CN112736163B - 一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法 - Google Patents

一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法 Download PDF

Info

Publication number
CN112736163B
CN112736163B CN202110183832.1A CN202110183832A CN112736163B CN 112736163 B CN112736163 B CN 112736163B CN 202110183832 A CN202110183832 A CN 202110183832A CN 112736163 B CN112736163 B CN 112736163B
Authority
CN
China
Prior art keywords
thin film
film
sio
amorphous silicon
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110183832.1A
Other languages
English (en)
Other versions
CN112736163A (zh
Inventor
孙巍泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pule Hefei Optical Technology Co ltd
Original Assignee
Pule Hefei Optical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pule Hefei Optical Technology Co ltd filed Critical Pule Hefei Optical Technology Co ltd
Priority to CN202110183832.1A priority Critical patent/CN112736163B/zh
Publication of CN112736163A publication Critical patent/CN112736163A/zh
Application granted granted Critical
Publication of CN112736163B publication Critical patent/CN112736163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池技术领域,公开了一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法,采用非晶硅薄膜沉积、激光做晶化和隔离、离子注入非晶化和选择性刻蚀等成熟方法来做多晶硅薄膜钝化的背极光伏电池制造,其中离子注入自对准分区技术可使用低成本的丝网印刷技术,基于现有生产线完成批量生产,成本相对低廉,适合光伏行业的发展需求。

Description

一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法
技术领域
本发明涉及太阳能电池技术领域,特别是一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法。
背景技术
太阳能电池作为一种清洁能源已经在航空航天、军事等领域得到了比较广泛的应用。太阳能电池的光电转换效率一直以来被视为影响其推广使用的重要因素。目前常见的高效晶硅太阳能电池主要有以下几种:钝化发射极背场点接触太阳能电池(P-PERC,Passivated Emitter and Rear Cell)、钝化发射极背表面全扩散太阳能电池( N-PERT,Passivated Emitter Rear Totally-diffused cell),异质结太阳能电池(HJT,Heterojunction),叉指式背接触太阳能电池( IBC, Interdigitated back-contact),金属穿孔卷绕太阳能电池(MWT, Metal Wrap Through)和隧穿氧化钝化接触太阳能电池(TOPCon, Tunnel Oxide Passivated Contact)。
较之传统的太阳能电池,IBC太阳能电池的工艺流程要复杂得多。IBC太阳能电池工艺的关键问题是如何在电池背面制备出呈叉指状间隔排列的P区和N区,以及在其上分别形成金属化接触和栅线。
IBC电池的制备工艺有很多种,常见的定域掺杂的方法为掩膜法,可以通过光刻的方法在掩膜上形成需要的图形,光刻技术配合电镀非常昂贵,不适合光伏行业的应用和发展。通过丝网印刷刻蚀浆料或者阻挡型浆料来刻蚀或者挡住不需要刻蚀的部分掩膜,形成需要的图形,这种方法的成本较低,但是需要两步单独的扩散过程来分别形成P型区和N型区。
另外,还可以直接在掩膜中掺入所需要掺杂的杂质源(硼或磷源),一般可以通过化学气相沉积的方法来形成掺杂的掩膜层。这样在后续就只需要通过高温将杂质源扩散到硅片内部即可,从而节省一步高温过程。也可在电池背面印刷一层含棚的叉指状扩散掩蔽层,掩蔽层上的绷经扩散后进入N型衬底形成P+区,而未印刷掩膜层的区域,经磷扩散后形成N+区。不过,丝网印刷方法本身的局限性,如对准的精度问题、印刷重复性问题等,都给电池结构的设计提出了一定的要求,在一定的参数条件下,较小的P、N间距和金属接触面积能带来电池效率的提升,因此,丝网印刷的方法,需在工艺重复可靠性和电池效率之间找准平衡点,这也是目前丝网印刷方法的难点所在。
发明内容
本发明要解决的技术问题是克服现有技术存在的不足,提供一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法,采用非晶硅薄膜沉积、激光做晶化和隔离、离子注入非晶化和选择性刻蚀等成熟方法来做多晶硅薄膜钝化的背极光伏电池制造,其中离子注入自对准分区技术可使用低成本的丝网印刷技术,基于现有生产线完成批量生产,成本相对低廉,适合光伏行业的发展需求。
为解决上述技术问题,本发明提供了一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法,包括以下步骤为:
(1)在P型硅基底上制备第一SiO2隧穿层,然后再沉积一层硼掺杂的P型非晶硅薄膜;
(2)制备第二SiO2薄膜层;
(3)注入氩离子把第二SiO2薄膜层非晶化,使第二SiO2薄膜层成为非晶化的第二SiO2薄膜层;
(4)激光扫描对非晶化的第二SiO2薄膜层进行区域修补,修补区作为湿法刻蚀的保护区;
(5)湿法刻蚀去除未被保护区保护的非晶化的第二SiO2薄膜层,同时P型非晶硅薄膜被减薄,保护区则被保留;
(6)沉积磷掺杂的N型非晶硅薄膜;
(7)对保护区两侧的N型非晶硅薄膜和P型非晶硅薄膜进行激光刻划出隔离槽,作为插指区;
(8)对保护区对应区域的N型非晶硅薄膜进行激光晶化成多晶硅薄膜;
(9)利用多晶硅薄膜刻蚀速率大于非晶硅薄膜刻蚀速率的特点,刻蚀掉多晶硅薄膜、保护区和非晶化的第二SiO2薄膜层;
(10)高温退火,使P型非晶硅薄膜和N型非晶硅薄膜都转化为插指区的多晶硅薄膜;
(11)在插指区内制备插指区SiO2薄膜,从而形成插指型多晶硅薄膜钝化背极;
(12)在步骤(11)的插指型多晶硅薄膜钝化背极的正面刻蚀绒面,用ALD沉积氧化铝钝化膜,用PECVD沉积SiN减反膜,背面先用PECVD沉积SiN减反膜,然后沉积背面金属,从而完成多晶硅薄膜钝化背极插指型太阳能电池的制备。
作为本发明的另一种实施方式,步骤(1)是在N型硅基底上制备备第一SiO2隧穿层,然后再沉积一层磷掺杂的N型非晶硅薄膜;步骤(6)沉积硼掺杂的PN型非晶硅薄膜;步骤(8)对保护区对应区域的P型非晶硅薄膜进行激光晶化成多晶硅薄膜。
本发明的太阳能电池的制备方法实用、可靠、经济,且制备的插指型太阳能电池的正面没有遮挡光线的电极,背面电极与半导体材料的接触界面的载流子复合率低。
附图说明
图1—图12是实施例一的多晶硅薄膜钝化背极插指型太阳能电池的制备方法的流程图。
图13—图24是实施例二的多晶硅薄膜钝化背极插指型太阳能电池的制备方法的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例一
一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法,包括以下步骤:
(1)在P型硅基底101上制备第一SiO2隧穿层102,然后再沉积一层硼掺杂的P型非晶硅薄膜103,如图1所示;
(2)制备第二SiO2薄膜层104,如图2所示;
(3)注入氩离子把第二SiO2薄膜层104非晶化,使其成为非晶化的第二SiO2薄膜层104′,如图3所示;
(4)激光扫描对非晶化的第二SiO2薄膜层104′的进行区域修补,修补区可以作为湿法刻蚀的保护区105,如图4所示;
(5)湿法刻蚀去除未被保护区105保护的非晶化的第二SiO2薄膜层104′,同时P型非晶硅薄膜103被减薄,保护区105被保留,如图5所示;
(6)沉积原位磷掺杂的N型非晶硅薄膜106,使得其极性反向,如图6所示;
(7)对保护区105两侧的N型非晶硅薄膜106和P型非晶硅薄膜103进行激光刻划出隔离槽,作为插指区107,如图7所示;
(8)对保护区105对应区域的N型非晶硅薄膜106进行激光晶化成多晶硅薄膜106′,如图8所示;
(9)利用多晶硅薄膜刻蚀速率大于非晶硅薄膜刻蚀速率的特点,刻蚀掉多晶硅薄膜106′、保护区105和非晶化的第二SiO2薄膜层104′,如图9所示;
(10)高温退火,使P型非晶硅薄膜103转化为插指区的多晶硅薄膜103′,使N型非晶硅薄膜106转化为插指区的多晶硅薄膜106″,如图10所示;
(11)在插指区107内制备插指区SiO2薄膜108,从而形成插指型多晶硅薄膜钝化背极,如图11所示;
(12)在步骤(11)的插指型多晶硅薄膜钝化背极的正面刻蚀绒面109,用ALD沉积氧化铝钝化膜110,用PECVD沉积SiN减反膜111,背面先用PECVD沉积SiN减反膜112,再在背面沉积背面金属113,从而完成多晶硅薄膜钝化背极插指型太阳能电池的制备,如图12所示。
该实施例制备的多晶硅薄膜钝化背极插指型太阳能电池,如图12所示,包括由P型硅基底101,P型硅基底101背面的第一SiO2隧穿层102,被插指区107绝缘隔离的多晶硅薄膜106″、多晶硅薄膜103′以及插指区SiO2薄膜108构成的插指型多晶硅薄膜钝化背极,该插指型多晶硅薄膜钝化背极正面由内向外依次的绒面109、氧化铝钝化膜110、SiN减反膜111,该插指型多晶硅薄膜钝化背极背面由内向外依次的SiN减反膜112和背面金属113。
实施例二
一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法,包括以下步骤:
(1)在N型硅基底201上制备第一SiO2隧穿层202,然后再沉积一层磷掺杂的N型非晶硅薄膜203,如图13所示;
(2)制备第二SiO2薄膜层204,如图14所示;
(3)注入氩离子把第二SiO2薄膜层204非晶化,使其成为非晶化的第二SiO2薄膜层204′,如图15所示;
(4)激光扫描对非晶化的第二SiO2薄膜层204′的进行区域修补,修补区可以作为湿法刻蚀的保护区205,如图16所示;
(5)湿法刻蚀去除未被保护区205保护的非晶化的第二SiO2薄膜层204′,同时N型非晶硅薄膜203被减薄,保护区205被保留,如图17所示;
(6)沉积原位硼掺杂的P型非晶硅薄膜206,实现极性反向的补偿掺杂,如图18所示;
(7)对保护区两侧的N型非晶硅薄膜和P型非晶硅薄膜进行激光刻划出隔离槽,作为插指区207,如图19所示;
(8)对保护区对应区域的P型非晶硅薄膜206区域进行激光晶化成多晶硅薄膜206′,如图20所示;
(9)利用多晶硅薄膜刻蚀速率大于非晶硅薄膜刻蚀速率的特点,刻蚀掉多晶硅薄膜206′、保护区205和非晶化的第二SiO2薄膜层204′,如图21所示;
(10)高温退火使N型非晶硅薄膜203转化为插指区的多晶硅薄膜203′,使P型非晶硅薄膜206转化为插指区的多晶硅薄膜206″,如图22所示;
(11)在插指区207内制备插指区SiO2薄膜208,从而形成插指型多晶硅薄膜钝化背极,如图23所示;
(12)在步骤(11)的插指型多晶硅薄膜钝化背极的正面刻蚀绒面209,用ALD沉积氧化铝钝化膜210,用PECVD沉积SiN减反膜211,背面先用PECVD沉积SiN减反膜212,再在背面金属化213,从而完成多晶硅薄膜钝化背极太阳能电池的制备,如图24所示。
该实施例制备的多晶硅薄膜钝化背极插指型太阳能电池,如图24所示,包括由N型硅基底201,N型硅基底201背面的第一SiO2隧穿层202,被插指区207绝缘隔离的多晶硅薄膜206″、多晶硅薄膜203′以及插指区SiO2薄膜208构成的插指型多晶硅薄膜钝化背极,该插指型多晶硅薄膜钝化背极正面由内向外依次的绒面209、氧化铝钝化膜210、SiN减反膜211,以及该插指型多晶硅薄膜钝化背极背面由内向外依次的SiN减反膜212、背面金属213。
以上所述仅是本发明的最佳实施方式。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明的技术方案进行若干变形或者等同替换,也能达到本发明的技术效果,也应视为属于本发明的保护范围。

Claims (2)

1.一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法,其特征在于,包括以下步骤为:
(1)在P型硅基底上制备第一SiO2隧穿层,然后再沉积一层硼掺杂的P型非晶硅薄膜;
(2)制备第二SiO2薄膜层;
(3)注入氩离子把第二SiO2薄膜层非晶化,使第二SiO2薄膜层成为非晶化的第二SiO2薄膜层;
(4)激光扫描对非晶化的第二SiO2薄膜层进行区域修补,修补区作为湿法刻蚀的保护区;
(5)湿法刻蚀去除未被保护区保护的非晶化的第二SiO2薄膜层,同时P型非晶硅薄膜被减薄,保护区则被保留;
(6)沉积磷掺杂的N型非晶硅薄膜;
(7)对保护区两侧的N型非晶硅薄膜和P型非晶硅薄膜进行激光刻划出隔离槽,作为插指区;
(8)对保护区对应区域的N型非晶硅薄膜进行激光晶化成多晶硅薄膜;
(9)利用多晶硅薄膜刻蚀速率大于非晶硅薄膜刻蚀速率的特点,刻蚀掉多晶硅薄膜、保护区和非晶化的第二SiO2薄膜层;
(10)高温退火,使P型非晶硅薄膜和N型非晶硅薄膜转化为插指区的多晶硅薄膜;
(11)在插指区内制备插指区SiO2薄膜,从而形成插指型多晶硅薄膜钝化背极;
(12)在步骤(11)的插指型多晶硅薄膜钝化背极的正面刻蚀绒面,用ALD沉积氧化铝钝化膜,用PECVD沉积SiN减反膜,背面先用PECVD沉积SiN减反膜,然后沉积背面金属,从而完成多晶硅薄膜钝化背极插指型太阳能电池的制备。
2.一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法,其特征在于,包括以下步骤为:
(1)在N型硅基底上制备第一SiO2隧穿层,然后再沉积一层磷掺杂的N型非晶硅薄膜;
(2)制备第二SiO2薄膜层;
(3)注入氩离子把第二SiO2薄膜层非晶化,使第二SiO2薄膜层成为非晶化的第二SiO2薄膜层;
(4)激光扫描对非晶化的第二SiO2薄膜层进行区域修补,修补区作为湿法刻蚀的保护区;
(5)湿法刻蚀去除未被保护区保护的非晶化的第二SiO2薄膜层,同时N型非晶硅薄膜被减薄,保护区则被保留;
(6)沉积硼掺杂的P型非晶硅薄膜;
(7)对保护区两侧的N型非晶硅薄膜和P型非晶硅薄膜进行激光刻划出隔离槽,作为插指区;
(8)对保护区对应区域的P型非晶硅薄膜进行激光晶化成多晶硅薄膜;
(9)利用多晶硅薄膜刻蚀速率大于非晶硅薄膜刻蚀速率的特点,刻蚀掉多晶硅薄膜、保护区和非晶化的第二SiO2薄膜层;
(10)高温退火,使P型非晶硅薄膜和N型非晶硅薄膜都转化为插指区的多晶硅薄膜;
(11)在插指区内制备插指区SiO2薄膜,从而形成插指型多晶硅薄膜钝化背极;
(12)在步骤(11)的插指型多晶硅薄膜钝化背极的正面刻蚀绒面,用ALD沉积氧化铝钝化膜,用PECVD沉积SiN减反膜,背面先用PECVD沉积SiN减反膜,然后沉积背面金属,从而完成多晶硅薄膜钝化背极插指型太阳能电池的制备。
CN202110183832.1A 2021-02-10 2021-02-10 一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法 Active CN112736163B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110183832.1A CN112736163B (zh) 2021-02-10 2021-02-10 一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110183832.1A CN112736163B (zh) 2021-02-10 2021-02-10 一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN112736163A CN112736163A (zh) 2021-04-30
CN112736163B true CN112736163B (zh) 2022-07-29

Family

ID=75596679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110183832.1A Active CN112736163B (zh) 2021-02-10 2021-02-10 一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN112736163B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256361B (zh) * 2021-12-03 2023-06-27 浙江晶科能源有限公司 一种太阳能电池、光伏组件
CN117374169B (zh) * 2023-12-07 2024-03-12 浙江晶科能源有限公司 背接触太阳能电池的制备方法及背接触太阳能电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089891A (zh) * 2008-06-30 2011-06-08 三洋电机株式会社 太阳能电池及其制造方法
TW201138145A (en) * 2010-02-18 2011-11-01 Varian Semiconductor Equipment Self-aligned ion implantation for IBC solar cells
EP3098860A1 (en) * 2015-05-28 2016-11-30 Lg Electronics Inc. Solar cell and method of manufacturing the same
NL2015534A (en) * 2015-09-30 2017-04-13 Tempress Ip B V Method of manufacturing a solar cell.
CN108336154A (zh) * 2018-02-02 2018-07-27 中国科学院微电子研究所 晶体硅太阳能电池及其制备方法
CN209312778U (zh) * 2018-11-28 2019-08-27 国家电投集团西安太阳能电力有限公司 Ibc电池结构
JP2019161052A (ja) * 2018-03-14 2019-09-19 国立研究開発法人産業技術総合研究所 太陽電池及びその製造方法
CN110265487A (zh) * 2015-03-23 2019-09-20 太阳能公司 用于太阳能电池的无气泡的多晶硅
CN110838536A (zh) * 2019-11-28 2020-02-25 泰州中来光电科技有限公司 具有多种隧道结结构的背接触太阳能电池及其制备方法
JP2020150110A (ja) * 2019-03-13 2020-09-17 東洋アルミニウム株式会社 バックコンタクト型太陽電池セルの製造方法
CN111816727A (zh) * 2020-07-14 2020-10-23 普乐新能源科技(徐州)有限公司 一种基于lpcvd的高效掺杂非晶硅技术的交叉指式背接触异质结太阳电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201027783A (en) * 2008-09-19 2010-07-16 Applied Materials Inc Methods of making an emitter having a desired dopant profile
US8597970B2 (en) * 2011-12-21 2013-12-03 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell
US10014425B2 (en) * 2012-09-28 2018-07-03 Sunpower Corporation Spacer formation in a solar cell using oxygen ion implantation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089891A (zh) * 2008-06-30 2011-06-08 三洋电机株式会社 太阳能电池及其制造方法
TW201138145A (en) * 2010-02-18 2011-11-01 Varian Semiconductor Equipment Self-aligned ion implantation for IBC solar cells
CN110265487A (zh) * 2015-03-23 2019-09-20 太阳能公司 用于太阳能电池的无气泡的多晶硅
EP3098860A1 (en) * 2015-05-28 2016-11-30 Lg Electronics Inc. Solar cell and method of manufacturing the same
NL2015534A (en) * 2015-09-30 2017-04-13 Tempress Ip B V Method of manufacturing a solar cell.
CN108336154A (zh) * 2018-02-02 2018-07-27 中国科学院微电子研究所 晶体硅太阳能电池及其制备方法
JP2019161052A (ja) * 2018-03-14 2019-09-19 国立研究開発法人産業技術総合研究所 太陽電池及びその製造方法
CN209312778U (zh) * 2018-11-28 2019-08-27 国家电投集团西安太阳能电力有限公司 Ibc电池结构
JP2020150110A (ja) * 2019-03-13 2020-09-17 東洋アルミニウム株式会社 バックコンタクト型太陽電池セルの製造方法
CN110838536A (zh) * 2019-11-28 2020-02-25 泰州中来光电科技有限公司 具有多种隧道结结构的背接触太阳能电池及其制备方法
CN111816727A (zh) * 2020-07-14 2020-10-23 普乐新能源科技(徐州)有限公司 一种基于lpcvd的高效掺杂非晶硅技术的交叉指式背接触异质结太阳电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
预非晶化离子注入对硅p+n结性能的影响;周继承;《功能材料》;19991231;第30卷(第4期);全文 *

Also Published As

Publication number Publication date
CN112736163A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Yan et al. Polysilicon passivated junctions: The next technology for silicon solar cells?
CN111628050B (zh) 实现电子局部钝化接触的方法、晶体硅太阳能电池及其制备方法
US7943416B2 (en) Local heterostructure contacts
EP2996163B1 (en) Photoelectric conversion device and manufacturing method thereof
EP2016627B1 (en) Solar cell having doped semiconductor heterojunction contacts
US8349644B2 (en) Mono-silicon solar cells
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
CN108666393B (zh) 太阳能电池的制备方法及太阳能电池
CN110838536A (zh) 具有多种隧道结结构的背接触太阳能电池及其制备方法
CN111952417A (zh) 一种太阳能电池及其制备方法
US20110017258A1 (en) Solar cell and fabrication method thereof
WO2016068711A2 (en) Back side contacted wafer-based solar cells with in-situ doped crystallized silicon oxide regions
CN111952409B (zh) 一种具有选择性发射极结构的钝化接触电池的制备方法
CN110610997B (zh) 一种局部钝化接触结构的制备方法
CN113611755A (zh) 一种局部钝化接触的ibc电池结构及其制备方法
CN112736163B (zh) 一种多晶硅薄膜钝化背极插指型太阳能电池的制备方法
CN111063761A (zh) 一种太阳能电池的制备工艺
CN111063759A (zh) 一种太阳能电池的制备工艺
KR101612133B1 (ko) Mwt형 태양전지 및 그 제조방법
CN112133774A (zh) 一种背结背接触太阳能电池及其制作方法
CN112133793A (zh) 一种背结背接触太阳能电池及其制作方法
KR20160061409A (ko) 태양 전지를 생성하는 방법
JP5645734B2 (ja) 太陽電池素子
EP3593389A1 (en) Mask-less patterning of amorphous silicon layers for low-cost silicon hetero-junction interdigitated back-contact solar cells
CN114864740A (zh) 一种双面局域钝化接触太阳能电池及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant