WO2024111305A1 - 二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法 - Google Patents

二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法 Download PDF

Info

Publication number
WO2024111305A1
WO2024111305A1 PCT/JP2023/037839 JP2023037839W WO2024111305A1 WO 2024111305 A1 WO2024111305 A1 WO 2024111305A1 JP 2023037839 W JP2023037839 W JP 2023037839W WO 2024111305 A1 WO2024111305 A1 WO 2024111305A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carbon dioxide
dioxide reduction
nitrate
mass
Prior art date
Application number
PCT/JP2023/037839
Other languages
English (en)
French (fr)
Inventor
修身 山本
英明 隅
千晴 海田
範立 椿
英洛 何
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2024111305A1 publication Critical patent/WO2024111305A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a carbon dioxide reduction catalyst device, a carbon dioxide reduction method, and a method for manufacturing a catalyst.
  • the present invention was made in consideration of the above, and aims to provide a carbon dioxide reduction catalyst device that can preferably produce hydrocarbons with 8 to 16 carbon atoms through a carbon dioxide hydrogenation reaction.
  • the present invention relates to a carbon dioxide reduction catalyst device that reduces carbon dioxide by hydrogenating it to produce hydrocarbons, and has a first catalyst containing Fe and at least one of Ga and Zr as catalytic metals, and a second catalyst containing Fe and Co as catalytic metals, the second catalyst being disposed downstream of the first catalyst.
  • a carbon dioxide reduction catalyst device according to any one of (1) to (3), in which the second catalyst contains 10 to 40 mass % Co in the catalytic metal.
  • the carbon dioxide reduction catalyst device according to any one of (1) to (5), wherein the first catalyst contains at least one of an Fe-Ga composite oxide containing Fe and Ga, and an Fe-Zr composite oxide containing Fe and Zr.
  • the present invention also relates to a carbon dioxide reduction method using the carbon dioxide reduction catalyst device described in any one of (1) to (6), in which the catalyst temperature T2 of the second catalyst is lower than the catalyst temperature T1 of the first catalyst.
  • the present invention also relates to a method for producing the first catalyst described in (1), which includes a coprecipitation step of extracting a precipitate by a coprecipitation method from an aqueous solution in which a predetermined amount of the Fe nitrate and at least one of the Ga nitrate and the Zr nitrate are dissolved in distilled water.
  • the method for producing the catalyst described in (9) includes an impregnation step following the coprecipitation step, in which an aqueous solution containing Na is dropped onto the precipitate, the precipitate is dried for a predetermined period of time, and the resulting powder is calcined at a predetermined temperature.
  • the present invention provides a carbon dioxide reduction catalyst device that can preferably produce hydrocarbons with 8 to 16 carbon atoms through a carbon dioxide hydrogenation reaction.
  • FIG. 1 is a diagram showing a configuration of a carbon dioxide reduction catalyst device according to a first embodiment (Example 1).
  • FIG. FIG. 11 is a diagram showing the configuration of a carbon dioxide reduction catalyst device according to a second embodiment (Example 2).
  • FIG. 2 is a diagram showing the configuration of a carbon dioxide reduction catalyst device according to a comparative example.
  • FIG. 2 is a diagram showing the configuration of a carbon dioxide reduction catalyst device according to a comparative example.
  • 1 is a graph comparing C 8 -C 16 yields by the carbon dioxide reduction catalyst devices of the examples and the comparative examples.
  • 1 is a graph showing the relationship between carbon number and selectivity in the carbon dioxide reduction catalyst device of Comparative Example 1.
  • 11 is a graph showing the relationship between carbon number and selectivity in the carbon dioxide reduction catalyst device of Comparative Example 2.
  • 4 is a graph showing the relationship between carbon number and selectivity in the carbon dioxide reduction catalyst device of Example 1.
  • 2 is a chart showing the relationship between C 8 -C 16 selectivity and CO 2 conversion and C 8 -C 16 yield for examples and comparative examples.
  • 1 is a graph showing the relationship between the amount of Na added and the CO2 conversion rate in the examples and comparative examples.
  • 1 is a graph showing the relationship between the amount of Na added and the C 8 -C 16 selectivity in Examples and Comparative Examples.
  • 1 is a graph showing the relationship between the amount of Na added and the C 8 -C 16 production rate in Examples and Comparative Examples.
  • 1 is a graph showing the relationship between the amount of Co added and the CO2 conversion rate in the examples and comparative examples. 1 is a graph showing the relationship between the amount of Co added and the C 8 -C 16 selectivity in Examples and Comparative Examples. 1 is a graph showing the relationship between the amount of Co added and the C 8 -C 16 production rate in Examples and Comparative Examples.
  • the carbon dioxide reduction catalyst device 1 has a catalytic reactor 20 having a first catalyst C1, and a catalytic reactor 30 having a second catalyst C2.
  • the catalytic reactor 20 and the catalytic reactor 30 are connected by a flow path L, with the catalytic reactor 20 provided on the upstream side and the catalytic reactor 30 provided on the downstream side.
  • the first catalyst C1 which is the carbon dioxide reduction catalyst according to this embodiment, contains Fe (iron) as an essential catalytic metal, and contains at least one of Ga (gallium) and Zr (zirconium). It is preferable that it further contains Na (sodium).
  • the carbon dioxide reduction reaction using the first catalyst C1 according to this embodiment is a reaction in which a mixed gas of H 2 (hydrogen) and CO 2 (carbon dioxide) is used as a raw material, and a reverse water gas shift reaction in which CO 2 is reduced to CO (carbon monoxide) and an FT synthesis reaction in which CO is converted to hydrocarbons are carried out in one stage to produce hydrocarbons.
  • the catalyst according to this embodiment contributes to both the reverse water gas shift reaction and the FT synthesis reaction. Compared to the conventional FT synthesis reaction, the carbon dioxide reduction reaction using the catalyst according to this embodiment can produce hydrocarbons having a carbon number of 8 to 16 with high efficiency, even under a high flow rate of, for example, a space velocity SV (Space Velocity) of about 5,000 h ⁇ 1 .
  • SV Space Velocity
  • the Fe contained in the catalytic metal of the first catalyst C1 may be a compound such as an oxide, a carbonate compound, a nitrate compound, or a sulfate compound, and is preferably an oxide. Two or more of these compounds may be contained. It is more preferable that Fe is contained in the catalytic metal as at least one of an Fe-Ga composite oxide containing Fe and Ga, and an Fe-Zr composite oxide containing Fe and Zr.
  • the Fe particles can be made more carbide in the FT synthesis reaction, which promotes the CH 2 growth reaction in the catalyst and promotes the growth of carbon chains.
  • the Fe content in the catalytic metal of the first catalyst C1 is preferably 55 to 90 mass % in terms of metal atoms, and more preferably 60 to 75 mass %.
  • the Ga contained in the catalytic metal of the first catalyst C1 may be, like Fe, a compound such as an oxide, a carbonate compound, a nitrate compound, or a sulfate compound, and is preferably an oxide. Two or more of these compounds may be contained. It is more preferable that Ga is contained in the catalytic metal as an Fe-Ga composite oxide containing Fe and Ga.
  • the Ga content in the catalytic metal of the first catalyst C1 is preferably 10-30 mass% in terms of metal atoms, and more preferably 20-30 mass%. If the Ga content is less than 10 mass%, the catalytic metal may not be sufficiently finely divided. By keeping the Ga content at 30 mass% or less, it is possible to avoid the adverse effects of Ga covering the reactive sites of Fe, and to prevent a decrease in catalytic activity.
  • the Zr contained in the catalytic metal of the first catalyst C1 may be, like Fe, a compound such as an oxide, a carbonate compound, a nitrate compound, or a sulfate compound, and is preferably an oxide. Two or more of these compounds may be contained. It is more preferable that Zr is contained in the catalytic metal as an Fe-Zr composite oxide containing Fe and Zr.
  • the Zr content in the catalyst metal is preferably more than 0% by mass and not more than 15% by mass, and more preferably 5 to 10% by mass, calculated as metal atoms. By keeping the Zr content at 15% by mass or less, it is possible to avoid the adverse effects of Zr covering the reactive sites of Fe, and to prevent a decrease in catalytic activity.
  • the catalytic metal of the first catalyst C1 may contain both Ga and Zr.
  • the catalytic metal contains both Ga and Zr, it is more preferable that these catalytic metals are contained in the catalytic metal as an Fe-Ga-Zr composite oxide containing Fe, Zr, and Ga. Since the Fe-Ga-Zr composite oxide is finely divided compared to compounds such as iron oxide, the reaction sites of the Fe catalyst are increased, and the reaction time of the FT synthesis reaction, i.e., the time for the carbon chains of the generated hydrocarbons to grow, can be secured.
  • the first catalyst C1 preferably further contains Na as a catalytic metal.
  • Na functions as a promoter in the catalytic metal, and by capturing CO 2 as Na 2 CO 3 , it can promote the reverse water gas shift reaction in which CO is produced from H 2 and CO 2 , thereby improving the CO 2 conversion rate.
  • Na is preferably present on the surface of the Fe-Zr composite oxide or the Fe-Ga-Zr composite oxide in the form of an oxide or the like, separately from the Fe-Zr composite oxide or the Fe-Ga-Zr composite oxide.
  • the catalytic metal may contain an alkali metal such as Li, K, Rb, or Cs instead of or together with Na.
  • the Na content in the catalytic metal of the first catalyst C1 is preferably 0.5 to 1.5 mass%, and more preferably 1.0 mass%.
  • the Na content 0.5 mass% or more it is possible to sufficiently improve the production efficiency of hydrocarbons with carbon numbers of 8 to 16.
  • the second catalyst C2 essentially contains Fe (iron) and Co (cobalt) as catalytic metals. It is preferable that the second catalyst C2 further contains Na (sodium).
  • the second catalyst C2 is disposed downstream of the first catalyst C1, and increases the carbon number of the hydrocarbons produced by the first catalyst C1, thereby improving the production rate (yield) of hydrocarbons with a carbon number of 8 to 16.
  • the Fe contained in the catalytic metal of the second catalyst C2 may be a compound such as an oxide, carbonate compound, nitrate compound, or sulfate compound, and is preferably an oxide. Two or more of these compounds may be contained. It is more preferable that Fe is contained in the catalytic metal as an Fe-Co composite oxide containing Fe and Co. By using a catalytic metal containing an Fe-Co composite oxide, the growth of carbon chains can be promoted compared to compounds such as iron oxide, since Co itself has carbon growth reactivity.
  • the Fe content in the catalytic metal of the second catalyst C2 is preferably 60 to 90 mass % in terms of metal atoms, and more preferably 70 to 80 mass %.
  • the Co contained in the catalytic metal of the second catalyst C2 may be a compound such as an oxide, carbonate compound, nitrate compound, sulfate compound, etc., similar to Fe, and is preferably an oxide. Two or more of these compounds may be contained. It is more preferable that Co is contained in the catalytic metal as an Fe-Co composite oxide containing Fe and Co.
  • the Co content in the catalytic metal of the second catalyst C2 is preferably 10-40 mass% in terms of metal atoms, and more preferably 20-30 mass%.
  • the Co content 10 mass% or more the carbon growth reactivity of Co itself can be expressed.
  • the Co content 40 mass% or less the generation of methane, a by-product, can be suppressed.
  • the function of reducing carbon dioxide to carbon monoxide in the iron catalyst (reverse water gas shift reaction) can be maintained.
  • the second catalyst C2 preferably further contains Na as a catalytic metal.
  • Na functions as a promoter in the catalytic metal.
  • Na is preferably present on the surface of the Fe-Co composite oxide in the form of an oxide or the like, separate from the Fe-Co composite oxide.
  • the catalytic metal may contain an alkali metal such as Li, K, Rb, or Cs in place of or together with Na.
  • the Na content in the catalytic metal of the second catalyst C2 is preferably 0.5 to 1.5 mass%, and more preferably 1.0 mass%.
  • the Na content 0.5 mass% or more the basicity of the iron catalyst can be increased, and the production efficiency of hydrocarbons with carbon numbers of 8 to 16 can be sufficiently improved.
  • the Na content 1.5 mass% or less the adverse effects caused by Na covering the reaction sites of Fe can be avoided, the production of carbon monoxide as a by-product can be suppressed, and a decrease in catalytic activity can be prevented.
  • the configuration of the catalytic reactor 20 and the catalytic reactor 30 is not particularly limited, and a known configuration can be applied.
  • a fixed-bed flow-type reaction device in which a powdered, granular, or pellet-shaped catalyst or a carrier carrying a catalyst is filled in a flow path having a predetermined shape can be mentioned.
  • the catalytic reactor 20 and the catalytic reactor 30 are independent from each other, and the catalyst temperatures can be set to different temperatures by a heating device (not shown).
  • a carbon dioxide reduction catalyst device 1a according to a second embodiment of the present invention will be described with reference to Fig. 2A.
  • the configuration of the carbon dioxide reduction catalyst device 1a is similar to that of the first embodiment, except that it has a water trap unit 40 in the middle of the flow path L.
  • the water trap unit 40 removes water from the fluid supplied to the second catalyst C2. This makes it possible to shift the chemical equilibrium in the catalytic reaction by the second catalyst C2 in the direction of increasing the carbon number of the hydrocarbons. Therefore, the yield of hydrocarbons with a carbon number of 8 to 16 can be improved.
  • the water trap section 40 may be any of the conventionally known types. For example, it may be made up of a bent pipe, in which condensed water is stored at the bent portion, and condensed water that exceeds a certain amount is discharged outside the system. In addition to the above, the water trap section 40 may also have a configuration in which the pipe itself is cooled by ice cooling or the like to trap condensed water. These may be used alone or in combination.
  • the carbon dioxide reduction method according to this embodiment is carried out using the carbon dioxide reduction catalyst device 1 or 1a.
  • the carbon dioxide reduction method includes a first catalytic reaction step in which a gas containing carbon dioxide is brought into contact with a first catalyst C1 arranged on the upstream side, and a second catalytic reaction step in which a gas containing hydrocarbons produced in the first catalytic reaction step is brought into contact with a second catalyst C2 arranged on the downstream side to increase the carbon number.
  • a step of removing moisture from the gas containing hydrocarbons produced in the first catalytic reaction step by a water trap unit 40 may be included.
  • the catalyst temperature T2 of the second catalyst C2 in the second catalytic reaction step is preferably lower than the catalyst temperature T1 of the first catalyst C1 in the first catalytic reaction step. This makes it possible to control the activity of Co contained in the second catalyst, and further improve the yield of hydrocarbons with carbon numbers of 8 to 16.
  • the catalyst temperature T1 is preferably set to, for example, 340 to 400°C, and the catalyst temperature T2 is preferably set to, for example, 260 to 340°C.
  • the first catalyst production method according to the present embodiment preferably includes a coprecipitation step and an impregnation step.
  • the coprecipitation step is a step of extracting a catalyst precursor precipitate by a coprecipitation method from an aqueous solution in which a nitrate of Fe, and at least one of a nitrate of Ga and a nitrate of Zr are dissolved in a predetermined amount of distilled water. At least one of an Fe-Ga composite oxide, an Fe-Zr composite oxide, and an Fe-Ga-Zr composite oxide is formed by the coprecipitation step.
  • the impregnation process is a process in which an aqueous solution containing Na is dropped onto the precipitate obtained by the coprecipitation process, dried for a predetermined time, and the resulting powder is fired at a predetermined temperature.
  • the impregnation process can cause the Na compound to be unevenly distributed near the surface of the composite oxide.
  • An example of an aqueous solution containing Na is an aqueous NaNO3 solution.
  • the aqueous NaNO3 solution can be dropped under ultrasonic vibration. This allows the Na compound to be uniformly unevenly distributed near the surface of the composite oxide.
  • the firing temperature can be, for example, 550°C, and the firing time can be 4 hours.
  • the second catalyst production method according to the present embodiment preferably includes a hydrothermal synthesis step and an impregnation step.
  • the hydrothermal synthesis step is a step of extracting a catalyst precursor precipitate by hydrothermal synthesis from an aqueous solution in which a predetermined amount of Fe nitrate and Co nitrate are dissolved in an aqueous urea solution.
  • An Fe-Co composite oxide is formed by the hydrothermal synthesis step.
  • the impregnation step may be the same as the impregnation step in the first catalyst production method.
  • Example 1 [Preparation of first catalyst] The nitrate of Fe (Fe(NO 3 ) 3.9H 2 O) as the catalytic metal of the first catalyst, the nitrate of Zr (ZrO(NO 3 ) 2.2H 2 O) as the catalytic metal, and the nitrate of Ga (Ga(NO 3 ) 3.6H 2 O) as the catalytic metal were weighed out so that the mass ratio of Fe:Zr:Ga was 6:1:3 in terms of metal atoms, and dissolved in distilled water.
  • a NaNO3 aqueous solution was dropped onto the Fe-Ga-Zr catalyst precursor under 92 kHz ultrasonic vibration so that the Na content was 1.0 mass%.
  • the mixture was then dried under a vacuum of 5000 Pa for 1 hour, and further dried at normal pressure at 60°C for 12 hours to obtain a powder.
  • the obtained powder was calcined at 550°C for 4 hours to obtain the first catalyst according to Example 1.
  • Nitrate of Fe (Fe(NO 3 ) 3 ⁇ 9H 2 O) as the catalytic metal of the second catalyst and nitrate of Co (Co(NO 3 ) 2 ⁇ 6H 2 O) as the catalytic metal were weighed out so that the mass ratio of Fe:Co was 3:1 in terms of metal atoms, and dissolved in urea water.
  • the aqueous solution was stirred for 1 hour, transferred to an autoclave vessel, and subjected to hydrothermal synthesis at 120° C. for 12 hours to obtain a precipitate solution containing Fe and Co as precipitates.
  • the precipitate solution was aged at room temperature for 24 hours, and then filtered and washed repeatedly to separate the precipitate. The separated precipitate was dried at 60° C. for 12 hours to obtain an Fe-Co catalyst precursor.
  • the carbon dioxide reduction catalyst device 1 shown in FIG. 1 was produced using the first catalyst and the second catalyst obtained as described above.
  • a fixed-bed flow-type reactor was used as the catalyst reactor, and 0.25 g of the first catalyst in the form of pellets measuring 0.4 to 0.8 mm square was used.
  • the pellets were packed in a reaction tube (inner diameter 6 mm) with a length of 5 cm.
  • the second catalyst had the same shape, weight, and packing amount as the first catalyst.
  • the reaction temperatures were 380° C. for the catalyst temperature T1 of the first catalyst and 300° C. for the catalyst temperature T2 of the second catalyst.
  • Example 2 The procedure was the same as in Example 1, except that a carbon dioxide reduction catalyst device 1a shown in FIG. 2A was prepared.
  • Example 3 The same procedure was followed as in Example 2, except that the catalyst temperature T2 of the second catalyst was set to 220°C.
  • Example 4 The same procedure was followed as in Example 2, except that the catalyst temperature T2 of the second catalyst was set to 260°C.
  • Example 5 The same procedure was followed as in Example 2, except that the catalyst temperature T2 of the second catalyst was set to 340°C.
  • Example 6 The second catalyst was prepared in the same manner as in Example 2, except that the second catalyst was prepared so that the Na content (addition amount) was 0.5 mass %.
  • Example 7 The second catalyst was prepared in the same manner as in Example 2, except that the second catalyst was prepared so that the Na content (addition amount) was 1.5 mass %.
  • Example 8 The second catalyst was prepared in the same manner as in Example 2, except that the second catalyst was prepared so that the Co content (addition amount) was 10 mass% (the second catalyst was prepared so that the Fe content was 89 mass% and the Na content was 1.0 mass%).
  • Example 9 The second catalyst was prepared in the same manner as in Example 2, except that the second catalyst was prepared so that the Co content (addition amount) was 25 mass% (the second catalyst was prepared so that the Fe content was 74 mass% and the Na content was 1.0 mass%).
  • Example 10 The second catalyst was prepared in the same manner as in Example 2, except that the second catalyst was prepared so that the Co content (addition amount) was 40 mass% (the second catalyst was prepared so that the Fe content was 59 mass% and the Na content was 1.0 mass%).
  • the carbon dioxide reduction catalyst device 1b shown in Fig. 2B was produced using only the first catalyst obtained as described above, in the same manner as in Example 1. As shown in Fig. 2B, the carbon dioxide reduction catalyst device 1b has only a catalytic reactor 20 having a first catalyst C1 as a catalytic reactor. The catalyst temperature T1 of the first catalyst was set to 380°C.
  • the carbon dioxide reduction catalyst device 1c shown in Fig. 2C was produced using the first catalyst and second catalyst obtained as described above, in the same manner as in Example 1.
  • the first catalyst C1 and the second catalyst C2 are filled in the same catalytic reactor 21 and adjusted to the same catalyst temperature.
  • the catalyst temperature T1 of the first catalyst and the catalyst temperature T2 of the second catalyst were set to 380°C.
  • the gas components after the catalytic reaction were qualitatively and quantitatively analyzed by online gas chromatography (Shimadzu, GC-2014AT, detector: thermal conductivity detector (TCD)) and flame ionization detector (FID) (Shimadzu, GC-2014AF).
  • the liquid components after the catalytic reaction were also qualitatively and quantitatively analyzed offline by gas chromatography (Shimadzu, GC-2014AF, detector: flame ionization detector (FID)).
  • CO2 Conversion Rate The conversion rate of CO2 by the carbon dioxide reduction reaction was calculated by the following formula (1). The results are shown in Figures 5, 6A, and 7A.
  • CO2 conversion rate (%) ( CO2 concentration before reaction) - ( CO2 concentration after reaction) / ( CO2 concentration before reaction) x 100 ... (1)
  • C8-16 production rate (yield) The production rate of hydrocarbons having a carbon number of 8 to 16 (C 8-16 ) produced by the carbon dioxide reduction reaction was calculated using the following formula (3). The results are shown in Figures 3, 5, 6C, and 7C.
  • C8-16 production rate (%) CO2 conversion rate ⁇ C8-16 selectivity / 100 ... (3)
  • the carbon dioxide reduction catalyst devices according to the respective examples clearly show a higher C 8-16 production rate (yield) than the carbon dioxide reduction catalyst devices according to the respective comparative examples.
  • FIG. 4A is a graph showing the carbon number of hydrocarbons produced by the carbon dioxide reduction catalyst device of Comparative Example 1 and the selectivity of hydrocarbons for each carbon number.
  • FIG. 4B is a graph corresponding to Comparative Example 2
  • FIG. 4C is a graph corresponding to Example 1.
  • Paraffins in FIGS. 4A to 4C means saturated chain hydrocarbons with a linear structure.
  • Iso-paraffins means saturated chain hydrocarbons with a branched structure.
  • Olefins means chain hydrocarbons with double bonds.
  • the carbon dioxide reduction catalyst device of Comparative Example 1 which used only the first catalyst, had a C 8-16 production rate of 15% or less.
  • the carbon dioxide reduction catalyst device of Comparative Example 2 which used the first catalyst and the second catalyst at the same catalyst temperature, had a slightly higher C 8-16 production rate than Comparative Example 1, but a higher production rate of hydrocarbons with a smaller carbon number, such as methane.
  • the carbon dioxide reduction catalyst device of Example 1 in which the catalyst temperature of the first catalyst was set higher than the catalyst temperature of the second catalyst, had a further higher C 8-16 production rate than Comparative Example 2, and a lower production rate of hydrocarbons with a smaller carbon number, such as methane.
  • the C 8-16 production rate (yield) correlating with these results.
  • the C 8-16 production rate (yield) can be made 20% or more.
  • FIG. 6A, 6B, and 6C are graphs comparing the CO 2 conversion rate, C 8-16 selectivity, and C 8-16 production rate (yield) when only the Na addition amount of the second catalyst was changed under the same conditions. From the results of FIG. 6A, FIG. 6B, and FIG. 6C, it is presumed that the more the Na addition amount is increased, the more the C 8-16 production activity improves, but when it is increased by 1.0 mass% or more, Na covers the reaction site of the Fe catalyst, and the activity decreases monotonically. Therefore, it is clear that the Na addition amount is preferably in the range of 0.5 to 1.5 mass%. In particular, it is clear that Example 2, in which the Na addition amount is 1.0 mass%, is excellent in all results and is the most preferable.
  • FIG. 7A, 7B, and 7C are graphs comparing the CO2 conversion rate, C8-16 selectivity, and C8-16 production rate (yield) when only the Co addition amount of the second catalyst was changed under the same conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

二酸化炭素の水素化反応により、炭素数8~16の炭化水素を好ましく生成できる二酸化炭素還元触媒装置を提供することを課題とする。 上記課題を解決するため、二酸化炭素を水素化反応させて二酸化炭素を還元し炭化水素を生成する二酸化炭素還元触媒装置であって、触媒金属として、Feと、Ga又はZrの少なくとも何れかと、を含む第1の触媒と、触媒金属として、Feと、Coと、を含む第2の触媒と、を有し、第2の触媒は、第1の触媒の下流側に配置される、二酸化炭素還元触媒装置を提供する。

Description

二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法
 本発明は、二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法に関する。
 従来より、気候変動の緩和又は影響軽減を目的とした取り組みが継続され、この実現に向けて、自動車の排気ガス規制が一段と進んでいる。とりわけ、内燃機関の排ガスに含まれる二酸化炭素排出量の削減が求められている。
 近年、二酸化炭素を水素化反応させて燃料を生成する技術が知られている。例えば、二酸化炭素と水素の混合ガスからメタノールを合成する触媒として、Cu、Zn及びアルミナからなる触媒が提案されている(特許文献1参照)。
 二酸化炭素を水素化反応させて得られる燃料として、液体燃料として使用可能な、炭素数が例えば5以上の炭化水素を生成できることが求められる。このような技術として、FT(フィッシャー・トロプシュ:Fischer-Tropsch)合成反応におけるFe触媒に対しカリウムを助触媒として用いることで、高度に分岐した炭素数5以上の生成物を調製する方法が提案されている(特許文献2参照)。
特公昭45-16682号公報 特表2005-537340号公報
 ところで、二酸化炭素の排出量削減の取り組みの中で、バイオマス由来原料や廃棄物等から製造された航空燃料であるSAF(Sustainable Aviation Fuel)に関する技術が注目されている。二酸化炭素の水素化反応に関する技術を用いて、二酸化炭素から直接SAFを製造することができれば好ましい。しかし、特許文献2に開示された技術で生成される炭化水素は、SAFの主成分である、炭素数8~16程度の炭化水素の生成率が低いという課題がある。
 本発明は、上記に鑑みてなされたものであり、二酸化炭素の水素化反応により、炭素数8~16の炭化水素を好ましく生成できる二酸化炭素還元触媒装置を提供することを目的とする。
 (1) 本発明は、二酸化炭素を水素化反応させて二酸化炭素を還元し、炭化水素を生成する二酸化炭素還元触媒装置であって、触媒金属として、Feと、Ga又はZrの少なくとも何れかと、を含む第1の触媒と、触媒金属として、Feと、Coと、を含む第2の触媒と、を有し、前記第2の触媒は、前記第1の触媒の下流側に配置される、二酸化炭素還元触媒装置に関する。
 (2) 前記第1の触媒、及び前記第2の触媒の少なくとも何れかは、触媒金属として更にNaを含む、(1)に記載の二酸化炭素還元触媒装置。
 (3) 前記第1の触媒、及び前記第2の触媒の少なくとも何れかは、触媒金属中にNaを0.5~1.5質量%含む、(2)に記載の二酸化炭素還元触媒装置。
 (4) 前記第2の触媒は、触媒金属中にCoを10~40質量%含む、(1)~(3)の何れかに記載の二酸化炭素還元触媒装置。
 (5) 前記第1の触媒と、前記第2の触媒と、の間に、水トラップ部を有する、(1)~(4)の何れかに記載の二酸化炭素還元触媒装置。
 (6) 前記第1の触媒は、Fe及びGaを含むFe-Ga複合酸化物、並びにFe及びZrを含むFe-Zr複合酸化物のうち少なくとも何れかを含有する、(1)~(5)の何れかに記載の二酸化炭素還元触媒装置。
 (7) また、本発明は、(1)~(6)の何れかに記載の二酸化炭素還元触媒装置を用いた二酸化炭素還元方法であって、前記第2の触媒の触媒温度T2は、前記第1の触媒の触媒温度T1よりも低い、二酸化炭素還元方法に関する。
 (8) 前記触媒温度T2は、260℃~340℃の範囲内である、(7)に記載の二酸化炭素還元方法。
 (9) また、本発明は、(1)に記載の前記第1の触媒の製造方法であって、前記Feの硝酸塩と、前記Gaの硝酸塩及び前記Zrの硝酸塩の少なくとも何れかと、を所定量蒸留水に溶解させた水溶液から、共沈法により沈殿物を抽出する共沈工程を有する、触媒の製造方法に関する。
 (10) 前記共沈工程の次に、前記沈殿物にNaを含む水溶液を滴下して所定期間乾燥させ、得られた粉末を所定の温度で焼成する含浸工程を有する、(9)に記載の触媒の製造方法。
 (11) 前記共沈工程において、前記Feの硝酸塩と、前記Gaの硝酸塩及び前記Zrの硝酸塩の少なくとも何れかと、を所定量蒸留水に溶解させた水溶液に対し尿素水溶液を滴下することで沈殿溶液を得る、(9)又は(10)に記載の触媒の製造方法。
 本発明によれば、二酸化炭素の水素化反応により、炭素数8~16の炭化水素を好ましく生成できる二酸化炭素還元触媒装置を提供できる。
第1実施形態(実施例1)に係る二酸化炭素還元触媒装置の構成を示す図である。 第2実施形態(実施例2)に係る二酸化炭素還元触媒装置の構成を示す図である。 比較例に係る二酸化炭素還元触媒装置の構成を示す図である。 比較例に係る二酸化炭素還元触媒装置の構成を示す図である。 実施例及び比較例の二酸化炭素還元触媒装置によるC-C16収率を比較したグラフである。 比較例1の二酸化炭素還元触媒装置による炭素数と選択率との関係を示すグラフである。 比較例2の二酸化炭素還元触媒装置による炭素数と選択率との関係を示すグラフである。 実施例1の二酸化炭素還元触媒装置による炭素数と選択率との関係を示すグラフである。 実施例及び比較例のC-C16選択率及びCO変換率と、C-C16収率との関係を示すチャートである。 実施例及び比較例の、Na添加量とCO変換率との関係を示すグラフである。 実施例及び比較例の、Na添加量とC-C16選択率との関係を示すグラフである。 実施例及び比較例の、Na添加量とC-C16生成率との関係を示すグラフである。 実施例及び比較例の、Co添加量とCO変換率との関係を示すグラフである。 実施例及び比較例の、Co添加量とC-C16選択率との関係を示すグラフである。 実施例及び比較例の、Co添加量とC-C16生成率との関係を示すグラフである。
<二酸化炭素還元触媒装置>
《第1実施形態》
 本実施形態に係る二酸化炭素還元触媒装置1は、図1に示すように、第1の触媒C1を有する触媒反応器20と、第2の触媒C2を有する触媒反応器30と、を有する。触媒反応器20と触媒反応器30とは、流路Lで接続され、上流側に触媒反応器20、下流側に触媒反応器30がそれぞれ設けられる。
(第1の触媒)
 本実施形態に係る二酸化炭素還元触媒である第1の触媒C1は、触媒金属として、Fe(鉄)を必須として含み、Ga(ガリウム)又はZr(ジルコニウム)のうち少なくとも何れかを含む。また、更にNa(ナトリウム)を含むことが好ましい。本実施形態に係る第1の触媒C1を用いた二酸化炭素還元反応は、H(水素)とCO(二酸化炭素)の混合ガスを原料とし、COがCO(一酸化炭素)に還元される逆水性ガスシフト反応と、COが炭化水素へと転換されるFT合成反応と、を一段で行うことにより炭化水素を生成する反応である。本実施形態に係る触媒は、上記逆水性ガスシフト反応と、FT合成反応との両方に寄与する。本実施形態に係る触媒を用いた二酸化炭素還元反応は、従来のFT合成反応と比較して、例えば空間速度SV(Space Velocity)=5,000h-1程度の高流速下においても、炭素数が8~16の炭化水素を高効率に生成できる。
 第1の触媒C1の触媒金属に含有されるFeは、酸化物、炭酸化合物、硝酸化合物、硫酸化合物等の化合物であってもよく、酸化物であることが好ましい。これらの化合物は2種以上含有されてもよい。また、Feは、Fe及びGaを含むFe-Ga複合酸化物、並びにFe及びZrを含むFe-Zr複合酸化物のうち少なくとも何れかとして触媒金属に含有されることがより好ましい。Fe-Ga複合酸化物、及びFe-Zr複合酸化物のうち少なくとも何れかを含有する触媒金属を用いることで、FT合成反応においてFe粒子をよりカーバイド化させることができ、これにより触媒におけるCH成長反応が促進され、炭素鎖の成長が促進される。
 第1の触媒C1の触媒金属中におけるFeの含有量は、金属原子換算で55~90質量%であることが好ましく、60~75質量%であることがより好ましい。
 第1の触媒C1の触媒金属に含有されるGaは、Feと同様に、酸化物、炭酸化合物、硝酸化合物、硫酸化合物等の化合物であってもよく、酸化物であることが好ましい。これらの化合物は2種以上含有されてもよい。Gaは、Fe及びGaを含むFe-Ga複合酸化物として触媒金属に含有されることがより好ましい。
 第1の触媒C1の触媒金属中におけるGaの含有量は、金属原子換算で10~30質量%であることが好ましく、20~30質量%であることがより好ましい。Gaの含有量が10質量%未満である場合、触媒金属の微粒子化が十分ではない場合がある。Gaの含有量を30質量%以下とすることで、GaがFeの反応サイトを被覆することによる悪影響を避けることができ、触媒活性の低下を防止することができる。
 第1の触媒C1の触媒金属に含有されるZrは、Feと同様に、酸化物、炭酸化合物、硝酸化合物、硫酸化合物等の化合物であってもよく、酸化物であることが好ましい。これらの化合物は2種以上含有されてもよい。Zrは、Fe及びZrを含むFe-Zr複合酸化物として触媒金属に含有されることがより好ましい。
 触媒金属中におけるZrの含有量は、金属原子換算で0質量%超15質量%以下であることが好ましく、5~10質量%であることがより好ましい。Zrの含有量を15質量%以下とすることで、ZrがFeの反応サイトを被覆することによる悪影響を避けることができ、触媒活性の低下を防止することができる。
 第1の触媒C1の触媒金属は、Ga及びZrの何れも含んでいてもよい。触媒金属にGa及びZrの何れも含まれる場合、これらの触媒金属は、Fe、Zr及びGaを含むFe-Ga-Zr複合酸化物として触媒金属に含有されることがより好ましい。Fe-Ga-Zr複合酸化物は、鉄酸化物等の化合物と比較して、微粒子化されるため、Fe触媒の反応サイトが増大することで、FT合成反応の反応時間、すなわち生成される炭化水素の炭素鎖が成長する時間を確保できる。
 第1の触媒C1は、触媒金属として更にNaを含むことが好ましい。Naは、触媒金属において助触媒として機能し、COをNaCOとして捕捉することで、H及びCOからCOが生成する逆水性ガスシフト反応を進行させ、CO変換率を向上させることができる。Naは、Fe-Zr複合酸化物やFe-Ga-Zr複合酸化物とは別に、酸化物等の形態でFe-Zr複合酸化物やFe-Ga-Zr複合酸化物の表面上に存在することが好ましい。なお、触媒金属は、Naに代えて、又はNaと共に、Li、K、Rb、Cs等のアルカリ金属を含有していてもよい。
 第1の触媒C1の触媒金属中におけるNaの含有量は、0.5~1.5質量%であることが好ましく、1.0質量%であることがより好ましい。Naの含有量を0.5質量%以上とすることで、炭素数が8~16の炭化水素の生成効率を十分に向上させることができる。また、Naの含有量を1.5質量%以下とすることで、NaがFeの反応サイトを被覆することによる悪影響を避けることができ、触媒活性の低下を防止することができる。
(第2の触媒)
 第2の触媒C2は、触媒金属として、Fe(鉄)及びCo(コバルト)を必須として含む。また、更にNa(ナトリウム)を含むことが好ましい。第2の触媒C2は、第1の触媒C1の下流側に配置され、第1の触媒C1によって生成される炭化水素の炭素数を増やし、炭素数8~16の炭化水素の生成率(収率)を向上させる。
 第2の触媒C2の触媒金属に含有されるFeは、酸化物、炭酸化合物、硝酸化合物、硫酸化合物等の化合物であってもよく、酸化物であることが好ましい。これらの化合物は2種以上含有されてもよい。また、Feは、Fe及びCoを含むFe-Co複合酸化物として触媒金属に含有されることがより好ましい。Fe-Co複合酸化物を含有する触媒金属を用いることで、Co自身が炭素成長反応性を有しているため、鉄酸化物等の化合物と比較して炭素鎖の成長を促進させることができる。
 第2の触媒C2の触媒金属中におけるFeの含有量は、金属原子換算で60~90質量%であることが好ましく、70~80質量%であることがより好ましい。
 第2の触媒C2の触媒金属に含有されるCoは、Feと同様に、酸化物、炭酸化合物、硝酸化合物、硫酸化合物等の化合物であってもよく、酸化物であることが好ましい。これらの化合物は2種以上含有されてもよい。Coは、Fe及びCoを含むFe-Co複合酸化物として触媒金属に含有されることがより好ましい。
 第2の触媒C2の触媒金属中におけるCoの含有量は、金属原子換算で10~40質量%であることが好ましく、20~30質量%であることがより好ましい。Coの含有量を10質量%以上とすることで、Co自身の炭素成長反応性を発現させることができる。Coの含有量を40質量%以下とすることで、副生物であるメタンの生成を抑制することができる。また鉄触媒における二酸化炭素を一酸化炭素に還元する機能(逆水性ガスシフト反応)を維持することができる。
 第2の触媒C2は、触媒金属として更にNaを含むことが好ましい。Naは、触媒金属において助触媒として機能する。Naは、Fe-Co複合酸化物とは別に、酸化物等の形態でFe-Co複合酸化物の表面上に存在することが好ましい。なお、触媒金属は、Naに代えて、又はNaと共に、Li、K、Rb、Cs等のアルカリ金属を含有していてもよい。
 第2の触媒C2の触媒金属中におけるNaの含有量は、0.5~1.5質量%であることが好ましく、1.0質量%であることがより好ましい。Naの含有量を0.5質量%以上とすることで、鉄触媒の塩基性度を高めることができ、炭素数が8~16の炭化水素の生成効率を十分に向上させることができる。また、Naの含有量を1.5質量%以下とすることで、NaがFeの反応サイトを被覆することによる悪影響を避けることができ、副生成物となる一酸化炭素の生成を抑制でき、触媒活性の低下を防止することができる。
(触媒反応器)
 触媒反応器20、及び触媒反応器30の構成としては、特に限定されず、公知の構成を適用することができる。例えば、所定の形状を有する流路に粉状、粒子状、又はペレット状の触媒や触媒を担持させた担体を充填した固定床流通式の反応装置が挙げられる。触媒反応器20、及び触媒反応器30は互いに独立しており、不図示の昇温装置によって、触媒温度をそれぞれ異なる温度とすることが可能である。
《第2実施形態》
 次に、本発明の第2実施形態に係る二酸化炭素還元触媒装置1aの構成について、図2Aを用いて説明する。二酸化炭素還元触媒装置1aの構成は、流路Lの途中に水トラップ部40を有する点以外は第1実施形態の構成と同様である。
(水トラップ部)
 水トラップ部40は、第2の触媒C2に供給される流体から水を除去する。これによって、第2の触媒C2による触媒反応において、炭化水素の炭素数を増加させる方向に化学平衡をシフトさせることができる。従って、炭素数が8~16の炭化水素の収率を向上させることができる。
 水トラップ部40としては、従来公知のものを用いることができる。例えば、屈曲した配管からなり、当該屈曲部分に凝縮水が貯留され、一定水量を超えた凝縮水を系外に排出する構成等が挙げられる。水トラップ部40は、上記以外に、配管自体を氷冷等により冷却することで凝縮水をトラップする構成を有していてもよい。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。
<二酸化炭素還元方法>
 本実施形態に係る二酸化炭素還元方法は、上記二酸化炭素還元触媒装置1又は1aを用いて行われる。二酸化炭素還元方法は、上流側に配置される第1の触媒C1に対して二酸化炭素を含むガスを接触させる第1触媒反応工程と、上記第1触媒反応工程により生成した炭化水素を含むガスを、下流側に配置される第2の触媒C2に対して接触させて炭素数を増加させる第2触媒反応工程と、を含む。第1触媒反応工程と第2触媒反応工程との間に、水トラップ部40により上記第1触媒反応工程により生成した炭化水素を含むガスから水分を除去する工程を含んでいてもよい。
 第2触媒反応工程における第2の触媒C2の触媒温度T2は、第1触媒反応工程における第1の触媒C1の触媒温度T1よりも低いことが好ましい。これにより、第2の触媒に含まれるCoの活性をコントロールすることができ、炭素数が8~16の炭化水素の収率をより向上させることができる。
 触媒温度T1は、例えば、340~400℃とすることが好ましく、触媒温度T2は、例えば、260~340℃とすることが好ましい。
<第1の触媒の製造方法>
 本実施形態に係る第1の触媒の製造方法は、共沈工程と、含浸工程と、を有することが好ましい。
(共沈工程)
 共沈工程は、Feの硝酸塩と、Gaの硝酸塩及びZrの硝酸塩の少なくとも何れかと、を所定量蒸留水に溶解させた水溶液から、共沈法により触媒前駆体である沈殿物を抽出する工程である。共沈工程により、Fe-Ga複合酸化物、Fe-Zr複合酸化物、及びFe-Ga-Zr複合酸化物の少なくとも何れかが形成される。共沈工程において、FeとGa及びZrの少なくとも何れかと、を含む上記水溶液に対し、尿素水溶液を滴下することで、沈殿溶液を得ることが好ましい。その後、沈殿溶液からろ過・洗浄等によって沈殿物を分離し、乾燥させることで、触媒前駆体である沈殿物(Fe-Ga複合酸化物、Fe-Zr複合酸化物、Fe-Ga-Zr複合酸化物)が得られる。
(含浸工程)
 含浸工程は、共沈工程により得られた沈殿物にNaを含む水溶液を滴下して所定時間乾燥させ、得られた粉末を所定の温度で焼成する工程である。含浸工程により、上記複合酸化物の表面付近にNa化合物を偏在させることができる。Naを含む水溶液としては、例えば、NaNO水溶液が挙げられる。NaNO水溶液は、超音波加振の下、滴下することができる。これにより、上記複合酸化物の表面付近にNa化合物を均一に偏在させることができる。焼成温度は、例えば550℃、焼成時間は4時間とすることができる。
<第2の触媒の製造方法>
 本実施形態に係る第2の触媒の製造方法は、水熱合成工程と、含浸工程と、を有することが好ましい。
(水熱合成工程)
 水熱合成工程は、Feの硝酸塩と、Coの硝酸塩とを所定量尿素水溶液に溶解させた水溶液から、水熱合成法により触媒前駆体である沈殿物を抽出する工程である。水熱合成工程により、Fe-Co複合酸化物が形成される。水熱合成工程において、FeとCoを含む上記水溶液に対し、オートクレーブを用いた水熱合成工程により、沈殿溶液を得ることが好ましい。その後、沈殿溶液からろ過・洗浄等によって沈殿物を分離し、乾燥させることで、触媒前駆体である沈殿物(Fe-Co複合酸化物)が得られる。
(含浸工程)
 含浸工程は、上記第1の触媒の製造方法における含浸工程と同様の工程とすることができる。
 本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。
 次に、本発明の実施例について説明するが、本発明はこの実施例に限定されるものではない。
<実施例1>
[第1の触媒の作製]
 第1の触媒の触媒金属としてのFeの硝酸塩(Fe(NO・9HO)と、同じく触媒金属としてのZrの硝酸塩(ZrO(NO・2HO)と、同じく触媒金属としてのGaの硝酸塩(Ga(NO・6HO)とを、金属原子換算でFe:Zr:Gaの質量比が6:1:3となるように秤量し、蒸留水に溶解させた。次いで、上記水溶液を撹拌しながら、CHO水溶液を2ml/min滴下し、pH8.5に固定することで、FeとZrとGaとを沈殿物として含む沈殿溶液を得た。次いで、沈殿溶液を室温下、24時間エージングさせた後、ろ過、洗浄を繰り返すことで沈殿物を分離した。分離した沈殿物を60℃で12時間乾燥させることで、Fe-Ga-Zr触媒前駆体を得た。
 上記Fe-Ga-Zr触媒前駆体に対し、NaNO水溶液を92kHz超音波加振の下、Na含有量が1.0質量%となるように滴下した。次いで、5000Paの真空下で1時間乾燥させ、更に常圧下、60℃で12時間乾燥させ、粉末を得た。得られた粉末を550℃で4時間焼成することで、実施例1に係る第1の触媒を得た。
[第2の触媒の作製]
 第2の触媒の触媒金属としてのFeの硝酸塩(Fe(NO・9HO)と、同じく触媒金属としてのCoの硝酸塩(Co(NO・6HO)とを、金属原子換算でFe:Coの質量比が3:1となるように秤量し、尿素水に溶解させた。次いで、上記水溶液を1時間撹拌した後、オートクレーブ容器に移し120℃、12時間水熱合成させることで、FeとCoとを沈殿物として含む沈殿溶液を得た。次いで、沈殿溶液を室温下、24時間エージングさせた後、ろ過、洗浄を繰り返すことで沈殿物を分離した。分離した沈殿物を60℃で12時間乾燥させることで、Fe-Co触媒前駆体を得た。
 上記Fe-Co触媒前駆体に対し、NaNO水溶液を92kHz超音波加振の下、Na含有量が1.0質量%となるように滴下した。次いで、5000Paの真空下で1時間乾燥させ、更に常圧下、60℃で12時間乾燥させ、粉末を得た。得られた粉末を550℃で4時間焼成することで、実施例1に係る第2の触媒を得た。
[二酸化炭素還元触媒装置の作製]
 上記により得られた第1の触媒及び第2の触媒を用いて、図1に示す二酸化炭素還元触媒装置1を作製した。触媒反応器は固定床流通式の反応装置を使用し、第1の触媒は0.4~0.8mm角のペレット状としたものを0.25g用いた。上記ペレットを、反応管(内径6mm)に5cmの長さで充填して用いた。第2の触媒も第1の触媒と同様の形状、重量、及び充填量とした。反応温度は、第1の触媒の触媒温度T1を380℃、第2の触媒の触媒温度T2を300℃とした。
<実施例2>
 図2Aに示す二酸化炭素還元触媒装置1aを作製したこと以外は、実施例1と同様とした。
<実施例3>
 第2の触媒の触媒温度T2を220℃としたこと以外は、実施例2と同様とした。
<実施例4>
 第2の触媒の触媒温度T2を260℃としたこと以外は、実施例2と同様とした。
<実施例5>
 第2の触媒の触媒温度T2を340℃としたこと以外は、実施例2と同様とした。
<実施例6>
 第2の触媒のNa含有量(添加量)が0.5質量%となるように第2の触媒を作製したこと以外は、実施例2と同様とした。
<実施例7>
 第2の触媒のNa含有量(添加量)が1.5質量%となるように第2の触媒を作製したこと以外は、実施例2と同様とした。
<実施例8>
 第2の触媒のCo含有量(添加量)が10質量%となるように第2の触媒を作製したこと以外は、実施例2と同様とした(Feの含有量が89質量%であり、Naの含有量が1.0質量%となるように第2の触媒を作製した)。
<実施例9>
 第2の触媒のCo含有量(添加量)が25質量%となるように第2の触媒を作製したこと以外は、実施例2と同様とした(Feの含有量が74質量%であり、Naの含有量が1.0質量%となるように第2の触媒を作製した)。
<実施例10>
 第2の触媒のCo含有量(添加量)が40質量%となるように第2の触媒を作製したこと以外は、実施例2と同様とした(Feの含有量が59質量%であり、Naの含有量が1.0質量%となるように第2の触媒を作製した)。
<比較例1>
 上記により得られた第1の触媒のみを用いて、図2Bに示す二酸化炭素還元触媒装置1bを作製したこと以外は、実施例1と同様とした。なお二酸化炭素還元触媒装置1bは、図2Bに示すように、触媒反応器として第1の触媒C1を有する触媒反応器20のみを有する。第1の触媒の触媒温度T1は380℃とした。
<比較例2>
 上記により得られた第1の触媒及び第2の触媒を用いて、図2Cに示す二酸化炭素還元触媒装置1cを作製したこと以外は、実施例1と同様とした。なお二酸化炭素還元触媒装置1cは、図2Cに示すように、第1の触媒C1及び第2の触媒C2が同一の触媒反応器21に充填され、同一の触媒温度に調整される。第1の触媒の触媒温度T1及び第2の触媒の触媒温度T2を380℃とした。
<比較例3>
 第2の触媒にNaを添加せずに第2の触媒を作製したこと以外は、実施例2と同様とした。
<比較例4>
 第2の触媒にCoを添加せずに第2の触媒を作製したこと以外は、実施例2と同様とした。
[評価]
 上記各実施例及び比較例の二酸化炭素還元触媒装置を用い、以下の方法で二酸化炭素還元反応を行った。反応ガスはCO 0.28NL/h、H 0.84NL/h(CO/H=1/3)とした。W/F(触媒重量/ガス流量)は5.0g・h/mol、空間速度SV(Space Velocity)=5,000h-1とした。圧力3MPa、反応時間4時間とした。触媒反応後のガス成分を、オンラインでのガスクロマトグラフィー(Shimadzu,GC-2014AT、検出器:熱伝導度検出器(TCD))及び水素炎イオン化検出器(FID)(Shimadzu,GC-2014AF)により定性・定量分析した。また触媒反応後の液体成分もオフラインでのガスクロマトグラフィー(Shimadzu,GC-2014AF、検出器:水素炎イオン化検出器(FID))により定性・定量分析した。
(CO変換率)
 上記二酸化炭素還元反応によるCOの変換率を、以下の式(1)により求めた。結果を図5、図6A、及び図7Aに示す。
 CO変換率(%)=((反応前のCO濃度)-(反応後のCO濃度))/(反応前のCO濃度)×100    …(1)
(C8-16選択率)
 上記二酸化炭素還元反応により生成された炭素数が8~16の炭化水素(C8-16)の選択率を、以下の式(2)により求めた。結果を図5、図6B、及び図7Bに示す。また、以下の式(2)と同様の方法で、各炭素数及び構造を有する炭化水素の選択率を求めた。結果を図4A~図4Cに示す。
 C8-16選択率(%)=(C8-16含有成分濃度)/((反応前のCO濃度)-(反応後のCO濃度))×100    …(2)
(C8-16生成率(収率))
 上記二酸化炭素還元反応により生成された炭素数が8~16の炭化水素(C8-16)の生成率を、以下の式(3)により求めた。結果を図3、図5、図6C、及び図7Cに示す。
 C8-16生成率(%)=CO変換率×C8-16選択率/100    …(3)
 図3に示すように、各実施例に係る二酸化炭素還元触媒装置は、各比較例に係る二酸化炭素還元触媒装置と比較してC8-16生成率(収率)が高い結果が明らかである。
 図4Aは、比較例1に係る二酸化炭素還元触媒装置により生成された炭化水素の炭素数と各炭素数の炭化水素の選択率を示すグラフである。同様に、図4Bが比較例2に対応し、図4Cが実施例1に対応するグラフである。図4A~図4Cにおける「Paraffins」は、直鎖状の構造を有する飽和鎖状炭化水素を意味する。「Iso-paraffins」は分岐鎖状の構造を有する飽和鎖状炭化水素を意味する。「Olefins」は、二重結合を有する鎖状炭化水素を意味する。
 図4Aに示すように、第1の触媒のみを使用した比較例1の二酸化炭素還元触媒装置は、C8-16生成率が15%以下であった。また、図4Bに示すように、第1の触媒と第2の触媒とを同一の触媒温度で用いた比較例2の二酸化炭素還元触媒装置は、C8-16生成率は比較例1よりも若干向上するものの、メタン等の炭素数が小さい炭化水素の生成率が高い結果となった。図4Cに示すように、第1の触媒の触媒温度を第2の触媒の触媒温度よりも高く設定した実施例1の二酸化炭素還元触媒装置は、C8-16生成率が比較例2よりも更に向上すると共に、メタン等の炭素数が小さい炭化水素の生成率が低減する結果となった。
 図5は、各実施例及び比較例のC8-16選択率、及びCO変換率と、これらの結果に相関するC8-16生成率(収率)との関係を示すチャートである。図5に示すように、第1の触媒の触媒温度を380℃とし、かつ第2の触媒の触媒温度を260℃~340℃とすることで、C8-16生成率(収率)を20%以上とすることができる。
 図6A、図6B、図6Cは、同一の条件で第2の触媒のNa添加量のみを変化させた場合における、それぞれCO変換率、C8-16選択率、C8-16生成率(収率)を比較したグラフである。図6A、図6B、及び図6Cの結果から、Na添加量を増やすほど、C8-16生成活性は向上するが、1.0質量%以上増やすとNaがFe触媒の反応サイトを被覆するため、活性が単調に低下すると推察される。従って、Na添加量は0.5~1.5質量%の範囲が好ましい結果が明らかである。特に、Na添加量が1.0質量%である実施例2が全ての結果に優れており、最も好ましいことが明らかである。
 図7A、図7B、図7Cは、同一の条件で第2の触媒のCo添加量のみを変化させた場合における、それぞれCO変換率、C8-16選択率、C8-16生成率(収率)を比較したグラフである。Co添加量を増やすほど、C8-16生成活性は向上するが、25質量%以上増やすとCoがFe触媒の反応サイトを被覆するため、活性が単調に低下し、メタンが副生する。従って、Co添加量は10~40質量%の範囲が好ましい結果が明らかである。特に、Co添加量が25質量%である実施例9が全ての結果に優れており、最も好ましいことが明らかである。
 1、1a      二酸化炭素還元触媒装置
 C1        第1の触媒
 C2        第2の触媒
 40        水トラップ部

Claims (11)

  1.  二酸化炭素を水素化反応させて二酸化炭素を還元し炭化水素を生成する二酸化炭素還元触媒装置であって、
     触媒金属として、Feと、Ga又はZrの少なくとも何れかと、を含む第1の触媒と、
     触媒金属として、Feと、Coと、を含む第2の触媒と、を有し、
     前記第2の触媒は、前記第1の触媒の下流側に配置される、二酸化炭素還元触媒装置。
  2.  前記第1の触媒、及び前記第2の触媒の少なくとも何れかは、触媒金属として更にNaを含む、請求項1に記載の二酸化炭素還元触媒装置。
  3.  前記第1の触媒、及び前記第2の触媒の少なくとも何れかは、触媒金属中にNaを0.5~1.5質量%含む、請求項2に記載の二酸化炭素還元触媒装置。
  4.  前記第2の触媒は、触媒金属中にCoを10~40質量%含む、請求項1又は2に記載の二酸化炭素還元触媒装置。
  5.  前記第1の触媒と、前記第2の触媒と、の間に、水トラップ部を有する、請求項1又は2に記載の二酸化炭素還元触媒装置。
  6.  前記第1の触媒は、Fe及びGaを含むFe-Ga複合酸化物、並びにFe及びZrを含むFe-Zr複合酸化物のうち少なくとも何れかを含有する、請求項1又は2に記載の二酸化炭素還元触媒装置。
  7.  請求項1に記載の二酸化炭素還元触媒装置を用いた二酸化炭素還元方法であって、
     前記第2の触媒の触媒温度T2は、前記第1の触媒の触媒温度T1よりも低い、二酸化炭素還元方法。
  8.  前記触媒温度T2は、260~340℃である、請求項7に記載の二酸化炭素還元方法。
  9.  請求項1に記載の前記第1の触媒の製造方法であって、
     前記Feの硝酸塩と、前記Gaの硝酸塩及び前記Zrの硝酸塩の少なくとも何れかと、を所定量蒸留水に溶解させた水溶液から、共沈法により沈殿物を抽出する共沈工程を有する、触媒の製造方法。
  10.  前記共沈工程の次に、前記沈殿物にNaを含む水溶液を滴下して所定期間乾燥させ、得られた粉末を所定の温度で焼成する含浸工程を有する、請求項9に記載の触媒の製造方法。
  11.  前記共沈工程において、前記Feの硝酸塩と、前記Gaの硝酸塩及び前記Zrの硝酸塩の少なくとも何れかと、を所定量蒸留水に溶解させた水溶液に対し尿素水溶液を滴下することで沈殿溶液を得る、請求項9又は10に記載の触媒の製造方法。
PCT/JP2023/037839 2022-11-22 2023-10-19 二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法 WO2024111305A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-186448 2022-11-22
JP2022186448A JP2024075191A (ja) 2022-11-22 2022-11-22 二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法

Publications (1)

Publication Number Publication Date
WO2024111305A1 true WO2024111305A1 (ja) 2024-05-30

Family

ID=91195460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037839 WO2024111305A1 (ja) 2022-11-22 2023-10-19 二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法

Country Status (2)

Country Link
JP (1) JP2024075191A (ja)
WO (1) WO2024111305A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117108A (ja) * 1998-10-12 2000-04-25 Agency Of Ind Science & Technol 液状炭化水素製造用触媒および液状炭化水素の製造方法
JP2012520384A (ja) * 2009-03-16 2012-09-06 サウディ ベーシック インダストリーズ コーポレイション 脂肪族および芳香族炭化水素の混合物を製造するプロセス
JP2014516765A (ja) * 2011-03-26 2014-07-17 本田技研工業株式会社 高級炭化水素選択的合成用の鉄またはコバルト含有フィッシャー・トロプシュ触媒
US20150197462A1 (en) * 2012-07-13 2015-07-16 Edmund Wagner Process for preparing hydrocarbons from carbon dioxide and hydrogen, and a catalyst useful in the process
JP2022102701A (ja) * 2020-12-25 2022-07-07 Eneos株式会社 触媒、触媒システムおよび触媒の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117108A (ja) * 1998-10-12 2000-04-25 Agency Of Ind Science & Technol 液状炭化水素製造用触媒および液状炭化水素の製造方法
JP2012520384A (ja) * 2009-03-16 2012-09-06 サウディ ベーシック インダストリーズ コーポレイション 脂肪族および芳香族炭化水素の混合物を製造するプロセス
JP2014516765A (ja) * 2011-03-26 2014-07-17 本田技研工業株式会社 高級炭化水素選択的合成用の鉄またはコバルト含有フィッシャー・トロプシュ触媒
US20150197462A1 (en) * 2012-07-13 2015-07-16 Edmund Wagner Process for preparing hydrocarbons from carbon dioxide and hydrogen, and a catalyst useful in the process
JP2022102701A (ja) * 2020-12-25 2022-07-07 Eneos株式会社 触媒、触媒システムおよび触媒の製造方法

Also Published As

Publication number Publication date
JP2024075191A (ja) 2024-06-03

Similar Documents

Publication Publication Date Title
JP3010314B2 (ja) 炭化水素調製方法
CN102083745B (zh) 运行hts反应器的方法
JP5592250B2 (ja) 二酸化炭素の合成ガスへの接触水素化
Saito et al. Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction
CN104192794A (zh) 将二氧化碳催化加氢成合成气混合物
JP2013508423A5 (ja)
US20220111354A1 (en) Catalyst and process of preparing the same
WO2024111305A1 (ja) 二酸化炭素還元触媒装置、二酸化炭素還元方法、及び触媒の製造方法
WO2017085603A2 (en) Methods for the conversion of co2 into syngas for use in the production of olefins
CN110560137A (zh) 一种合成气制低碳醇催化剂及其制备方法和应用
JPS58193738A (ja) 水素富化ガス製造用触媒
JP7514485B2 (ja) 二酸化炭素還元触媒
CN101193845A (zh) 将合成气体转化为含氧化合物的方法
Phung et al. Recent advances in the steam reforming of bioethanol for the production of biohydrogen fuels
JP7361072B2 (ja) 二酸化炭素還元触媒
CN113492010A (zh) 二氧化碳还原催化剂
Sala Study of Reverse Water Gas Shift reaction using bimetallic catalysts on active supports: The case of unpromoted and K-promoted FeCu/CeO2
Sala Study of Reverse Water Gas Shift (RWGS) reaction over Cu-Fe/CeO2
AU2009266113B2 (en) Process for operating HTS reactor
CN101857198A (zh) 乙二醇液相重整一步法连续制取高纯度氢的方法
JPS637842A (ja) メタノ−ル改質用触媒
Sala Study of Reverse Water Gas Shift (RWGS) reaction over Cu-Fe/CeO2 catalysts
JPS63283754A (ja) メタン含有ガス製造用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894317

Country of ref document: EP

Kind code of ref document: A1