域覆盖荫罩板(shadow mask)。
接下来,如图4(a)所示,在第一i型非晶半导体层121表面中的第一区域S1和第二区域S2,采用CVD法形成实质上的本征第二i型非晶半导体层122。由此,形成包含露出部12A和被覆部12B的i型非晶半导体层12。另外,如图4(b)所示,第二i型非晶半导体层122在正交方向上具有第三厚度T3。第一厚度T1和第三厚度T3之和是被覆部12B的第二厚度T2(参照图2)。另外,图4(b)是沿图4(a)的C-C线的放大截面图。
接下来,在第一i型非晶半导体层121表面中形成在第一区域S1的第二i型非晶半导体层122以外的区域覆盖荫罩板。接着,在形成在第一区域S1的第二i型非晶半导体层122上,采用CVD法形成p型非晶半导体层13。p型非晶半导体层的厚度例如是大约10nm。
接下来,在第一i型非晶半导体层121的表面中形成在第二区域S2的第二i型非晶半导体层122以外的区域覆盖荫罩板。接着,在形成在第二区域S2的第二i型非晶半导体层122上,采用CVD法形成n型非晶半导体层14。n型非晶半导体层14的厚度例如是大约10nm。
通过以上步骤,如图5(a)和(b)所示,在半导体基板11的背面上形成“HIT结构”和“BSF结构”。图5(b)是沿图5(a)的D-D线的放大截面图。
接下来,采用印刷法和涂布法等,在p型非晶半导体层13上形成p侧电极15,并且在n型非晶半导体层14上形成n侧电极16。
(被覆部厚度的适当范围)
接下来,说明为了求得被覆部12B的第二厚度T2的适当范围而进行的检验实验。具体地,在可实用的范围内,制作i型非晶半导体层的品质和层厚度改变了的样本,并测量各样本的太阳能电池特性(输出值Pmax)。另外,在各样本中,以相同(均匀)的厚度形成i型非晶半导体层。此外,i型非晶半导体层,层内部所包含的缺陷越少,且导电率越小,越是高品质。
1.样本组A
样本组A是包括高品质i型非晶Si层作为钝化层的太阳能电池组。具体地,使CVD装置的设定条件为SiH4流量50sccm、H2流量80sccm、压力80Pa、温度180℃、RF功率50W,由此形成i型非晶Si层。
样本组A包含层厚度为2nm~26nm的六种厚度的样本。
2.样本组B
样本组B是包括具有中等品质的i型非晶Si层作为钝化层的太阳能电池组。具体地,使CVD装置的设定条件为SiH4流量50sccm、H2流量80sccm、压力80Pa、温度180℃、RF功率100W,由此形成i型非晶Si层。
样本组B包含层厚度为2nm~32nm的六种厚度的样本。
3.样本组C
样本组C是包括低品质的i型非晶Si层作为钝化层的太阳能电池组。具体地,使CVD装置的设定条件为SiH4流量50sccm、H2流量80sccm、压力80Pa、温度180℃、RF功率200W,由此形成i型非晶Si层。
样本组C包含层厚度为14nm~38nm的六种厚度的样本。
4.太阳能电池特性的测定结果
图6是示出样本组A~C的层厚度与太阳能电池特性(输出值Pmax)的关系的曲线图。
如图6所示,太阳能电池特性的峰,能够在包括层厚度3nm的i型非晶Si层的样本组A、包括层厚度18nm的i型非晶Si层的样本组B、包括层厚度25nm的i型非晶Si层的样本组C中得到。
因此,如果i型非晶Si层的层厚度在3nm以上25nm以下的范围内,则判断为通过形成可实用的品质的i型非晶Si层,能够得到良好的太阳能电池特性。因此,判断本实施方式的被覆部12B的第二厚度T2的适当范围是3nm以上25nm以下。
(第一厚度T1与第二厚度T2的比的适当范围)
接下来,说明为了求得露出部12A的第一厚度T1与被覆部12B的第二厚度T2的比(T1/T2)的适当范围而进行的检验实验。具体地,制作包括在上述样本组A~C各自的品质(设定条件)下形成的露出部12A和被覆部12B的样本,测定各样本的太阳能电池特性(输出值Pmax)。
图7是示出各样本中第一厚度T1和第二厚度T2的比值(T1/T2)与太阳能电池特性(输出值Pmax)的关系的曲线图。
如图7所示,确认为在比值(T1/T2)与输出值(Pmax)之间存在相关关系,而与层质无关。此外,如图7所示,可知如果比值(T1/T2)为0.48以上且不到1.0,则能够得到比i型非晶Si层的层厚度均匀时更高的输出值Pmax。得到这样的结果是由于在比值(T1/T2)不到0.48的情况下,不能得到i型非晶Si层的充分的钝化特性。
在此,如上所述,被覆部12B的第二厚度T2的适当范围是3nm以上25nm以下。因此,如果考虑0.48≤(T1/T2)<1.0,则露出部12A的第一厚度T1的适当范围是1.44nm以上且不到25nm。
(作用及效果)
在本实施方式的太阳能电池10中,i型非晶半导体层12包括在平面视图中露出的露出部12A,和被p型非晶半导体层13及n型非晶半导体层14覆盖的被覆部12B。在正交方向上,露出部12A的第一厚度T1比被覆部12B的第二厚度T2小。
因此,在与半导体基板11的背面平行的方向上,能够使露出部12A的电阻比被覆部12B的电阻大。因此,能够抑制形成在被覆部12B上的p型非晶半导体层13和形成在被覆部12B上的n型非晶半导体层14之间的短路的产生。
此外,在半导体基板11的背面上,不仅形成被覆部12B,而且形成露出部12A。因此,能够维持半导体基板11的背面上的i型非晶半导体层12的钝化特性。
另外,如由上述检验实验所确认的,露出部12A的第一厚度T1与被覆部12B的第二厚度T2的比值(T1/T2)优选为0.48以上且不到1.0。此外,露出部12A的第一厚度T1优选为1.44nm以上且不到25nm。
此外,本实施方式的太阳能电池10的制造方法,包括:在半导体基板11的背面上形成第一i型非晶半导体层121的工序;在第一i型非晶半导体层121上的第一区域S1和第二区域S2形成第二i型非晶半导体层122的工序;和在第二i型非晶半导体层122上形成p型非晶半导体层13和n型非晶半导体层14的工序。
因此,能够不会对p型非晶半导体层13和n型非晶半导体层14造成损伤,简单地形成露出部12A和被覆部12B。
(其他的实施方式)
虽然通过上述实施方式描述了本发明,但是不应该理解为构成该公开的一部分的论述和附图是限定本发明的。根据该公开,本领域技术人员可以明白各种替代实施方式、实施例和应用技术。
例如,在上述实施方式中,p型非晶半导体层13和n型非晶半导体层14的数目和形状是示意性的,不限于此。p型非晶半导体层13和n型非晶半导体层14的数目和形状能够根据半导体基板11的尺寸等适当地设定。
此外,虽然在上述实施方式中,在被覆部12B上形成非晶半导体层,但是形成在被覆部12B上的半导体层可以是多晶、微晶、非晶中的任何一种。
此外,虽然在上述实施方式中,通过依次层叠第一i型非晶半导体层121和第二i型非晶半导体层122而形成i型非晶半导体层12,但是不限于此。例如,也可以在半导体基板11的背面上形成第二厚度T2均匀的i型非晶半导体层之后,通过对第一区域S1和第二区域S2以外的区域实施激光照射或蚀刻处理,形成第一厚度T1的露出部12A。
此外,虽然在上述实施方式中没有特别提及,但是也可以在p侧电极15和n侧电极16各自与被覆部12B之间插入透明导电膜(TCO)。
此外,虽然在上述实施方式中没有特别提及,但是也可以在半导体基板11的受光面上形成反射防止膜。由此,能够提高太阳能电池10的光电转换效率。
另外,日本专利申请第2008-171323号(2008年6月30日申请)的所有内容通过参照而并入本申请的说明书中。
工业上的可利用性
如上所述,本发明的背面结型太阳能电池及其制造方法,能够抑制形成在半导体基板的背面上的非晶半导体层中短路的发生,因此可用于太阳光发电。

Claims (4)

1.一种太阳能电池,其特征在于,包括:
半导体基板,其具有受光面和设置在所述受光面的相反侧的背面;
形成在所述背面上的实质上的本征非晶半导体层;
形成在所述非晶半导体层上的p型半导体层;和
形成在所述非晶半导体层上的n型半导体层,其中,
所述非晶半导体层包括:从所述背面侧观看时,在平面视图中露出的露出部;和在所述平面视图中被所述p型半导体层和所述n型半导体层覆盖的被覆部,
作为所述露出部的厚度的第一厚度,比作为所述被覆部的厚度的第二厚度小。
2.根据权利要求1所述的太阳能电池,其特征在于:
所述第一厚度与所述第二厚度的比为0.48以上且不到1。
3.根据权利要求1所述的太阳能电池,其特征在于:
所述第一厚度为1.44nm以上且不到25nm。
4.一种太阳能电池的制造方法,该太阳能电池包括具有受光面和设置在所述受光面的相反侧的背面的半导体基板,该太阳能电池的制造方法的特征在于,包括:
在所述背面上形成实质上的本征第一非晶半导体层的工序;
在设置在所述第一非晶半导体层表面的第一区域和第二区域,形成实质上的本征第二非晶半导体层的工序;
在形成在所述第一区域的所述第二非晶半导体层上形成p型半导体层的工序;和
在形成在所述第二区域的所述第二非晶半导体层上形成n型半导体层的工序。
CN2009801252596A 2008-06-30 2009-06-29 太阳能电池及其制造方法 Expired - Fee Related CN102089891B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008171323A JP5207852B2 (ja) 2008-06-30 2008-06-30 太陽電池及びその製造方法
JP2008-171323 2008-06-30
PCT/JP2009/061831 WO2010001848A1 (ja) 2008-06-30 2009-06-29 太陽電池及びその製造方法

Publications (2)

Publication Number Publication Date
CN102089891A true CN102089891A (zh) 2011-06-08
CN102089891B CN102089891B (zh) 2013-01-02

Family

ID=41465943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801252596A Expired - Fee Related CN102089891B (zh) 2008-06-30 2009-06-29 太阳能电池及其制造方法

Country Status (6)

Country Link
US (1) US20110132441A1 (zh)
EP (1) EP2296192A1 (zh)
JP (1) JP5207852B2 (zh)
KR (1) KR20110037984A (zh)
CN (1) CN102089891B (zh)
WO (1) WO2010001848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736163A (zh) * 2021-02-10 2021-04-30 普乐(合肥)光技术有限公司 一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006564B2 (en) 2009-03-10 2015-04-14 Sanyo Electric Co., Ltd. Method of manufacturing solar cell and solar cell
JP2013219065A (ja) * 2010-08-06 2013-10-24 Sanyo Electric Co Ltd 太陽電池及び太陽電池の製造方法
JP5927549B2 (ja) * 2010-08-24 2016-06-01 パナソニックIpマネジメント株式会社 太陽電池及びその製造方法
WO2012132854A1 (ja) * 2011-03-25 2012-10-04 三洋電機株式会社 光電変換装置及びその製造方法
GB2491209B (en) * 2011-05-27 2013-08-21 Renewable Energy Corp Asa Solar cell and method for producing same
JP2013030615A (ja) * 2011-07-28 2013-02-07 Sanyo Electric Co Ltd 太陽電池
JP6103867B2 (ja) * 2012-09-12 2017-03-29 シャープ株式会社 光電変換素子および光電変換素子の製造方法
CN111728971A (zh) 2012-09-18 2020-10-02 奥斯拜客斯制药有限公司 D6-四苯喹嗪固体口服剂型、化合物、及其药物组合物、制备及治疗方法
PL3265085T3 (pl) 2015-03-06 2022-11-07 Auspex Pharmaceuticals, Inc. Sposoby leczenia zaburzeń związanych z nieprawidłowymi ruchami mimowolnymi

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4070483B2 (ja) * 2002-03-05 2008-04-02 三洋電機株式会社 光起電力装置並びにその製造方法
JP4070648B2 (ja) * 2003-03-25 2008-04-02 三洋電機株式会社 光起電力素子
JP4155899B2 (ja) * 2003-09-24 2008-09-24 三洋電機株式会社 光起電力素子の製造方法
EP1519422B1 (en) * 2003-09-24 2018-05-16 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic cell and its fabrication method
JP4511146B2 (ja) * 2003-09-26 2010-07-28 三洋電機株式会社 光起電力素子およびその製造方法
JP4502845B2 (ja) * 2005-02-25 2010-07-14 三洋電機株式会社 光起電力素子
JP2008171323A (ja) 2007-01-15 2008-07-24 Canon Inc ジョブ管理装置、ジョブ管理方法、ジョブ管理プログラム並びに記憶媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736163A (zh) * 2021-02-10 2021-04-30 普乐(合肥)光技术有限公司 一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法
CN112736163B (zh) * 2021-02-10 2022-07-29 普乐(合肥)光技术有限公司 一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法

Also Published As

Publication number Publication date
WO2010001848A1 (ja) 2010-01-07
JP2010010620A (ja) 2010-01-14
KR20110037984A (ko) 2011-04-13
US20110132441A1 (en) 2011-06-09
CN102089891B (zh) 2013-01-02
JP5207852B2 (ja) 2013-06-12
EP2296192A1 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
CN102089891B (zh) 太阳能电池及其制造方法
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
US8569100B2 (en) Solar cell and manufacturing method thereof
Tanaka et al. Development of HIT solar cells with more than 21% conversion efficiency and commercialization of highest performance HIT modules
US7910823B2 (en) Solar cell and manufacturing method thereof
JP5261110B2 (ja) 太陽電池の製造方法及び太陽電池
KR20100075045A (ko) 광기전력 변환 소자 및 그의 제조방법
KR101699299B1 (ko) 양면 수광형 태양전지
JP2008294080A (ja) 太陽電池セル及び太陽電池セルの製造方法
JP7023976B2 (ja) P型perc両面太陽電池の製造方法
KR20110071375A (ko) 후면전계형 이종접합 태양전지 및 그 제조방법
JP2010130023A (ja) 太陽電池およびその製造方法
US20130269774A1 (en) Electrode of solar cell
KR101125435B1 (ko) Mwt형 태양전지
JP2010283406A (ja) 太陽電池
KR101159277B1 (ko) 강유전체를 이용한 태양전지의 제조방법
CN104868007A (zh) 聚光型光电转换装置及其制造方法
US20110056548A1 (en) Wafer-Based Solar Cell with Deeply Etched Structure
JP6820435B2 (ja) 太陽光の吸収に有効なp型perc両面太陽電池及びその製造方法
KR101032064B1 (ko) 태양 전지 및 이의 제조방법
CN211670196U (zh) 双面太阳能电池
JP3184620U (ja) 太陽電池モジュール
CN218585995U (zh) 太阳能电池及光伏组件
KR101172619B1 (ko) Ain 패시베이션막을 구비하는 실리콘 태양전지
TW201635574A (zh) 太陽能電池、其模組及其製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130102

CF01 Termination of patent right due to non-payment of annual fee