CN102067275B - 质量分析装置 - Google Patents

质量分析装置 Download PDF

Info

Publication number
CN102067275B
CN102067275B CN200880129936.7A CN200880129936A CN102067275B CN 102067275 B CN102067275 B CN 102067275B CN 200880129936 A CN200880129936 A CN 200880129936A CN 102067275 B CN102067275 B CN 102067275B
Authority
CN
China
Prior art keywords
ion
voltage
frequency
mentioned
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880129936.7A
Other languages
English (en)
Other versions
CN102067275A (zh
Inventor
谷口纯一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of CN102067275A publication Critical patent/CN102067275A/zh
Application granted granted Critical
Publication of CN102067275B publication Critical patent/CN102067275B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/36Radio frequency spectrometers, e.g. Bennett-type spectrometers, Redhead-type spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0468Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample
    • H01J49/0481Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components with means for heating or cooling the sample with means for collisional cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/424Three-dimensional ion traps, i.e. comprising end-cap and ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/426Methods for controlling ions
    • H01J49/427Ejection and selection methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

在进行特定离子的析出或者通过CID进行分裂操作时,如以往那样通过对环形电极(31)施加高频高电压来捕获离子。在离子阱(3)内蓄积了目标离子的状态下,在向TOFMS(4)射出离子之前的冷却过程中,通过对端盖电极(32、34)而不是对环形电极(31)施加高频高电压来捕获离子。此时,与向环形电极(31)施加电压的方法相比,通过提高频率的同时还增大振幅,来确保较大的伪电位势垒并且维持LMC。由此,冷却后的离子的空间分布变窄,离子射出时的初始位置的偏差变小,从而质量分辨率提高。另一方面,由于能够与以往同样地对高m/z的离子以较高的qz值进行离子的析出,因此也能够确保较高的质量选择性。

Description

质量分析装置
技术领域
本发明涉及一种质量分析装置,其具备离子阱以及飞行时间型质量分析器,该离子阱利用电场捕获离子并进行蓄积,该飞行时间型质量分析器根据m/z分离从该离子阱射出的离子来进行检测。
背景技术
作为质量分析装置的一种,已知如下一种离子阱-飞行时间型质量分析装置(IT-TOFMS):在离子阱(IT)中暂时蓄积离子源中所生成的各种离子,之后使这些离子同时从离子阱中射出并导入到飞行时间型质量分析器(TOFMS)中。在这种质量分析装置中,也能够在离子阱中蓄积了各种离子之后,仅将具有特定的m/z或者包含在特定的m/z范围内的离子选择性地剩余在离子阱内,将该剩余的离子作为前体离子而通过碰撞诱导分解(CID)等方法使其分裂,从离子阱射出通过分裂生成的产物离子,来进行质量分析。
作为离子阱,还已知平行地配置了多个杆电极的线性结构,但是广泛利用着如图3的(a)所示那样的由圆环状的环形电极31以及夹持环形电极31而相向配置的一对端盖电极32、34构成的三维四极型的结构。以下,离子阱是指该三维四极型离子阱。
在离子阱3中,基本上通过将端盖电极32、34例如设为接地电位、将振幅可变的高频高电压施加给环形电极31,来在由这些电极包围的空间中形成四极电场,利用该电场的作用来将离子限制在该空间内。作为用于对环形电极施加高频高电压的结构的一例,将线圈与环形电极进行连接,通过该线圈的电感以及环形电极与两个端盖电极之间的静电容量和与环形电极相连接的其它所有的电路元件的静电容量形成LC谐振电路。在该LC谐振电路上直接或者通过变压器耦合连接驱动该LC谐振电路的高频驱动源(RF激发电路)。在该结构中,利用高的Q值来放大振幅,从而以小的驱动电压就能够对环形电极施加大振幅的高频电压(例如参照专利文献1等)。
在如上述那样对环形电极31施加高频高电压的情况下,众所周知,在离子阱3内形成如图3的(b)所示那样的形状的伪电位势垒(参照非专利文献1)。离子在伪电位势垒下降的势垒井中振动的同时被捕获。理论上,势垒井的深度Dz用(1)、(2)式近似地表示。
Dz=(V/8)·qz    …(1)
qz=8·z·e·V/m·(r0 2+2·z0 2)·Ω2      …(2)
在此,e是基元电荷,z是离子的电荷数,V和Ω分别是施加到环形电极31的高频高电压的振幅和角频率,m是离子的质量,r0是环形电极31的内切半径,z0是离子阱3的中心点到端盖电极32、34的最短距离。众所周知,qz是表示马提厄(Mathieu)运动方程式的解的稳定条件的参数之一。
在进行MS/MS或者MSn分析的情况下,在离子阱3内蓄积了离子之后,在离子阱3内捕获离子并且在端盖电极32、34间施加小振幅的高频电压,由此进行离子的选择(析出),即,使与该频率相应的具有特定的m/z或者包含在m/z范围中的离子共振激发来从离子阱3内排除掉。接着,向离子阱内导入CID气体并且在端盖电极32、34间施加小振幅的高频电压,由此使剩余在离子阱内的离子激发来与CID气体发生碰撞,加速该离子的分裂。由此,在离子阱3内捕获/蓄积具有更小的m/z的产物离子。
如上述那样在离子阱3中捕获到目标离子之后,通过在端盖电极32、34间施加直流高电压来对离子赋予动能,使离子从离子阱3内射出并传送至TOF,执行质量分析。在这样从离子阱3射出离子时,希望是离子尽可能地聚集在离子阱3内的中心部的状态。这是因为离子射出时的离子的空间分布的扩散是产生质量误差的原因之一。因此,一般在从离子阱3射出离子之前执行被称为冷却(cooling)的如下过程:向离子阱3内导入氦气、氩气等惰性气体、通过使离子与该气体分子发生碰撞来减少离子的动能。
以往,在进行冷却时,与进行离子捕获时同样地,对环形电极31施加高频高电压,将端盖电极32、34设为接地电位。此时,离子阱3内的离子的空间分布状态与对环形电极31施加的施加电压的振幅相关。这是因为通过(1)式可知,对环形电极31施加的高频高电压的振幅V越小,伪电位势垒Dz越浅,从而离子越容易以扩散的状态存在。一般在反射(reflectron)型TOF中,在反射离子时校正离子起始点的位置偏差,如果离子起始点的初始分布变得过大,则超出能够校正的范围,从而明显存在质量差异。
因而,为了在IT-TOFMS中提高质量分辨率、降低质量差异,期望在离子射出前的冷却过程中尽可能地增大用(1)式表示的伪电位势垒Dz。由于伪电位势垒Dz与对环形电极31施加的高频高电压的振幅V的平方成比例,因此如果增大振幅V,则伪电位势垒Dz变大。可是,从(2)式可知,当增大振幅V时,qz值也变大。从基于上述马提厄方程式的解的稳定条件的理论可知,为了在离子阱3内捕获离子,需要使qz值为0.908以下。如果只增大振幅V,则会导致对于特别小的质量m的qz值超过0.908。也就是说,当想要在冷却过程中增大伪电位势垒Dz来增大离子的聚集性时,有可能导致能够捕获的最低质量(LMC=Low MassCutoff)变大,从而无法捕获到低m/z侧的离子。
因此,期望为了将LMC维持为较低而保持qz值不变来增大伪电位势垒Dz,为此可以是增大频率Ω并且与频率Ω的平方成比例地增大振幅V,而不是只增大对环形电极31施加的高频电压的振幅V。另一方面,从(2)式明显可知,在使频率Ω增倍时,为了维持相同的qz值,需要将振幅V变大到四倍的振幅。在进行离子的析出时,为了提高其质量选择性,优选为qz值较高,当析出对象的离子的m/z较高时必须大幅地增大振幅V。例如,在r0=10[mm]、z0=7[mm]、频率为500[kHz]的条件下,为了在qz=0.81的动作点析出m/z为3000的离子,只要使振幅V为6.2[kV]即可,但是如果将频率设为二倍的频率1[MHz]时,需要将振幅V提高到四倍的振幅24[kV]。由于电极间的放电或者LC谐振电路的驱动能力的界限等问题,实际上不可能像这样提高对环形电极31施加的施加电压。
专利文献1:日本特开2004-214077号公报
非专利文献1:谷口纯一、河藤荣三、“高速液体クロマトグラフ/イオントラツプ飛行時間型質量分析計の開発”、分析化学、日本分析化学会、分析化学、2008年1月5日、第57卷、第1号、p.1-13
发明内容
发明要解决的问题
即,为了良好地保持析出离子时的质量选择性,不期望同时提高对环形电极31施加的高频高电压的频率和振幅。另一方面,为了在IT-TOFMS中实现质量分辨率的提高、质量差异的降低,需要在从离子阱射出离子之前的冷却过程中提高离子的聚集性,从而存在想要增大伪电位势垒的要求。
本发明是为了解决上述问题而完成的,其目的在于提供一种离子阱-飞行时间型质量分析装置,不影响离子选择地通过使冷却时的离子阱内的伪电位势垒变深来提高即将射出离子之前的离子的空间聚集性,由此能够实现利用TOF进行分析的质量分辨率的提高、质量差异的降低。
用于解决问题的方案
为了解决上述问题而完成的本发明是一种质量分析装置,具备离子阱和飞行时间型质量分析器,该离子阱由环形电极以及一对端盖电极构成,该飞行时间型质量分析器对从该离子阱射出的离子进行质量分析,该质量分析装置的特征在于,具备:(a)电压施加单元,其选择性地对端盖电极施加高频高电压和直流电压;(b)气体导入单元,其向离子阱内导入冷却气体;以及(c)控制单元,其进行控制,使得在离子阱内捕获到分析对象离子的状态下,通过上述气体导入单元将冷却气体导入到离子阱内,并且通过上述电压施加单元对上述端盖电极施加高频高电压,由此来执行离子的冷却,之后通过上述电压施加单元对上述端盖电极施加直流电压来对离子赋予动能,从而使离子从离子阱射出。
即,在以往的离子阱中,在冷却过程中对环形电极施加高频高电压,由此形成用于捕获离子的伪电位势垒,与之相对,在本发明中,在冷却过程中对端盖电极施加高频高电压,由此形成伪电位势垒。另一方面,在进行将特定的m/z或者m/z范围的离子剩余在离子阱内的析出时,如以往那样对环形电极施加高频高电压。虽然以往也在端盖电极间施加高频(交流)电压,但是如上所述,其目的是为了进行离子的析出、CID而使具有特定的m/z的或者包含在m/z范围内的离子共振激发,其振幅最高也只是10[V]左右。与此相对地,在本发明所涉及的质量分析装置中,是能够选择性地对端盖电极施加振幅为100[V]以上的高频高电压的结构。
能够与在进行析出动作时等施加到环形电极的高频高电压的频率无关地决定对端盖电极施加的高频高电压的频率。优选为,可以事先将对端盖电极施加的高频高电压的频率决定为比施加到环形电极的高频高电压的频率更高的频率。当然,为了在保持上述(2)式所示出的qz值不变的状态下增大伪电位势垒,需要在提高高频高电压的频率的同时还增大其振幅。由此,进行冷却过程时在离子阱内形成较大的伪电位势垒,能够将离子高效地聚集在离子阱的中心部。其结果,通过对端盖电极施加直流高电压而射出离子时的离子的初始位置的偏差变小,从而提高了质量分辨率并且也减少了质量差异。另外,特别是,由于也能够满足对于低m/z的离子的稳定捕获条件,因此对于低m/z的离子也能够在离子阱内可靠地捕获并进行冷却。
发明的效果
根据本发明所涉及的质量分析装置,能够如以往那样在为了将例如用于MSn分析的前体离子剩余在离子阱内而析出特定的离子时良好地维持质量选择性,并且能够通过增大离子射出前的冷却过程中的伪电位势垒来提高离子的聚集性。由此,向飞行时间型质量分析器导入离子时的离子的初始位置的偏差变小,因此能够提高质量分析的质量分辨率,还能够降低质量差异。
附图说明
图1是本发明的一个实施例的IT-TOFMS的整体结构图。
图2是表示利用本实施例的IT-TOFMS进行的质量分析过程的一例的流程图。
图3是表示普通的三维四极型离子阱的概要结构和伪电位势垒形状的图。
附图标记说明
1:离子化部;2:离子导向器;3:离子阱;31:环形电极;32、34:端盖电极;33:离子导入口;35:离子出射口;4:飞行时间型质量分析器(TOFMS);41:飞行空间;42:反射电极;43:离子检测器;5:环形电压发生部;51:高频高电压发生部;6:端盖电压发生部;61:直流电压发生部;62:高频低电压发生部;63:高频高电压发生部;64:电压切换部;7:气体导入部;8:控制部;9:操作部。
具体实施方式
参照附图说明本发明的一个实施例的IT-TOFMS。图1是本实施例的IT-TOFMS的主要部分的结构图。
在图1中,在未图示的真空室的内部配置有离子化部1、离子导向器2、离子阱3以及飞行时间型质量分析器(TOFMS)4。离子化部1能够使用以下各种离子化法使试样成分进行离子化:在试样是液体试样的情况下使用电喷雾离子化法等大气压离子化法、在试样是气体试样的情况下使用电子离子化法、化学离子化法等、在试样是固体试样的情况下使用激光离子化法等。
离子阱3与图3的(a)同样地是由一个圆环状的环形电极31以及一对端盖电极32、34构成的三维四极型的离子阱,该一对端盖电极32、34以夹持环形电极31的方式相向地进行设置。在入口侧端盖电极32的大致中央处穿透设置离子导入口33,在出口侧端盖电极34的大致中央处穿透设置离子出射口35并使其与离子导入口33大致在一条直线上。
TOFMS 4具有包括反射电极42的飞行空间41和离子检测器43,通过利用由未图示的直流电压发生部对反射电极42施加的电压形成的电场将离子反射到离子检测器43来进行检测。
在环形电极31上连接有环形电压发生部5,在端盖电极32、34上连接有端盖电压发生部6。环形电压发生部5包括高频(RF)高电压发生部51,该高频(RF)高电压发生部51例如利用专利文献1所公开的LC谐振电路。端盖电压发生部6除了包括直流电压发生部61、高频(RF)低电压发生部62以外,还包括与环形电压发生部5所包括的高频高电压发生部51同样结构的高频(RF)高电压发生部63,通过电压切换部64切换为直流电压发生部61、高频低电压发生部62、高频高电压发生部63中的一个电压并施加到端盖电极32、34。由高频高电压发生部63生成的高频电压的振幅为100[V]以上,甚至达到kV数量级,与之相对,由高频低电压发生部62生成的高频电压的振幅最高为10[V]左右,远小于高频电压的振幅。此外,在以往的IT-TOFMS中也具备直流电压发生部61和高频低电压发生部62,但是在以往的IT-TOFMS中不具备高频高电压发生部63。
从包括阀等的气体导入部7向离子阱3的内部选择性地导入冷却气体或者CID气体。通常,利用即使与作为测量对象的离子发生碰撞而气体自身也不会离子化或者也不会分裂的稳定的气体、例如氦气、氩气、氮气等惰性气体来作为冷却气体。
通过以CPU为中心构成的控制部8对离子化部1、TOFMS 4、环形电压发生部5、端盖电压发生部6、气体导入部7等的动作进行控制。另外,在控制部8上附设有用于设定分析条件等的操作部9。
图2是使用本实施例的IT-TOFMS的分析过程的流程图。图2的(a)是不实施分裂操作的情况,图2的(b)是实施一次分裂操作的情况、即进行MS/MS分析的情况。按照这些流程来说明本实施例的质量分析装置的基本动作。
首先,说明不进行分裂操作的普通的MS分析动作。离子化部1通过规定的离子化法使目标试样的成分分子或者原子进行离子化(步骤S1)。所生成的离子被离子导向器2输送,通过离子导入口33被导入到离子阱3内,并在离子阱3的内部被捕获(步骤S2)。通常在向离子阱3导入离子时,通过电压切换部64将直流电压发生部61与端盖电极32、34连接,对入射侧的端盖电极32施加直流电压以牵引从离子导向器2发送来的离子,对射出侧的端盖电极34施加直流电压以使入射到离子阱3的离子被压回离子阱3内。
在离子化部1如MALDI那样生成脉冲状的离子的情况下,在将发送来的离子包取入到离子阱3内之后通过对环形电极31施加高频高电压来捕获离子。另外,在离子化部1如大气压离子化法那样大致连续地生成离子的情况下,通过对离子导向器2的杆电极的一部分涂敷电阻体,能够在离子导向器2的末端部形成电位凹洼,在该凹洼中暂时蓄积离子,在短时间内压缩后导入到离子阱3(例如,参照非专利文献1的p.3-5)。对环形电极31施加的高频高电压例如频率为500[kHz]、振幅为100[V]~几[kV]。根据要捕获的离子的m/z的范围来适当地决定该振幅。
在离子阱3内蓄积离子之后,由气体导入部7将冷却气体导入到离子阱3内,如后述那样此次通过对端盖电极32、34施加高频高电压形成的四极电场来捕获离子并且使离子冷却(步骤S5)。在实施了规定时间的冷却之后,通过在端盖电极32、34间施加直流高电压来对离子赋予初始加速能量,通过离子出射口35使离子射出并导入到TOFMS 4(步骤S6)。由于利用相同的加速电压加速后的离子的m/z越小其速度就越大,因此m/z较小的离子先飞出到离子检测器43而被检测(步骤S7)。当以来自离子阱3的离子的射出时刻为起点而随着时间的经过来记录来自离子检测器43的检测信号时,显示飞行时间与离子强度之间的关系,从而得到飞行时间谱图。由于飞行时间与离子的m/z相对应,因此通过将飞行时间换算为m/z来作成质量谱图。
接着说明进行MS/MS分析的情况下的动作。在这种情况下,在上述步骤S2与S5之间执行步骤S3、S4的处理(操作)。即,在步骤S2中,在离子阱3内捕获到具有各种m/z的各种离子之后,通过电压切换部64将高频低电压发生部62与端盖电极32、34连接,在端盖电极32、34间施加小振幅的高频电压,该小振幅的高频电压所具有的频率成分在与想要作为前体离子而剩余的离子的m/z相对应的频率处具有陷波。由此,具有除与陷波频率相对应的m/z以外的其它m/z的离子被激发,发生很大振动而从离子导入口33和离子出射口35被排出或者与端盖电极32、34的内表面发生碰撞而消失。这样具有特定的m/z的离子被选择性地剩余在离子阱3内(步骤S3)。此时,对环形电极31继续施加高频高电压。
之后,通过气体导入部7将CID气体导入到离子阱3内,在端盖电极32、34间施加小振幅的高频电压,该小振幅的高频电压具有与前体离子的m/z相应的频率。这样,使被赋予动能的前体离子激发而与CID气体发生碰撞并产生分裂,从而生成产物离子(步骤S4)。这样生成的产物离子的m/z比原始的前体离子的m/z小,因此事先决定要施加到环形电极31的高频高电压的振幅使得对这样的低m/z的离子也能够进行捕获。将捕获到的产物离子在步骤S5中进行冷却之后从离子阱3射出,并在质量分析中使用。
此外,在执行要进行两次以上的离子选择和分裂操作的MSn分析时,只需反复多次执行图2的(b)中的步骤S3、S4即可。
接着,针对本实施例的IT-TOFMS中的特征性动作进行说明。在上述步骤S5的冷却过程中,以往,与步骤S2的离子捕获时、步骤S3的离子选择时等同样地,通过对环形电极31施加高频高电压来捕获离子。与之相对,在本实施例的IT-TOFMS中,不是对环形电极31而是对端盖电极32、34施加高频高电压,由此在离子阱3内产生用于捕获的四极电场。此时,一般停止对环形电极31施加电压,将环形电极31设为接地电位。此外,与将激发用的高频低电压施加到端盖电极32、34的情况不同,对两个端盖电极32、34施加相同相位的高频高电压。
此时,能够适当地决定对端盖电极32、34施加的高频高电压的频率,能够将其设为高于施加到环形电极31的高频高电压的频率、例如两倍的频率1[MHz]。根据上述(2)式,为了维持相同的qz值,在将频率设为二倍的频率的情况下,需要将振幅设为四倍的振幅。例如在想要将最低质量(LMC)设为200的情况下,如果高频高电压的频率是500[kHz],则只要将振幅设为400[V]左右即可,但是如果高频高电压的频率是两倍的频率1[MHz]的情况下,需要将振幅提高到四倍的振幅1.6[kV]左右。另一方面,关于伪电位势垒,在(1)式中明显可知,与提高qz值相比,提高振幅的影响较强,当将频率设为两倍、将振幅设为四倍时,伪电位势垒变大四倍。
通过这样决定对端盖电极32、34施加的高频高电压,当伪电位势垒变大时,通过与冷却气体的碰撞而失去动能的离子容易聚集到离子阱3的中心。也就是说,离子的空间分布变窄,继续在端盖电极32、34间施加直流高电压,对离子赋予动能来使其开始飞行时的离子的初始位置的偏差变小。其结果,在TOFMS 4中进行质量分析时的质量分辨率变高,还能够抑制质量差异。
此外,上述实施例只不过是本发明的一例,当然在本发明的要旨的范围内适当地进行变形、追加、修正也包含在本申请权利要求的保护范围中。

Claims (2)

1.一种质量分析装置,具备离子阱和飞行时间型质量分析器,该离子阱由环形电极以及一对端盖电极构成,该飞行时间型质量分析器对从该离子阱射出的离子进行质量分析,其中,该质量分析装置的特征在于,具备:
(a)环形电压施加单元,其用于对上述环形电极施加振幅为100V以上的用于捕获离子的高频高电压;
(b)端盖高频高电压施加单元,其用于对上述端盖电极施加振幅为100V以上的高频高电压;
(c)端盖直流电压施加单元,其用于对上述端盖电极施加直流电压;
(d)气体导入单元,其向上述离子阱内导入冷却气体;
(e)冷却控制单元,其在通过从上述环形电压施加单元对上述环形电极施加高频高电压而在上述离子阱内捕获到分析对象离子的状态下,通过上述气体导入单元将冷却气体导入到该离子阱内,并且停止对上述环形电极施加电压,另外通过上述端盖高频高电压施加单元对上述一对端盖电极施加相同相位的高频高电压,由此来执行离子的冷却;以及
(f)射出控制单元,其在执行上述冷却后,通过上述端盖直流电压施加单元对上述端盖电极施加直流电压来对离子赋予动能,从而使离子从上述离子阱射出。
2.根据权利要求1所述的质量分析装置,其特征在于,
将在执行冷却时通过上述端盖高频高电压施加单元施加到上述端盖电极的高频高电压的频率事先设定为比由上述环形电压施加单元施加的用于捕获离子的高频高电压的频率更高的频率。
CN200880129936.7A 2008-06-20 2008-06-20 质量分析装置 Expired - Fee Related CN102067275B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001602 WO2009153841A1 (ja) 2008-06-20 2008-06-20 質量分析装置

Publications (2)

Publication Number Publication Date
CN102067275A CN102067275A (zh) 2011-05-18
CN102067275B true CN102067275B (zh) 2014-03-12

Family

ID=41433772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880129936.7A Expired - Fee Related CN102067275B (zh) 2008-06-20 2008-06-20 质量分析装置

Country Status (5)

Country Link
US (1) US8754368B2 (zh)
EP (1) EP2309531B1 (zh)
JP (1) JP5158196B2 (zh)
CN (1) CN102067275B (zh)
WO (1) WO2009153841A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0817433D0 (en) * 2008-09-23 2008-10-29 Thermo Fisher Scient Bremen Ion trap for cooling ions
JP5533612B2 (ja) * 2010-12-07 2014-06-25 株式会社島津製作所 イオントラップ飛行時間型質量分析装置
JP5967078B2 (ja) * 2011-04-04 2016-08-10 株式会社島津製作所 質量分析装置及び質量分析方法
US9218948B2 (en) * 2012-03-22 2015-12-22 Shimadzu Corporation Mass spectrometer
DE102012013038B4 (de) 2012-06-29 2014-06-26 Bruker Daltonik Gmbh Auswerfen einer lonenwolke aus 3D-HF-lonenfallen
CA2884457A1 (en) 2012-09-13 2014-03-20 University Of Maine System Board Of Trustees Radio-frequency ionization in mass spectrometry
GB201409074D0 (en) * 2014-05-21 2014-07-02 Thermo Fisher Scient Bremen Ion ejection from a quadrupole ion trap
CN104658850B (zh) * 2015-02-16 2016-05-11 中国科学院地质与地球物理研究所 一种新型电子轰击离子源的试验装置及其设计方法
CN108140536B (zh) * 2015-09-29 2020-01-14 株式会社岛津制作所 离子源用液体试样导入系统以及分析系统
EP3594992A4 (en) * 2017-03-07 2020-03-11 Shimadzu Corporation ION TRAP DEVICE
JP6835210B2 (ja) * 2017-04-10 2021-02-24 株式会社島津製作所 イオン分析装置及びイオン解離方法
CN109300766B (zh) * 2018-08-09 2024-03-29 金华职业技术学院 一种分子光反应测试方法
CN108987241B (zh) * 2018-08-09 2024-01-30 金华职业技术学院 一种分子光反应测试装置
CN110277302B (zh) * 2019-06-28 2021-06-15 清华大学深圳研究生院 一种离子阱以及提高离子束缚效率的方法
US11887833B2 (en) * 2019-09-27 2024-01-30 Shimadzu Corporation Ion trap mass spectrometer, mass spectrometry method and non-transitory computer readable medium storing control program
JP7409260B2 (ja) * 2020-08-19 2024-01-09 株式会社島津製作所 質量分析方法及び質量分析装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480409B2 (ja) * 2000-01-31 2003-12-22 株式会社島津製作所 イオントラップ型質量分析装置
GB0031342D0 (en) * 2000-12-21 2001-02-07 Shimadzu Res Lab Europe Ltd Method and apparatus for ejecting ions from a quadrupole ion trap
US6838665B2 (en) * 2002-09-26 2005-01-04 Hitachi High-Technologies Corporation Ion trap type mass spectrometer
JP3936908B2 (ja) * 2002-12-24 2007-06-27 株式会社日立ハイテクノロジーズ 質量分析装置及び質量分析方法
JP3800178B2 (ja) * 2003-01-07 2006-07-26 株式会社島津製作所 質量分析装置及び質量分析方法
GB0416288D0 (en) 2004-07-21 2004-08-25 Micromass Ltd Mass spectrometer
JP2008091199A (ja) * 2006-10-02 2008-04-17 Shimadzu Corp 質量分析装置

Also Published As

Publication number Publication date
US20110095180A1 (en) 2011-04-28
US8754368B2 (en) 2014-06-17
JPWO2009153841A1 (ja) 2011-11-17
EP2309531B1 (en) 2017-08-09
JP5158196B2 (ja) 2013-03-06
CN102067275A (zh) 2011-05-18
EP2309531A1 (en) 2011-04-13
WO2009153841A1 (ja) 2009-12-23
EP2309531A4 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
CN102067275B (zh) 质量分析装置
JP5928597B2 (ja) イオントラップにおけるイオン選択方法及びイオントラップ装置
JP5001965B2 (ja) 質量分析装置
US7872228B1 (en) Stacked well ion trap
JP4687787B2 (ja) 質量分析方法及び質量分析装置
EP1442472B1 (en) A quadrupole ion trap device, methods of operating the ion trap device and a mass spectrometer including the ion trap device
JP5081436B2 (ja) 質量分析装置及び質量分析方法
JP4692310B2 (ja) 質量分析装置
JP4709024B2 (ja) 反応装置及び質量分析装置
US6831275B2 (en) Nonlinear resonance ejection from linear ion traps
US8164053B2 (en) Mass analyzer and mass analyzing method
JPWO2008129850A1 (ja) イオントラップ質量分析装置
JP5449701B2 (ja) 質量分析計
JP6321546B2 (ja) イオントラップ質量分析のためのイオン励起方法
JPH07502371A (ja) 濾波ノイズ信号式質量分析方法
US20160358766A1 (en) Reducing overfragmentation in ultraviolet photodissociation
US20220384173A1 (en) Methods and Systems of Fourier Transform Mass Spectrometry
JP5303286B2 (ja) 質量分析装置
WO2019021338A1 (ja) イオン光学素子の設計方法及び質量分析装置
JP5206605B2 (ja) イオントラップ質量分析装置
JP2021072244A (ja) イオン選択方法及びイオントラップ質量分析装置
JPH08222180A (ja) 質量分析装置及び質量分析方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140312

Termination date: 20200620