CN102083745A - 运行hts反应器的方法 - Google Patents

运行hts反应器的方法 Download PDF

Info

Publication number
CN102083745A
CN102083745A CN2009801257744A CN200980125774A CN102083745A CN 102083745 A CN102083745 A CN 102083745A CN 2009801257744 A CN2009801257744 A CN 2009801257744A CN 200980125774 A CN200980125774 A CN 200980125774A CN 102083745 A CN102083745 A CN 102083745A
Authority
CN
China
Prior art keywords
catalyzer
reactor
synthetic gas
promotor
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801257744A
Other languages
English (en)
Other versions
CN102083745B (zh
Inventor
N·C·希约特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN102083745A publication Critical patent/CN102083745A/zh
Application granted granted Critical
Publication of CN102083745B publication Critical patent/CN102083745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

一种用于富集合成气中的氢气的方法,其通过在催化剂上转化一氧化碳和水蒸气来进行,该催化剂含有锌和铝的氧化物连同一种或多种助催化剂。

Description

运行HTS反应器的方法
本发明涉及一种改进的方法,用于通过含碳资源与水蒸气和/或氧气的反应,来生产氢气。具体的,本发明提供一种方法,用于在具有降低的水蒸气含量的合成气中进行高水气转移反应(water gas shift reaction, 或称水气变换反应)。本发明还涉及含有铝和锌的氧化物连同一种或多种助催化剂的催化剂的用途,其用于高温转移(HTS)反应器中,该反应器运行在这样的条件,在其中进入该反应器的合成气具有1.69-2.25的特定的氧:碳的摩尔比(O/C比)。该助催化剂选自Na、K、Rb、Cs、Cu、Ti、Zr、稀土元素及其混合物。
使用天然气、石油、煤、焦炭、石脑油和其他含碳资源来生产氢气典型的是经由水蒸气重整、自动热重整或者气化反应来进行的。这些反应中的任何一个产生了合成气流。该合成气包含氢气、一氧化碳、二氧化碳、水和有时候氮气作为主要成分。为了降低所述气体的CO含量和使得氢气的产率最大化,通常依靠水气转移反应来进一步转化合成气:CO + H2O = CO2 + H2
为了使得这个反应以可行的速率来进行,合成气是在反应器中在合适的催化剂上转化的。该水气转移反应是一种有限平衡的放热反应。氢气产率因此可以如下来优化:在两个单独的绝热反应器中进行所述反应,该反应器具有级间冷却。这些反应器中的第一个通常称作高温转移(HTS)反应器,其含有高温转移催化剂,第二个反应器称作低温转移(LTS)反应器,其含有低温转移催化剂。一些工业设备仅仅设计有高温转移反应器。
合成气总是具有一些通过下面的反应来形成烃,特别是甲烷的可能:CO +3H2 = CH4 + H2O。这种甲烷化反应消耗了氢气,并且必须抑制这种反应在转移反应器中的发生。在目前的工业实践中,这种反应是通过正确的选择反应条件来抑制的。现有技术的高温转移(HTS)催化剂是基于铁和铬的氧化物的,具有或者不具有助催化剂。这种催化剂限制了运行条件,因为必须存在相对于转移反应的化学计量某种程度过量的水蒸气,目的是使得高温水气转移反应保持相对于形成烃来说足够高的催化剂选择性。这种过量的水蒸气典型的是在高温转移反应器上游注入的,并且导致了设备另外的运行成本。确实如此,因为需要能量来蒸发液态水,并将因此形成的水蒸气加热到反应温度。
JP专利申请No.2004-321924(JP2004321924A)描述了一种承载在锌-铝氧化物上的铜-碱金属催化剂,用于水气转移反应。铜是活性催化剂,而锌-铝氧化物仅仅充当了载体。该催化剂是在400℃和大气压力时测试的,这可能对应于汽车工业中的条件,但是远超出了2.3-6.5 MPa的工业HTS运行范围。所处理的气体据称包含9 vol%的CO2,31 vol%的N2,23 vol%的H2O和8 vol%的CO。
在论文“Higher alcohol synthesis Reaction study using K-promoted ZnO catalysts III” [G.B.Hoflund,W.S.Epling和D.M.Minahan Catalysis Letters第45卷(1997)第135-138页]中,作者发现了氧化锌催化剂在高温和高压时由合成气生产了显著量的烃。该作者发现虽然K-促进稍微抑制了烃的形成,但是它们不能完全被抑制。
本发明提供一种方法,用于降低生产氢气的高温转移(HTS)反应器中所用的过量的水,因此降低了与水蒸气的蒸发和加热有关的运行和能量成本。
本发明提供一种合成气的高温转移方法,其能够在所述合成气中以低的水蒸气:碳摩尔比(S/C比)或者等价的低的水蒸气:干燥气体摩尔比(S/G比)或者低的氧:碳摩尔比(O/C比)来运行,同时抑制烃副产物的形成,特别是甲烷的形成。
因此,我们已经令人惊讶的发现通过使用促进的锌-铝氧化物基催化剂,能够明显降低过量的水蒸气,而不导致形成过量的烃和不导致高温转移反应器(shift reactor,或称变换反应器)中压力的增大。通过使用锌尖晶石催化剂代替氧化铁基催化剂,避免了形成烃,该烃通常来源于在合成气中以减少量的水蒸气的运行。
应当注意S/C比和S/G比是这样的参数,其将在转化过程中,以及因此在反应器中将是变化的,因为水蒸气是水气转移反应中的反应物。相反,O/C比在转化过程中是不变的。在反应器的入口或者在任何位置点中,它定义为O/C比=(nCO +2nCO2 + nH2O)/(nCO + nCO2 + nCH4),这里例如nCO是气体中CO的摩尔浓度。我们更愿意用O/C比来描述气体的还原潜能。在某些情况中,给出了HTS反应器(在转化前)入口气体的S/G比和S/C比的对应值。
因此,我们提供一种用于富集合成气中的氢气的方法,所述合成气含有氢气,一氧化碳和水蒸气,该方法通过在催化剂上转化一氧化碳和水蒸气来进行,这里所述合成气的氧:碳的摩尔比是1.69-2.25,其中所述催化剂包含锌和铝的氧化物连同一种或多种助催化剂,和其中该一氧化碳和水蒸气的转化是在高温转移条件(high temperature shift condition,或称高温变换条件)下进行的,这里该合成气的温度是300℃-400℃,压力是2.3-6.5 MPa。
例如,在进入转移反应器的合成气中,1.65的O/C比对应于0.27的S/C比。
通过本发明,能够在高温转移反应器中,将所产生的氢气与所产生的甲烷之间的比例保持在高于100。
本发明还涉及到含有锌和铝的氧化物连同一种或多种助催化剂的催化剂的用途,其用于转移反应器中,优选高温转移(HTS)反应器中,该反应器运行在这样的条件,在其中进入该反应器的合成气的氧:碳的摩尔比(O/C比)是1.69-2.25,来抑制烃副产物的形成,特别是抑制经由甲烷化反应(CO +3H2 = CH4 + H2O)形成甲烷副产物。
由于G.B.Hoflund等人上面的论文,因此本发明的发现是特别令人惊讶的:所述论文的作者发现例如在400℃和6.9 MPa时,含有1%K的ZnO催化剂生产了7g 烃/kg催化剂/小时。在相当的条件下,下述的本发明的催化剂A仅仅生产了0.16g甲烷/kg催化剂/小时,同时所生产的其他烃的量低于能够检测出的极限。
因此现在使用低含水量的合成气的高温转移运行是可能的,而不形成不想要的烃例如形成甲烷。较低的S/C比因此可以用于HTS反应器上游的重整区域中,由此明显提高设备的能量效率和减小装置尺寸。特别是对于氨设备来说,在重整区域和由此在HTS反应器入口处的较低的S/C比本身还证明了在设备的氨合成区域中,在CO2清洗过程中较低的能量消耗。
我们还发现包含高温转移的设备例如氢气设备的能量效率是以1.69-2.25这样特定的范围的O/C比例值运行来提高的。能量效率表示在所述设备中所用的净能量消耗率(SNEC,Gcal/1000 Nm3 H2),其是通过供料+燃料–水蒸气的能量量来给出的。
在本发明的另外一种实施方案中,该合成气的氧:碳摩尔比是1.69-2.00例如1.97或者1.98。
优选,该助催化剂选自Na、K、Rb、Cs、Cu、Ti、Zr、稀土元素及其混合物。更优选该助催化剂选自Na、K、Rb、Cs、Cu及其混合物。
在一种优选的实施方案中,该催化剂包含处于活性形式的与助催化剂组合的锌氧化铝尖晶石和氧化锌的混合物,该助催化剂处于选自下面的碱金属的形式:Na、K、Rb、Cs及其混合物,所述催化剂的Zn/Al摩尔比是0.5-1.0,并且碱金属的含量是0.4-8.0wt%,基于该氧化的催化剂的重量。特别合适的催化剂包含例如34-37wt%的Zn和22-26wt%的Al和1-2wt%的K形式的碱性助催化剂。
进入HTS-反应器的合成气通常包含5-50 vol%CO,5-50 vol%CO2,20-60 vol%H2,15-50 vol%H2O,0-30 vol%N2
实施例
实施例1
催化剂A是如下来制备的。制备1摩尔的铝酸钾水溶液。将该溶液用过量的氢氧化钾以1:1的摩尔比进行稳定化。另一种溶液是如下来制备的:将178.5g的硝酸锌六水合物溶解在去离子水中,并且将体积调整到1L。将这两种溶液混合在一起,导致形成沉淀物。将该浆体在95℃熟化1小时,其后,加入10%的硝酸将pH调整到8。滤出沉淀物,用热水重复清洗,并在100℃干燥,随后在500℃煅烧2小时。所形成的粉末用XRD表征显示了ZnAl2O4(尖晶石)和ZnO的混合物。通过初湿含浸法,用K2CO3的水溶液填充所述粉末,并且在100℃干燥。元素分析是通过ICP方法进行的,并且显示该催化剂包含了36.1%的Zn,25.1%的Al和1.2%的K。Zn/Al摩尔比因此是0.59。将该粉末与石墨混合(4%wt/wt),并且粒化来产生圆柱形片,直径4.5mm,高4.5mm,密度2.10g/cm3。最后,将粒料在550℃煅烧2小时。
催化剂A是如下测试的。将50.2g量的催化剂装入铜波纹管反应器中,该反应器的内径=19mm。总气体流量是214 Nl/h,这对应于F(in)CO=1.32mol/h的一氧化碳入口流量。将温度在±3℃的范围内保持恒定。将该反应器通过三个外部电加热器进行加热。温度是通过内部的热电偶来记录的。在催化剂床中所观察到的最高温度Tmax是395℃。将该反应器加压到合成气中反应压力P。将通过Bruckner质量流量控制器计量的合成气和通过Knauer泵计量的水蒸气预热和混合,然后通过所述催化剂。该干燥气体的组成是大约15%CO,10%CO2,72%H2和3%Ar。水蒸气/气体摩尔比(S/G)是0.07,这对应于1.69的氧/碳摩尔比(O/C)。全部成分的浓度是在入口和干燥出口气体二者处,依靠Hewlett Packard气相色谱仪来定期测量的,该色谱仪是朝着具有已知组成的气体混合物来校正的。记录C,H和O的质量平衡,并且发现在全部的情况中都处于1.00 ±0.03内。
表1分别记录了一氧化碳的入口和离开流量F(in)CO和F(ex)CO,一氧化碳消耗ΔFCO=F(in)CO-F(ex)CO,和甲醇和甲烷的离开流量F(ex)MeOH和F(ex)CH4
实施例2-6
对催化剂进行S/G比,温度和压力的变化,并且记录每组条件的甲醇和甲烷形成。结果列于表1中。
实施例7
作为对比例,测试了Cu/Cr/Fe催化剂(催化剂C1,含有1.5wt%Cu,6.0%Cr,63.5%Fe,并且成形为6x6mm的圆柱片),该催化剂作为转移催化剂,用于具有2.25的相对低的O/C比(对应于S/G比=0.17)的合成气的转化。该测试的程序如实施例1所述,不同之处在于使用了内径=7mm的更小的反应器和10.1g的更少量的催化剂。尽管是2.3MPa的低压和低的催化剂量,但是仍然观察到非常高的甲烷产生。
表1 
本发明催化剂和可对比的催化剂在低水蒸气含量气体时的选择性
Figure 657376DEST_PATH_IMAGE002
*NM =未测量
实施例8-11
如下来制备具有不同的助催化剂的催化剂:通过初湿含浸法将实施例1所述ZnAl2O4/ZnO粉末用铜和/或钾盐的水溶液填充。在铜的情况中使用硝酸盐,而在钾的情况中使用碳酸钾。将所形成的粉末干燥,煅烧,与石墨混合和成形为片,如实施例1所述。该促进的催化剂还可以通过助催化剂与氧化锌和氧化铝一起共沉淀来制备。表2列出了本发明的催化剂A,B,C和D的组成wt%。催化剂C和D包含小于500ppm的K。
催化剂A,B,C和D被成形为圆柱片,直径4.5mmx高度6mm。测试程序如下。将1-3g量的催化剂以这样的方式装入内径=5.4mm的铜波纹管反应器中,即,使得粒料彼此被5mm直径的完全烧制的氧化铝隔开。通过外部加热装置将该反应器加热到T=391℃的反应温度。将该温度保持在±3℃的恒定范围内。将该反应器加压到合成气中P=2.5 MPa的反应压力。将通过Bruckner质量流量控制器计量的合成气和通过Knauer泵计量的水蒸气预热和混合,然后通过所述催化剂。调整总流量来获得接近于50000 Nl/kg/h的质量-空间速度(SV)。2g的催化剂填加对应于F=100 Nl/h的流速。合成气体积组成典型的是10.2%CO,6.8%CO2,33.8%H2O,47.2%H2和2.0%Ar,对应于S/G比为0.51。Ar被用作内部标准物。全部成分的浓度是在入口和干燥离开气体二者中,通过Hewlett Packard气相色谱法定期测量的,该色谱法已经朝着已知组成的气体混合物进行了校正。记录C,H和O的质量平衡,并且发现在全部的情况中处于1.00 ±0.03内。在全部的情况中,在记录速率之前,将催化剂在规定条件运行60小时。
表2
CO在本发明催化剂上,在2.5MPa,391±3℃,S/G=0.51时的转化速率
Figure 2009801257744100002DEST_PATH_IMAGE003
*没有用K2CO3填充的催化剂,包含小于500ppm的残留K。
表2列出了催化剂A,B,C和D的活性,这表明了不同的助催化剂的效果。在记录了在湿气中的CO转化速率之后,将水蒸气流量降低到0,同时保持反应器中的温度和压力。在全部的情况中,甲烷形成低于0.1g/kg催化剂/小时。

Claims (6)

1.一种用于富集合成气中的氢气的方法,所述合成气含有氢气,一氧化碳和水蒸气,该方法通过在催化剂上转化一氧化碳和水蒸气来进行,这里所述合成气的氧:碳的摩尔比是1.69-2.25,其中所述催化剂包含铝和锌的氧化物连同一种或多种助催化剂,和其中该一氧化碳和水蒸气的转化是在高温转移条件下进行的,这里该合成气的温度是300℃-400℃,压力是2.3-6.5 MPa。
2.根据权利要求1的方法,其中所述助催化剂选自Na、K、Rb、Cs、Cu、Ti、Zr、稀土元素及其混合物。
3.权利要求2所要求的方法,其中所述助催化剂选自Na、K、Rb、Cs、Cu及其混合物。
4.根据权利要求1的方法,其中该催化剂包含处于活性形式的与助催化剂组合的锌氧化铝尖晶石和氧化锌的混合物,该助催化剂处于选自下面的碱金属的形式:Na、K、Rb、Cs及其混合物,所述催化剂具有的Zn/Al摩尔比是0.5-1.0,并且碱金属的含量是0.4-8.0wt%,基于该氧化的催化剂的重量。
5.含有锌和铝的氧化物连同一种或多种助催化剂的催化剂在转移反应器中的用途,该反应器在如下的条件运行:在其中进入该反应器的合成气的氧:碳的摩尔比是1.69-2.25,来抑制烃副产物的形成。
6.权利要求5的用途,其中所述助催化剂选自Na、K、Rb、Cs、Cu、Ti、Zr、稀土元素及其混合物。
CN200980125774.4A 2008-07-03 2009-06-15 运行hts反应器的方法 Active CN102083745B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA200800935 2008-07-03
DKPA200800935 2008-07-03
PCT/EP2009/004288 WO2010000387A1 (en) 2008-07-03 2009-06-15 Process for operating hts reactor

Publications (2)

Publication Number Publication Date
CN102083745A true CN102083745A (zh) 2011-06-01
CN102083745B CN102083745B (zh) 2014-04-02

Family

ID=40983342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980125774.4A Active CN102083745B (zh) 2008-07-03 2009-06-15 运行hts反应器的方法

Country Status (12)

Country Link
US (1) US8404156B2 (zh)
EP (2) EP2300359B1 (zh)
KR (1) KR101529906B1 (zh)
CN (1) CN102083745B (zh)
BR (1) BRPI0915369B8 (zh)
CA (1) CA2729736C (zh)
ES (2) ES2549382T3 (zh)
MX (1) MX2010014351A (zh)
PL (2) PL2300359T3 (zh)
RU (1) RU2516546C2 (zh)
WO (1) WO2010000387A1 (zh)
ZA (1) ZA201009233B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435182A (zh) * 2017-08-16 2018-08-24 西安向阳航天材料股份有限公司 一种铜系低温变换催化剂的制备方法
CN108883929A (zh) * 2016-02-02 2018-11-23 托普索公司 基于atr的氨工艺和装置
CN110366538A (zh) * 2017-03-07 2019-10-22 托普索公司 具有受控的过量co2和/或nh3的尿素方法
CN110831892A (zh) * 2017-07-13 2020-02-21 托普索公司 生产氨合成气的方法和催化剂
US11498835B2 (en) 2016-02-29 2022-11-15 Haldor Topsøe A/S Low steam/carbon revamp of a plant comprising a steam reforming section and a water-gas shift section

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2008313C2 (en) 2012-02-17 2013-09-02 Stichting Energie Water gas shift process.
GB201501952D0 (en) 2015-02-05 2015-03-25 Johnson Matthey Plc Process
GB201519139D0 (en) 2015-10-29 2015-12-16 Johnson Matthey Plc Process
UA123999C2 (uk) 2015-10-29 2021-07-07 Джонсон Метті Паблік Лімітед Компані Каталізатор конверсії водяного газу
GB201519133D0 (en) 2015-10-29 2015-12-16 Johnson Matthey Plc Process
GB201603298D0 (en) 2016-02-25 2016-04-13 Johnson Matthey Plc Process
PL235786B1 (pl) * 2017-09-29 2020-10-19 Grupa Azoty Spolka Akcyjna Promotowany katalizator cynkowy parowej konwersji tlenku węgla i sposób jego otrzymywania
PL234182B1 (pl) * 2017-09-29 2020-01-31 Inst Nowych Syntez Chemicznych Promotowany katalizator cynkowy parowej konwersji tlenku węgla i sposób jego otrzymywania
BR102020020748A2 (pt) 2020-10-08 2022-04-19 Petróleo Brasileiro S.A. - Petrobras Métodos de preparo de catalisadores de deslocamento do gás d'água a alta tempertaura, catalisadores e processo para redução de monóxido de carbono
WO2022112309A1 (en) 2020-11-24 2022-06-02 Topsoe A/S Method of starting-up a water gas shift reactor
CA3196607A1 (en) 2020-11-24 2022-06-02 Topsoe A/S Process for producing hydrogen from co-rich gases
EP4251561A1 (en) 2020-11-24 2023-10-04 Topsoe A/S Improved water gas shift catalyst
BR102020025161A2 (pt) * 2020-12-09 2022-06-21 Petróleo Brasileiro S.A. - Petrobras Método de preparo de um catalisador de deslocamento do gás dágua a alta tempertaura e processo para reduzir o teor de monóxido de carbono
US20240116756A1 (en) 2022-10-06 2024-04-11 Air Products And Chemicals, Inc. Process and System for Water-Gas Shift Conversion of Synthesis Gas with High CO Concentration

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567866B1 (fr) * 1984-07-20 1987-01-02 Shell Int Research Procede de preparation d'un gaz riche en hydrogene
GB8817480D0 (en) 1988-07-22 1988-08-24 Ici Plc Hydrogen
EP0361648B1 (en) * 1988-07-22 1993-04-07 Imperial Chemical Industries Plc Hydrogen production including a shift reaction process
GB9225372D0 (en) * 1992-12-04 1993-01-27 British Petroleum Co Plc Oxide compositions
EP1149799B1 (en) * 2000-04-27 2003-10-08 Haldor Topsoe A/S Process for the production of a hydrogen rich gas
GB0121680D0 (en) * 2001-09-08 2001-10-31 Ici Plc Catalysts
US6627572B1 (en) * 2002-03-22 2003-09-30 Sud-Chemie Inc. Water gas shift catalyst
US20040105804A1 (en) * 2002-11-29 2004-06-03 Industrial Technology Research Institute Catalyst for water-gas shift reaction and method for converting carbon monoxide and water to hydrogen and carbon dioxide
ES2381105T3 (es) * 2003-02-05 2012-05-23 Haldor Topsoe A/S Procedimiento para el tratamiento de gas de síntesis
CA2520850C (en) * 2003-04-01 2009-08-25 Haldor Topsoe A/S Process for the preparation of a hydrogen-rich stream
JP2004321924A (ja) 2003-04-24 2004-11-18 Toyota Central Res & Dev Lab Inc 水性ガスシフト反応用触媒

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108883929A (zh) * 2016-02-02 2018-11-23 托普索公司 基于atr的氨工艺和装置
US10941038B2 (en) 2016-02-02 2021-03-09 Haldor Topsøe A/S ATR based ammonia process and plant
TWI732818B (zh) * 2016-02-02 2021-07-11 丹麥商托普索公司 用於產生氨合成氣之方法,從此種氣體產生氨之方法,及經配置以執行此等方法的設備
CN108883929B (zh) * 2016-02-02 2022-04-26 托普索公司 基于atr的氨工艺和装置
US11498835B2 (en) 2016-02-29 2022-11-15 Haldor Topsøe A/S Low steam/carbon revamp of a plant comprising a steam reforming section and a water-gas shift section
TWI812588B (zh) * 2016-02-29 2023-08-21 丹麥商托普索公司 低蒸汽/碳改造
CN110366538A (zh) * 2017-03-07 2019-10-22 托普索公司 具有受控的过量co2和/或nh3的尿素方法
CN110831892A (zh) * 2017-07-13 2020-02-21 托普索公司 生产氨合成气的方法和催化剂
CN108435182A (zh) * 2017-08-16 2018-08-24 西安向阳航天材料股份有限公司 一种铜系低温变换催化剂的制备方法

Also Published As

Publication number Publication date
BRPI0915369A2 (pt) 2015-11-03
CN102083745B (zh) 2014-04-02
EP2300359B1 (en) 2015-08-26
RU2011103674A (ru) 2012-08-10
ZA201009233B (en) 2012-04-25
EP2924002B1 (en) 2019-04-24
KR101529906B1 (ko) 2015-06-18
PL2924002T3 (pl) 2019-09-30
RU2516546C2 (ru) 2014-05-20
BRPI0915369B1 (pt) 2019-09-24
PL2300359T3 (pl) 2016-01-29
BRPI0915369B8 (pt) 2020-02-04
EP2924002A1 (en) 2015-09-30
EP2300359A1 (en) 2011-03-30
CA2729736C (en) 2015-09-15
US20110101279A1 (en) 2011-05-05
US8404156B2 (en) 2013-03-26
KR20110039422A (ko) 2011-04-18
ES2728916T3 (es) 2019-10-29
AU2009266113A1 (en) 2010-01-07
MX2010014351A (es) 2011-05-03
WO2010000387A1 (en) 2010-01-07
CA2729736A1 (en) 2010-01-07
ES2549382T3 (es) 2015-10-27

Similar Documents

Publication Publication Date Title
CN102083745B (zh) 运行hts反应器的方法
CN101678329B (zh) 将二氧化碳催化加氢成合成气混合物
EP2237882B1 (en) Iron-based water gas shift catalyst
JP5411133B2 (ja) 二酸化炭素の合成ガスへの接触水素化
JP5285776B2 (ja) 天然ガス及び二酸化炭素からの合成ガス製造用触媒及びその製造方法
US7998897B2 (en) Chromium-free water gas shift catalyst
AU2009325375A1 (en) Method for methanol synthesis using synthesis gas generated by combined reforming of natural gas with carbon dioxide
EP2994226A2 (en) Alkaline earth metal/metal oxide supported catalysts
US5508246A (en) Catalysts for iso-alcohol synthesis from CO+H2
US20180272322A1 (en) Catalyst for dry reforming methane to synthesis gas
WO2005037962A1 (ja) プロパンまたはブタンを主成分とする液化石油ガスの製造方法
CN102015105B (zh) 液化石油气制造用催化剂及使用了该催化剂的液化石油气的制造方法
US10525449B2 (en) Process for preparing a nickel-based catalyst, the nickel-based catalyst, and use thereof in a steam reforming process
AU2009266113B2 (en) Process for operating HTS reactor
CA1220324A (en) Process for the preparation of a hydrogen-rich gas
WO2024111305A1 (ja) 二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法
JP2024075191A (ja) 二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法
JPS63283755A (ja) メタン含有ガス製造用触媒
Spivey et al. Water-gas shift reaction: reduction kinetics and mechanism of
JPS61138535A (ja) メタン含有ガス製造用触媒

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant