CN108883929A - 基于atr的氨工艺和装置 - Google Patents

基于atr的氨工艺和装置 Download PDF

Info

Publication number
CN108883929A
CN108883929A CN201780009261.1A CN201780009261A CN108883929A CN 108883929 A CN108883929 A CN 108883929A CN 201780009261 A CN201780009261 A CN 201780009261A CN 108883929 A CN108883929 A CN 108883929A
Authority
CN
China
Prior art keywords
steam
synthesis gas
high temperature
gas
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780009261.1A
Other languages
English (en)
Other versions
CN108883929B (zh
Inventor
P·J·达尔
A·E·克勒尔延森
N·C·施约德特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57984928&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN108883929(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN108883929A publication Critical patent/CN108883929A/zh
Application granted granted Critical
Publication of CN108883929B publication Critical patent/CN108883929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/046Purification by cryogenic separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fertilizers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种用于生产氨合成气的方法,所述方法包括以下步骤:‑在重整步骤中重整烃进料,由此获得包含CH4、CO、CO2、H2和H2O的合成气;‑在高温变换步骤中在促进的基于锌‑铝氧化物的高温变换催化剂上变换所述合成气,其中重整步骤中的蒸汽/碳比小于2.6。

Description

基于ATR的氨工艺和装置
跟随当今氨生产中的需求和竞争,已经为开发优化氨生产装置做出了重大努力,目的是提高整体能效并降低资金成本。对于更具成本效益的氨生产的需求促进了用于大规模氨生产单元的技术和催化剂的开发,以便从规模经济中受益。
托普索公司在氨生产技术中的最新创新和新一代最新催化剂的开发确保了高成本效益的氨生产和高装置可靠性,单线产能为5000MTPD氨或更高,而今标准最多只有3300MTPD。
在本发明的第一方面,提供了一种方法,其使得能够利用成熟重整技术以低蒸汽/碳运行的工艺流程。
在本发明的第二方面,提供了一种方法,其使得能够以与重整工段相同的低蒸汽/碳比在重整工段的下游运行高温(HT)变换。
在本发明的第三方面,提供了一种工艺流程,其不需要甲烷化工段来除去用于氨合成的补充合成气中的残余碳组分。
在本发明的第四方面,提供了一种能够实现最大单线产能的整体工艺布局。
这些和进一步的优点通过一种用于生产氨合成气的方法来实现,所述方法包括以下步骤:
-在重整步骤中重整烃进料,由此获得包含CH4、CO、CO2、H2和H2O的合成气;
-在高温变换步骤中在促进的基于锌-铝氧化物的HT变换催化剂上变换所述合成气,其中
-重整步骤中的蒸汽/碳比小于2.6。
HT变换被定义为这样的工艺步骤:其中含有CO、CO2、H2和H2O的合成气在300℃至600℃的温度范围内经受变换反应。
在传统的氨装置中,基于铁的HT变换催化剂的标准使用需要约3.0的蒸汽/碳比以避免形成碳化铁。
(1)
碳化铁的形成将削弱催化剂颗粒,并可能导致催化剂解体和压降增加。
碳化铁将催化费-托(Fischer-Tropsch)副产物形成。
(2)
费-托反应消耗氢气,由此降低了变换工段的效率。
然而,根据本发明,使用非Fe催化剂,例如促进的基于锌-铝氧化物的催化剂。例如,托普索公司的SK-501FlexTM HT变换催化剂,其能够实现重整工段和HT变换工段以低至0.3的蒸汽/碳比运行。
因此,在低至0.3的蒸汽/碳比下运行的本发明的方法不同于当今传统氨装置,传统氨装置基于在2.6或更高的蒸汽/碳比下运行的重整和/或HT变换工段。在本方法的有利的实施方案中,活性形式的基于锌-铝氧化物的催化剂包含锌铝尖晶石和氧化锌的混合物与选自Na、K、Rb、Cs及其混合物的碱金属的组合,并且任选地与Cu组合。基于氧化的催化剂的重量,催化剂可以具有0.5至1.0的Zn/Al摩尔比、0.4至8.0wt%的碱金属的含量和0至10%的铜含量。
根据本发明的方法所使用的HT变换催化剂不受对蒸汽与碳比的严格要求的限制,这使得其可以降低变换工段以及重整工段中的蒸汽/碳比。
小于2.6的蒸汽/碳比具有几个优点。总的来说,降低蒸汽/碳比导致通过重整工段和下游的冷却和合成气制备工段的进料加蒸汽流减少。
与高蒸汽/碳比相比,重整工段和变换工段的低蒸汽/碳比能够实现更高的合成气产量。与在重整工段中添加氮气相比,通过氮气洗涤添加的氮气能够实现更高的合成气产量。没有甲烷化工段减少压力损失并且在氨合成工段中使用不含惰性物质的气体能够在氨合成工段中实现更高的产量。
通过这些工段的质量流量减少意味着设备和管道尺寸更小。质量流量减少还导致低温卡路里(其通常不能被利用)的产生降低。这意味着CAPEX和OPEX都有可能降低。
本发明的方法还可包括以下步骤中的一个或多个:
-在一个或多个中温(MT)/低温(LT)变换步骤中变换HT变换出口气体。MT/LT变换步骤可以任选地以比HT变换更高的蒸汽/碳比进行,以限制诸如甲醇的副产物形成。
-任选地,在水洗中从MT/LT变换出口气体中除去甲醇。
-从MT/LT变换出口气体/水洗出口气体除去CO2,低至低于500ppm的水平,优选低至低于20ppm。
-在分子筛干燥器工段中从离开CO2去除工段的气体中除去残余的CO2和H2O。
-在氮气洗涤工段中从离开分子筛干燥器工段的气体中除去CH4、CO和惰性物质,如Ar和He,并将N2/H2比调节至氨合成所需的约3。
-在无惰性物质的氨合成工段中将来自氮气洗涤的调节的出口气体转化成氨。
在优选的实施方案中,重整步骤包括至少自热重整器(ATR)。
由于与已知技术相比,通过本发明的方法对HT变换步骤中的蒸汽/碳比的要求显著降低,本发明可以将通过前端的蒸汽/碳比降低至0.6或依据可能的变换解决方案(shiftsolution)尽可能低。ATR和整个工艺中具有低蒸汽/碳比的优点在于,由于通过装置的总质量流量较低,因此前端需要较小的设备。
ATR的碳进料在ATR中与氧气和额外的蒸汽混合,并且发生至少两种类型的反应的组合。这两个反应是燃烧和蒸汽重整。
燃烧区:
(3)
(4)
热和催化区:
(5)
(6)
甲烷燃烧成一氧化碳和水(4)是一个高度放热的过程。在所有氧气已被转化后,燃烧区出口处可能存在过量的甲烷。
热区是燃烧室的一部分,其中烃的进一步转化通过均相气相反应进行,主要是(5)和(6)。甲烷的吸热蒸汽重整(5)消耗了燃烧区中产生的大部分热量。
在燃烧室之后,可以存在固定催化剂床,即催化区,其中最终的烃转化通过非均相催化反应进行。在催化区的出口处,合成气优选接近于反应(5)和(6)的平衡。
重整工段中的蒸汽/碳比可以是2.6至0.1、2.4至0.1、2至0.2、1.5至0.3、1.4至0.4,例如1.2、1.0或0.6。
蒸汽/碳比被定义为添加至HT变换工段上游的重整工段的所有蒸汽(即可以经由进料气体、氧气进料通过添加到燃烧器等而添加到重整工段的蒸汽)和添加至重整工段的进料气体中的烃的摩尔比。
因此,根据本发明,可以在重整步骤和高温变换步骤之间不添加额外的蒸汽来运行该工艺。
在有利的实施方案中,ATR中的空速低,例如小于20.000Nm3C/m3/h,优选小于12.000Nm3C/m3/h,最优选小于7000Nm3C/m3/h。空速可以被定义为每催化剂体积的体积碳流量,因此与催化剂区中的转化率无关。
在优选的实施方案中,HT变换步骤中的温度为300至600℃,例如360至470℃。这意味着根据本发明的方法,可以在蒸汽/碳比比已知方法可能的蒸汽/碳比低得多的进料上运行高温变换反应。例如,高温变换入口温度可以是300至400℃,例如350至380℃。
优选地,提供预重整器作为例如ATR上游的重整工段的一部分。在预重整器中,所有高级烃都可以被转化为碳氧化物和甲烷,对于轻质烃,预重整器也是有利的。提供预重整器可以具有若干优点,包括减少ATR中所需的O2消耗并允许更高的ATR入口温度,因为通过预热断裂的风险被最小化。由此达到点火条件。此外,预重整器可以提供有效的硫保护,导致实际无硫的进料气体进入ATR和下游系统。预重整步骤可以在300至650℃,优选390至480℃的温度下进行。
在各种实施方案中,使用火焰加热器来预热天然气进料、预重整器和ATR进料以及用于蒸汽过热。可以通过燃烧天然气、废气(来自N2洗涤)、尾气(来自惰性排出气体分离器)和闪蒸气体(来自CO2去除工段)的混合物来产生必要的热量。
低蒸汽/碳比可以导致低于最佳的变换转化率,这意味着在一些实施方案中,提供一个或多个额外的变换步骤可能是有利的。一个或多个额外的变换步骤可以包括MT变换和/或LT变换和/或HT变换。一般而言,变换步骤中转化的CO越多,则获得的H2越多,且所需的前端越小。
从下面给出的放热变换反应也可以看出这一点。
(7)
在HT变换步骤之后,例如在一个或多个随后的MT或LT变换和/或HT变换步骤之前,可以任选地添加蒸汽,以最大化所述随后的HT、MT和/或LT变换步骤的性能。
具有两个或更多个串联的HT变换步骤(例如包括两个或更多个串联的变换反应器的HT变换步骤,例如可以在其间进行冷却和/或蒸汽添加)可能是有利的,因为它可以在高温下提供增加的变换转化率,这可能减少所需的变换催化剂体积,并因此可能减少资本支出。此外,高温减少了甲醇的形成,而甲醇是典型的变换步骤副产物。
优选地,MT和LT变换步骤可以在促进的铜/锌/氧化铝催化剂上进行。例如,低温变换催化剂类型可以是LK-821-2,其特征为高活性、高强度和对硫中毒的高耐受性。可以安装特殊催化剂的顶层,以捕获气体中可能的氯并防止液滴到达变换催化剂。
MT变换步骤可以在190至360℃的温度下进行。
LT变换步骤可以在Tdew+15至290℃,例如200至280℃的温度下进行。例如,低温变换入口温度为Tdew+15至250℃,例如190至210℃。
降低蒸汽/碳比导致工艺气体的露点降低,这意味着可以降低MT和/或LT变换步骤的入口温度。较低的入口温度可以意味着变换反应器的CO滑动出口较低。
众所周知,MT/LT变换催化剂易于产生甲醇作为副产物。通过增加蒸汽/碳可以减少这样的副产物形成。MT/LT变换后的CO2洗涤需要热量以再生CO2吸收溶液。该热量通常作为来自工艺气体的显热提供,但这并不总是足够的。通常,额外的蒸汽燃烧再沸器提供缺少的热量。任选地向工艺气体中添加蒸汽可以替代该额外的蒸汽燃烧再沸器,并同时确保减少MT/LT变换工段中的副产物形成。
由MT/LT变换催化剂形成的甲醇可以任选地在置于CO2去除步骤的上游或在CO2产物流上的水洗中从合成气中除去。
在许多有利的实施方案中,可以在一个或多个变换步骤之后/下游执行CO2去除步骤。在标准设计中,经处理的气体中的CO2含量为500vppm。
在优选的实施方案中,可以使用CO2去除步骤将CO2含量降低至低于400vppm CO2,例如低于100vppm或者在一些优选的实施方案中降低至20vppm或更低。
该方法可以进一步包括洗涤步骤,优选N2洗涤。N2洗涤可以用于多种目的,例如合成气的纯化以及添加用于下游氨合成的化学计量所需的氮气。
用于N2洗涤单元(NWU)的氮气可以由空气分离单元(ASU)供应,该空气分离单元将大气空气分离成其主要成分为氮气和氧气。氧气用于ATR,氮气用于NWU。
在一个或多个变换工段和CO2去除单元之后,气体可能包含残余的CO和CO2以及少量的CH4、Ar、He和H2O。
优选在N2洗涤之前除去CO2和H2O,否则它们将在N2洗涤的低操作温度下冻结。这可以例如通过在分子筛干燥器中吸附来完成,该干燥器由至少两个容器组成,其中一个在操作而另一个在再生。氮气可以用作用于再生的干燥气体。
在NWU中,合成气在柱中用液氮洗涤,其中CH4、Ar、He和CO被除去。经纯化的合成气优选仅含有ppm水平的Ar和CH4
含有杂质和一些损失的氮气的废气可以有利地用作火焰加热器中的燃料。
在NWU之后,可以将氮气添加到工艺流中,以便将至氨合成回路的补充流中的N2含量调节到优选的为3的H2/N2比。
因为经纯化的合成气现在仅含有用于氨合成的正确化学计量比的H2和N2加上ppm水平的Ar和CH4,所以氨合成工段可以被认为是无惰性物质的。
当不需要吹扫来自回路的气体时,氨合成回路被定义为无惰性物质的,因为没有这种吹扫,惰性物质的积聚可忽略不计。
实施例
以下位置是指单元的入口。
表1:流量和操作条件。
主要组分
表2:料流组成。位置指图1。
预重整器:T进入/T离开:450/449℃(ΔT=-1℃)
蒸汽/碳比,S/C=0.9预重整器入口
ATR:
工艺气体在650℃下进入ATR,并且氧气的温度约为260℃。
根据说明书中的定义,蒸汽/碳比S/C=1.0
工艺气体在约1025℃下通过耐火材料衬里的出口工段和输送管线离开重整工段至工艺气体冷却工段中的废热锅炉。
变换工段:
HT:T进入/T离开:360/469℃(ΔT=109℃)
LT:T进入/T离开:205/280℃(ΔT=75℃)
重整后,气体中存在约26.7vol%的CO(干基)。在高温CO转化器中,CO含量降低至约11.8vol%,并且温度从360℃升高至469℃。来自高温CO转化器的流出物的热含量在废热锅炉和锅炉进料水预热器中回收。
由此将工艺气体冷却至205℃并传递至低温CO转化器,其中将CO含量降低至约3.8vol%,同时温度升至280℃。
CO2去除工段
来自变换工段的出口流中的CO2含量降低至20ppm。进入CO2去除工段的合成气中的所有甲醇都将与工艺冷凝物和CO2产物流离开该工段。对进入CO2去除工段的合成气进行水洗(参见图2)或对CO2产物流进行水洗可以使CO2产物流中的甲醇含量最小化。
N2洗涤工段
该工段的第一步骤是在分子筛干燥器中定量地除去CO2和H2O。下一步骤是N2液体洗涤,将H2和N2以外的组分去除至ppm水平。第三步骤是使用气态氮将H2/N2比调节至约3。
合成气压缩机:
在离心式两缸合成气压缩机中将合成气从31.4kg/cm2g压缩至185.5kg/cm2g。最后一个缸的一部分形成合成回路中的再循环压缩机。
无惰性物质回路:当不需要吹扫气体系统时,回路可以被定义为惰性。
与补充合成气一起进入回路的少量惰性气体将积聚在回路中,直到溶解在离开排放容器(let-down vessel)的液氨中的惰性气体的量等于进入回路的量。来自排放容器的尾气被再循环回合成气压缩机。
再循环的惰性物质水平取决于溶解在离开氨分离器和排放容器的液氨中的惰性物质的水平。
如果需要,可以通过小气流的间歇吹扫来降低回路中的惰性气体水平。
在该实施例中,离开N2洗涤的经纯化的气体中的惰性物质水平是17ppmAr,在补充气体中为53ppm Ar(在添加来自排放容器的尾气再循环流之后),和在转化器入口为0.30%Ar。
在图2中,显示了另一个实例,其包括甲醇去除工段。

Claims (17)

1.一种用于生产氨合成气的方法,所述方法包括以下步骤:
-在重整步骤中重整烃进料,由此获得包含CH4、CO、CO2、H2和H2O的合成气;
-在高温变换步骤中在促进的基于锌-铝氧化物的HT变换催化剂上变换所述合成气,其中
-重整步骤中的蒸汽/碳比小于2.6。
2.根据权利要求1所述的方法,其中高温变换步骤中的温度为300至600℃,例如345至550℃。
3.根据前述权利要求中任一项所述的方法,其中基于氧化的催化剂的重量,活性形式的促进的基于锌-铝氧化物的HT变换催化剂包含0.5至1.0的Zn/Al摩尔比,以及0.4至8.0wt%的碱金属含量和0至10%的铜含量。
4.根据前述权利要求中任一项所述的方法,其中重整步骤中的蒸汽/碳比为2.6至0.1、2.4至0.1、2至0.2、1.5至0.3或1.4至0.4,例如1.2或1或0.6。
5.根据前述权利要求中任一项所述的方法,其中重整在自热重整器(ATR)中发生。
6.根据前述权利要求中任一项所述的方法,其中ATR中的空速小于20.000Nm3C/m3/h,优选小于12.000Nm3C/m3/h,且最优选小于7000Nm3C/m3/h。
7.根据前述权利要求中任一项所述的方法,还包括预重整步骤。
8.根据前述权利要求中任一项所述的方法,其中高温变换步骤是一个或多个串联的高温变换步骤,优选可以在其间进行冷却和/或蒸汽添加。
9.根据前述权利要求中任一项所述的方法,还包括在高温变换步骤下游的一个或多个额外的变换步骤。
10.根据前述权利要求中任一项所述的方法,其中一个或多个额外的变换步骤是一个或多个中温变换步骤和/或一个或多个低温变换步骤。
11.根据前述权利要求中任一项所述的方法,其中在高温变换步骤下游的一个或多个额外的变换步骤之前,任选地将蒸汽添加到合成气中。
12.根据前述权利要求中任一项所述的方法,其中将离开高温转移步骤下游的一个或多个额外的变换步骤的合成气任选地用水洗涤,以降低甲醇含量。
13.根据前述权利要求中任一项所述的方法,还包括CO2去除步骤,从合成气中将CO2去除至小于400vppm CO2,例如低于100vppm,或在一些优选的实施方案中低至20vppm或更低。
14.根据前述权利要求中任一项所述的方法,还包括N2洗涤步骤。
15.一种用于生产氨的方法,其中氨合成气通过根据权利要求1至14的方法实现。
16.根据权利要求15所述的用于生产氨的方法,其中氨工艺回路是无惰性物质回路。
17.一种装置,其被配置用于实施根据前述权利要求1至16中任一项所述的方法。
CN201780009261.1A 2016-02-02 2017-02-02 基于atr的氨工艺和装置 Active CN108883929B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201670056 2016-02-02
DKPA201670056 2016-02-02
PCT/EP2017/052247 WO2017134162A1 (en) 2016-02-02 2017-02-02 Atr based ammonia process and plant

Publications (2)

Publication Number Publication Date
CN108883929A true CN108883929A (zh) 2018-11-23
CN108883929B CN108883929B (zh) 2022-04-26

Family

ID=57984928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780009261.1A Active CN108883929B (zh) 2016-02-02 2017-02-02 基于atr的氨工艺和装置

Country Status (14)

Country Link
US (1) US10941038B2 (zh)
EP (1) EP3411327B1 (zh)
KR (1) KR102438434B1 (zh)
CN (1) CN108883929B (zh)
AR (1) AR107517A1 (zh)
BR (1) BR112018014726B1 (zh)
CA (1) CA3010549C (zh)
EA (1) EA039544B1 (zh)
MX (1) MX2018008598A (zh)
MY (1) MY191228A (zh)
PL (1) PL3411327T3 (zh)
TW (1) TWI732818B (zh)
WO (1) WO2017134162A1 (zh)
ZA (1) ZA201804078B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831892A (zh) * 2017-07-13 2020-02-21 托普索公司 生产氨合成气的方法和催化剂
CN113795460A (zh) * 2019-05-02 2021-12-14 托普索公司 基于atr的氢气方法和设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201603298D0 (en) 2016-02-25 2016-04-13 Johnson Matthey Plc Process
MX2019010585A (es) * 2017-03-07 2019-10-24 Haldor Topsoe As Proceso de amoniaco usando un proceso de desplazamiento avanzado.
KR20210018932A (ko) * 2018-06-12 2021-02-18 할도르 토프쉐 에이/에스 저-철 촉매를 사용한 메탄올 제조 과정
GB202009970D0 (en) * 2020-06-30 2020-08-12 Johnson Matthey Plc Low-carbon hydrogen process
BR112023003016A2 (pt) 2020-08-17 2023-04-04 Topsoe As Combustível de hidrogênio com baixo teor de carbono
BR112023002917A2 (pt) 2020-08-17 2023-03-21 Topsoe As Processo e planta de hidrogênio baseado em atr
BR102020020748A2 (pt) 2020-10-08 2022-04-19 Petróleo Brasileiro S.A. - Petrobras Métodos de preparo de catalisadores de deslocamento do gás d'água a alta tempertaura, catalisadores e processo para redução de monóxido de carbono
JP2023550152A (ja) 2020-11-24 2023-11-30 トプソー・アクチエゼルスカベット Coリッチガスから水素を製造するための方法
WO2023213862A1 (en) * 2022-05-05 2023-11-09 Topsoe A/S Method for production of blue ammonia
WO2023217804A1 (en) 2022-05-12 2023-11-16 Topsoe A/S Process and plant for producing synthesis gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618318A (zh) * 2008-07-03 2010-01-06 赫多特普索化工设备公司 无铬水煤气变换催化剂
CN102083745A (zh) * 2008-07-03 2011-06-01 赫多特普索化工设备公司 运行hts反应器的方法
CN102971251A (zh) * 2010-07-06 2013-03-13 阿梅尼亚·卡萨莱股份有限公司 用于生产氨合成气的工艺
EP2310313B1 (en) * 2008-08-08 2014-06-25 Universita' Degli Studi di Salerno Autothermic catalytic reactor with flat temperature profile
CN105189340A (zh) * 2013-05-10 2015-12-23 卡萨尔公司 使用高温变换和低蒸汽/碳比率生产氨合成气的方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382045A (en) 1965-05-10 1968-05-07 Catalysts & Chemicals Inc Production of hydrogen
DE2964435D1 (en) * 1978-11-10 1983-02-03 Ici Plc Integrated process for synthesis of methanol and of ammonia
FR2567866B1 (fr) 1984-07-20 1987-01-02 Shell Int Research Procede de preparation d'un gaz riche en hydrogene
CA2004216A1 (en) 1988-11-30 1990-05-31 Joseph D. Korchnak Production of ammonia from hydrocarbonaceous feedstock
DE69221556T2 (de) 1991-07-09 1997-12-18 Ici Plc Synthesegaserzeugung
US5180570A (en) 1992-01-23 1993-01-19 Lee Jing M Integrated process for making methanol and ammonia
DE4334257A1 (de) 1993-10-07 1995-04-13 Linde Ag Verfahren zum Gewinnen von Ammoniak
US20020061277A1 (en) * 2000-09-25 2002-05-23 Engelhard Corporation Non-pyrophoric water-gas shift reaction catalysts
DE10055818A1 (de) 2000-11-10 2002-05-23 Ammonia Casale Sa Verfahren zum Herstellen von Ammoniak aus einem Stickstoff-Wasserstoff-Gemisch aus Erdgas
US20040105804A1 (en) 2002-11-29 2004-06-03 Industrial Technology Research Institute Catalyst for water-gas shift reaction and method for converting carbon monoxide and water to hydrogen and carbon dioxide
CA2728858C (en) * 2008-06-26 2014-12-23 Haldor Topsoe A/S Process for the production of ammonia
EP2199253A1 (en) 2008-12-18 2010-06-23 Ammonia Casale S.A. Process and equipment for the production of ammonia make-up syngas with an air separation unit as nitrogen source
GB0914500D0 (en) 2009-08-19 2009-09-30 Johnson Matthey Plc Process
EP2547620A1 (en) 2010-03-16 2013-01-23 Shell Oil Company A process for producing hydrogen
EP2736840B1 (en) 2011-07-26 2019-05-08 Stamicarbon B.V. acting under the name of MT Innovation Center Method for production of hydrogen rich gas mixtures
WO2013095130A1 (en) 2011-12-19 2013-06-27 Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center Process for producing ammonia and urea
EP2631213A1 (en) 2012-02-24 2013-08-28 Ammonia Casale S.A. Process for producing ammonia synthesis gas and a related front-end of an ammonia plant
EA031391B1 (ru) 2012-06-19 2018-12-28 Хальдор Топсёэ А/С Способ инициирования процесса газ-в-жидкость
WO2014056535A1 (en) 2012-10-11 2014-04-17 Haldor Topsøe A/S Process for the production of synthesis gas
US9643856B2 (en) 2013-08-07 2017-05-09 Kellogg Brown+Root LLC Methods and systems for making ammonia in a double ammonia converter system
US20150203359A1 (en) * 2014-01-17 2015-07-23 Air Products And Chemicals, Inc. System and Process for Producing Ammonia Using an Ion Transport Membrane, Gasifier, and Ammonia Synthesis Unit
GB201501952D0 (en) 2015-02-05 2015-03-25 Johnson Matthey Plc Process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618318A (zh) * 2008-07-03 2010-01-06 赫多特普索化工设备公司 无铬水煤气变换催化剂
CN102083745A (zh) * 2008-07-03 2011-06-01 赫多特普索化工设备公司 运行hts反应器的方法
EP2310313B1 (en) * 2008-08-08 2014-06-25 Universita' Degli Studi di Salerno Autothermic catalytic reactor with flat temperature profile
CN102971251A (zh) * 2010-07-06 2013-03-13 阿梅尼亚·卡萨莱股份有限公司 用于生产氨合成气的工艺
CN105189340A (zh) * 2013-05-10 2015-12-23 卡萨尔公司 使用高温变换和低蒸汽/碳比率生产氨合成气的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831892A (zh) * 2017-07-13 2020-02-21 托普索公司 生产氨合成气的方法和催化剂
CN113795460A (zh) * 2019-05-02 2021-12-14 托普索公司 基于atr的氢气方法和设备

Also Published As

Publication number Publication date
US10941038B2 (en) 2021-03-09
EP3411327A1 (en) 2018-12-12
EA201891734A1 (ru) 2019-01-31
WO2017134162A1 (en) 2017-08-10
AR107517A1 (es) 2018-05-09
BR112018014726A2 (pt) 2018-12-11
CA3010549C (en) 2023-01-17
KR20180111842A (ko) 2018-10-11
CA3010549A1 (en) 2017-08-10
CN108883929B (zh) 2022-04-26
KR102438434B1 (ko) 2022-09-01
TWI732818B (zh) 2021-07-11
MY191228A (en) 2022-06-09
ZA201804078B (en) 2021-10-27
BR112018014726B1 (pt) 2023-04-18
EA039544B1 (ru) 2022-02-09
TW201730099A (zh) 2017-09-01
MX2018008598A (es) 2018-12-10
PL3411327T3 (pl) 2022-03-14
EP3411327B1 (en) 2021-12-08
US20190039886A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CN108883929A (zh) 基于atr的氨工艺和装置
US20220194789A1 (en) Atr-based hydrogen process and plant
CN110267916A (zh) 使用高级变换工艺的氨方法
CN108368037B (zh) 生产甲醛稳定的脲的整合方法
US20230271829A1 (en) ATR-Based Hydrogen Process and Plant
CN107250106B (zh) 用于生产甲醛稳定化的尿素的整合方法
AU2019269094B2 (en) Process for synthesising methanol
WO2023218160A1 (en) Process for synthesising methanol
OA18940A (en) ATR based ammonia process and plant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant