CN101883853B - 具有生产1,4-丁二醇能力的突变体和使用该突变体制备1,4-丁二醇的方法 - Google Patents

具有生产1,4-丁二醇能力的突变体和使用该突变体制备1,4-丁二醇的方法 Download PDF

Info

Publication number
CN101883853B
CN101883853B CN2008801059842A CN200880105984A CN101883853B CN 101883853 B CN101883853 B CN 101883853B CN 2008801059842 A CN2008801059842 A CN 2008801059842A CN 200880105984 A CN200880105984 A CN 200880105984A CN 101883853 B CN101883853 B CN 101883853B
Authority
CN
China
Prior art keywords
gene
coding
bacterium
acid
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008801059842A
Other languages
English (en)
Other versions
CN101883853A (zh
Inventor
朴时载
李相贤
李相烨
李恩政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
LG Chem Ltd
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40429511&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101883853(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LG Chem Ltd, Korea Advanced Institute of Science and Technology KAIST filed Critical LG Chem Ltd
Publication of CN101883853A publication Critical patent/CN101883853A/zh
Application granted granted Critical
Publication of CN101883853B publication Critical patent/CN101883853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/02Preparation of hybrid cells by fusion of two or more cells, e.g. protoplast fusion
    • C12N15/03Bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/010614-Hydroxybutyrate dehydrogenase (1.1.1.61)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01024Succinate-semialdehyde dehydrogenase (NAD+) (1.2.1.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/99002Butyryl-CoA dehydrogenase (1.3.99.2), i.e. short chain acyl-CoA dehydrogenase

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供一种能够生产1,4-丁二醇的突变体和使用该突变体制备1,4-丁二醇的方法。通过在能够生产琥珀酸的微生物中引入和增强编码把琥珀酸转变成4-羟基丁酸酯和把4-羟基丁酸酯转变成1,4-丁二醇的酶的基因来制备该突变体微生物。该方法包括在含有碳水化合物的培养基中培养该突变体,并由培养物获得1,4-丁二醇。因此,可以生物学方法制备化学工业中必需的1,4-丁二醇。

Description

具有生产1,4-丁二醇能力的突变体和使用该突变体制备1,4-丁二醇的方法
技术领域
本发明涉及一种能够生产1,4-丁二醇的突变体微生物,以及使用该突变体微生物制备1,4-丁二醇的方法。
背景技术
可生物降解的聚合物已经被建议作为合成聚合物的替代品,合成聚合物是严重环境污染的重要原因之一。在目前正在开发的各种可生物降解的聚合物中,聚-β-羟基丁酸酯(poly-β-hydroxybutyrate)是各种微生物在营养不平衡状态下储存的一种可生物降解的聚合物,其具有优良的特性,如生物可降解性、水抗性、压电性和生物相容性。尤其是4-羟基丁酸酯,其是聚羟基链烷酸酯(PHA)的一个例子,具有聚酯样特性,并显示从结晶塑料到高弹性橡胶的特性的许多特性。因此,目前正在对微生物可生物降解的塑料进行大量研究。
此外,4-羟基丁酸酯可以很容易被转变成具有4个碳原子的各种化学制品,如1,4-丁二醇、γ-丁内酯(GBL)和THF。尤其是,1,4-丁二醇是一种以如聚合物、溶剂和精细化学制品中间体多种形式存在的重要的工业化学制品。虽然具有4个碳原子的大多数化学制品目前是从1,4-丁二醇、马来酐等等合成的,但是由于油价格的增加而导致的增加的生产成本,需要开发用于补偿和替代常规的化学生产方法的另一种方法。生物学方法已经被建议作为这种替代方法。
同时,琥珀酸(succinate),具有4个碳原子的二羧酸,是在厌氧条件下培养微生物时产生的一种有机酸。现在,多种微生物被用作生产琥珀酸的细胞,而且由于有效的发酵方法以及分离和纯化方法的发展,它的生产成本变得更低。还可以由琥珀酸生产4-羟基丁酸酯,而且具有4个碳原子的各种有机酸可以源自4-羟基丁酸酯。
PCT公开第WO 2005/052135号是公开了一种有效生产琥珀酸的方法的专利申请的一个例子,其中,腔细菌(Lumen bacterial)突变体在不产生其他有机酸的情况下生产高浓度的琥珀酸,和一种使用该突变体制备琥珀酸的方法。另外,韩国专利申请第10-2004-60149中公开了一种制备能够生产高浓度的琥珀酸的大肠杆菌突变体的方法,并且韩国专利申请第10-2005-0076301号、第10-2005-0076317号和第10-2005-0076348号中公开了一种使用新基因制备琥珀酸的方法。
如上面所解释的,迫切需要一种能够生产1,4-丁二醇的突变体和使用该突变体制备1,4-丁二醇的生物学方法,1,4-丁二醇是一种具有4个碳原子的工业上重要的化学制品。
发明内容
技术问题
本发明旨在提供一种能够高效生产1,4-丁二醇的突变体微生物,以及使用该突变体微生物制备1,4-丁二醇的方法。
技术方案
一个方面,提供了一种能够生产琥珀酸的微生物和使用该微生物制备1,4-丁二醇的方法,所述微生物优选为显示出高1,4-丁二醇产量的突变体,其中,引入或增强编码把琥珀酸转变成4-羟基丁酸酯的酶的基因和编码把4-羟基丁酸酯转变成1,4-丁二醇的酶的基因。
另一个方面,提供了SEQ ID NO:8或SEQ ID NO:9的丁基-辅酶A脱氢酶基因和具有该基因的重组载体,该基因将4-羟基丁基-辅酶A有效生产为1,4-丁二醇。
在下文中,将更详细地描述本发明。
作为使用能够生产琥珀酸的微生物制备1,4-丁二醇的努力的结果,本发明人通过在能够生产琥珀酸的微生物中诱导或增强与4-羟基丁酸酯生物合成相关的基因和/或与1,4-丁二醇生物合成相关的基因,开发了一种生产1,4-丁二醇的突变体微生物,并发现,该突变体微生物有效生产1,4-丁二醇。该发现导致了本发明。
这里使用的术语“增强”指与原始表达水平相比基因表达水平的增加。如果在突变之前微生物中没有待增强的基因,那么可以向该微生物中引入至少一个基因,然后增强。并且,如果在突变之前在微生物中有待增强的基因,可以通过如上所述的相同的方法向该微生物中引入至少一个基因,或者可以通过遗传工程技术对原来存在于微生物中的基因进行操作以增加基因表达。例如,当增强表达的基因存在于待突变的微生物中时,可以用更强的启动子代替用于操纵基因表达的原始启动子,从而增强基因表达。
能够生产琥珀酸的微生物可显示出高琥珀酸产量,该微生物优选为选自细菌、酵母和真菌中的一种,更特别地为细菌,例如,腔细菌(Lumen bacteria)、棒状杆菌(Corynebacterium species)、短杆菌(Brevibacterium species)和大肠杆菌(E.coli)。
所述腔细菌可具有失活的编码乳酸脱氢酶(ldhA)和丙酮酸-甲酸裂解酶(pfl)的基因,并在厌氧条件下在不产生其他有机酸的情况下高浓度生产琥珀酸。
这里使用的术语“失活”指由于突变基因没有被转录,或者转录的mRNA没有适当地被翻译成原始蛋白质。为了使基因失去活性,可通过丢失基因或改变基因的核酸序列来进行突变。
此外,所述腔细菌可具有失活的编码乳酸脱氢酶(ldhA)、丙酮酸-甲酸裂解酶(pfl)、磷酸转乙酰酶(pta)和乙酸激酶(ackA)的基因,并在厌氧条件下在基本上不生产其他有机酸的情况下高浓度生产琥珀酸。
做为选择,所述腔细菌可具有失活的编码乳酸脱氢酶(ldhA)、丙酮酸-甲酸裂解酶(pfl)和磷酸丙酮酸羧化酶(ppc)的基因,并在厌氧条件下在基本上不产生其他有机酸的情况下高浓度生产琥珀酸。
所述腔细菌可选自Mannheimia sp、放线杆菌(Actinobacillus sp.)和厌氧螺菌(Anaerobiospirillum sp.),但是本发明不局限于这些例子。Mannheimia sp.是优选的,而且Mannheimia succiniciproducens MBEL55E(KCTC 0769BP)、Mannheimia sp.LPK(KCTC 10558BP)、LPK4和LPK7(KCTC 10626BP)是更优选的。
所述大肠杆菌可具有失活的编码葡萄糖磷酸转移酶(ptsG)和丙酮酸激酶(pykA和pykF)的基因,并在厌氧条件下在基本上不产生其他有机酸的情况下高浓度生产琥珀酸。特别地,大肠杆菌突变体优选是在韩国专利公开第10-2006-0011345号中公开的W3110GFA。
在上述高浓度生产琥珀酸的微生物中,可以以PCT公开第WO 2005/052135号中公开的方法制备腔细菌。也就是说,使Mannheimia succiniciproducens 55E中的乳酸脱氢酶基因(ldhA)和丙酮酸-甲酸裂解酶基因(pfl)失活,从而构建突变株,也即Mannheimnia sp.LPK(KCTC 10558BP)。然后,在LPK株中,使磷酸转乙酰酶基因(pta)和乙酸激酶基因(ackA)的基因和磷酸丙酮酸羧化酶的基因(ppc)分别失活,从而构建突变株(Mannheimia sp.LPK7和LPK4),然后在厌氧条件下进行培养以高产量生产琥珀酸。
另外,在高浓度生产琥珀酸的微生物中,通过韩国专利公开第10-2006-0011345号中公开的方法构建大肠杆菌。也就是说,通过在用表达噬菌体red操纵子(exo-β-gam)的重组表达载体转化的W3110菌株中,使编码葡萄糖磷酸转移酶(ptsG)的基因和编码丙酮酸激酶(pykA和pykF)的两个基因失活,来产生突变体大肠杆菌菌株W3110GFA。然后,当在厌氧条件下培养突变体大肠杆菌菌株W3110GFA时,可以证实突变体的生产率大于母本菌株W3110的生产率。
把琥珀酸转变成4-羟基丁酸酯的酶的基因和与把琥珀酸半醛转变成琥珀酸相关的酶的基因可以来源于科氏梭菌(Clostridium kluyveri),而把4-羟基丁酸酯转变成1,4-丁二醇的酶的基因可来源于丙酮丁醇梭菌(Clostridium acetobutylicum)。虽然科氏梭菌和丙酮丁醇梭菌不生产4-羟基丁酸酯和1,4-丁二醇,但是在这些菌株中克隆的酶在生产4-羟基丁酸酯和1,4-丁二醇中发挥重要作用。
另外,把琥珀酸转变成4-羟基丁酸酯的酶的基因可选自编码琥珀酰辅酶A转移酶(Cat1)的基因、编码琥珀酸半醛脱氢酶(SucD)的基因、编码4-羟基丁酸脱氢酶(hbD)的基因、编码4-羟基丁酸脱氢酶(GHB)的基因。优选地,编码Cat1的基因具有SEQID NO:1的碱基序列,编码SucD的基因具有SEQ ID NO:2的碱基序列,编码4hbD的基因具有SEQ ID NO:3的碱基序列,以及编码GHB的基因具有SEQ ID NO:4的碱基序列。
例如,根据本发明的突变体微生物可以具有编码Cat1的基因、编码SucD的基因和编码4hbD的基因,或者编码Cat1的基因、编码SucD的基因和编码GHB的基因,但是本发明不局限于这些例子。
此外,琥珀酸的有效使用对实现本发明的目标是非常重要的,因此可以从高浓度生产琥珀酸的微生物重组大肠杆菌中除去与把琥珀酸半醛转变成琥珀酸相关的琥珀酸半醛脱氢酶(GabD)。因此,根据本发明的突变体微生物也可具有失活的与把琥珀酸半醛转变成琥珀酸相关的基因,其优选是编码琥珀酸GabD的基因。编码GabD的基因具有SEQ ID NO:10的碱基序列,但是本发明不局限于该序列。
同时,为了在微生物中有效转运琥珀酸,可以增强与琥珀酸的转运相关的C4-二羧酸转运蛋白(DctA)酶。因此,突变体微生物可另外具有编码与琥珀酸的转运相关的Dct4的基因,其被引入到突变体微生物中或被增强,而且编码Dct4的基因优选具有SEQ ID NO:11的碱基序列。
所述把4-羟基丁酸酯转变成1,4-丁二醇的酶的基因可以是编码4-羟基丁酸-辅酶A转移酶和使4-羟基丁酸-辅酶A还原的醇脱氢酶的基因,或者编码磷酸转丁酰酶、丁酰激酶和使4-羟基丁酸-辅酶A还原的醇脱氢酶的基因。
所述编码4-羟基丁酸-辅酶A转移酶的基因可以具有SEQ ID NO:5的碱基序列,其可以用磷酸转丁酰酶(ptb;SEQ ID NO:6)和丁酰激酶(BuK;SEQ ID NO:7)取代,以把4-羟基丁酸酯转变成4-羟基丁酸-辅酶A。
所述醇脱氢酶可以是来源于丙酮丁醇梭菌的丁基-辅酶A脱氢酶,而且编码丁基-辅酶A脱氢酶的基因优选具有SEQ ID NO:8或SEQ ID NO:9的碱基序列(CAP0035或CAP0162)。SEQ ID NO:8和SEQ ID NO:9的基因对于在根据本发明的突变体微生物中生产1,4-丁二醇是非常有用的。因此,本发明提供了一种编码丁基-辅酶A脱氢酶的基因和含有该基因的重组载体。
术语“载体”指含有与适于在合适的宿主中表达DNA的调控序列可操作连接的DNA序列的DNA构建体。在本发明中,载体可包括质粒载体、噬菌体载体、粘粒载体、酵母人工染色体(YAC)载体,而且优选质粒载体。例如,质粒载体可以具有这样的结构,其包括(a)用于有效复制以在一个宿主细胞中具有几百个拷贝的复制起点,(b)用于筛选用该质粒载体转化了的宿主细胞的抗生素抗性基因,和(c)其中能够插入外源DNA片段的限制性内切酶位点。即使没有适合的限制性内切酶位点,可以根据常规方法使用合成的寡核苷酸适体或接头,很容易地连接载体与外源DNA。
因此,本发明提供了一种能够生产琥珀酸的微生物,且优选显示高1,4-丁二醇产量的突变体微生物,其中,使编码GabD的基因失活,而且引入或增强编码Cat1的基因、编码SucD的基因、编码4hbD(或GHB)的基因、编码4-羟基丁酸-辅酶A转移酶的基因和编码丁基辅酶A脱氢酶的基因的全部。
此外,本发明提供了一种能够生产琥珀酸的微生物,且优选显示高1,4-丁二醇产量的突变体微生物,其中,引入或增强编码4-羟基丁酸-辅酶A转移酶的基因(或编码磷酸转丁酰酶的基因和编码丁酰激酶的基因)和编码丁基-辅酶A脱氢酶的基因,以及使用该微生物制备1,4-丁二醇的方法。
本发明进一步提供了一种制备1,4-丁二醇的方法,其包括在含有碳源的培养基中培养该突变体,并从所述培养物中获得1,4-丁二醇。
有益效果
如上面详细描述的,本发明提供了一种能够高浓度生产琥珀酸的微生物,且更优选地,一种显示高1,4-丁二醇产量的突变体以及使用该微生物制备1,4-丁二醇的生物学方法,1,4-丁二醇是一种具有4个碳原子的化学制品,其在化学工业中具有广泛的重要应用。
附图说明
图1是由琥珀酸生产4-羟基丁酸酯的途径的示意图;
图2是通过由琥珀酸产生的4-羟基丁酸酯生产1,4-丁二醇的途径的示意图;和
图3显示了1,4-丁二醇产物的GC分析结果。
具体实施方式
在下文中,将通过实施例更详细地描述本发明。本领域技术人员将清楚理解,提供实施例只是为了解释本发明,而不是为了限制它的范围。
同时,在本发明中,制备1,4-丁二醇的方法使用腔细菌(如突变体Mannheimiasp.LPK(KCTC 10558BP)、LPK7和LPK4,其具有来源于Mannheimia sp.菌株的失活基因并高浓度生产琥珀酸)、大肠杆菌和突变体大肠杆菌W3110GFA,本领域技术人员将清楚理解,可以使用另一种腔细菌菌株,通过产生高浓度生产琥珀酸的突变体,并引入和增强与生产1,4-丁二醇相关的基因来生产1,4-丁二醇。
另外,下面的实施例提供了具体的培养基和培养方法,本领域技术人员将清楚地理解,如文献(Lee等人,Bioprocess Biosyst.Eng.,26:63,2003;Lee等人,Appl.Microbiol.Biotechnol,58:663,2002;Lee等人,Biotechnol.Lett,25:111,2003;Lee等人,Appl.Microbiol.Biotechnol.54:23,2000;以及Lee等人,Biotechnol.Bioeng.,72:41,2001)中所公开的,这里使用的培养基可以不同于水解物(如乳清或玉米浆),或者可以使用不同的培养方法(如加料分批培养和连续培养)。
实施例1:制备显示出高琥珀酸产量的微生物的方法
1-1.具有高琥珀酸产量的腔细菌的制备
通过PCT公开第WO 2005/052135号中公开的方法制备根据本发明的微生物,腔细菌,其显示出高琥珀酸产量。也就是说,通过使Mannheimia succiniciproducens55E(一种腔细菌)中的乳酸脱氢酶(ldhA)的基因和丙酮酸-甲酸裂解酶(pfl)的基因失活来制备突变株Mannheimia sp.LPK(KCTC 10558BP),并通过使LPK菌株中的磷酸转乙酰酶(pta)的基因、乙酸激酶(ackA)的基因和磷酸丙酮酸羧化酶(ppc)的基因失活制备突变株(Mannheimia sp.LPK7和LPK4)。
1-2.显示出高琥珀酸产量的大肠杆菌的制备
通过韩国专利公开第10-2006-0011345号中公开的方法制备根据本发明的微生物,大肠杆菌,其显出示高琥珀酸产量。就是说,通过使W3110菌株中编码葡萄糖磷酸转移酶(ptsG)的基因和编码丙酮酸激酶(pykA和pykF)的两个基因失活,来产生突变体大肠杆菌菌株W3110GFA,W3110菌株用表达噬菌体red操纵子(exo-β-gam)的重组表达载体pTrcEBG转化。
实施例2:1,4-丁二醇转变酶的克隆
2-1.编码4-羟基丁酸酯转变酶(Cat1、SucD和4hbD)的基因的克隆
本发明人使用基于已知的基因序列(L21902)合成的寡核苷酸引物,通过聚合酶链式反应(PCR),扩增了cat1、sucD和4hbD基因,以便克隆编码来源于科氏梭菌DSM 555的Cat1、SucD和4hbD的基因的操纵子。用于PCR的引物如下。
SEQ ID NO 12:Cat1f-SacI
5′-tttcccgagctc TGTGAGGCGATTAAATGAGTAAAGGGATAAAG
SEQ ID NO 13:4hbDb-XabI
gc tctaga tta gat aaa aaa gag gac att tca caa tat gg
为了构建表达载体pTacLac4HBl,将扩增的cat1、sucD和4hbD基因的操纵子插入到表达载体pTacLacI中,其用SacI/XbaI切割。通过用SspI切割载体pTac99A(Parkand Lee,J Bacteriol.185,5391-5397,2003),并连接该切割的载体与也用SspI切割的pTrc991(Amersham Pharmacia Biotech)来构建载体pTacLacI。载体pTacLacI具有与pTrc99A相同的序列,而且丢失了存在于pTrc99A中的来自多克隆位点(MCS)的NcoI限性内切酶识别位点(限制性位点)。此时,MCS从EcoRI位点开始。
2-2.编码与琥珀酸转运相关的DctA的基因的克隆
为了克隆大肠杆菌W3110中编码与琥珀酸转运相关的DctA的基因,使用基于已知的基因序列(NC_000913)合成的寡核苷酸引物,通过DNA-PCR扩增DctA基因。用于PCR的引物如下。
SEQ ID NO 14:DctAf-EcoRI
ggaattc ATGAAAACCTCTCTGTTTAAAAGC
SEQ ID NO 15:DctAb-XbaI
gc tctaga tta aga gga taa ttc gtg cgt ttt gcc
为了构建表达载体p 10499DctA,用EcoRI/XbaI切割扩增的DctA基因,然后插入到表达载体p10499A(Park等人.(2002)FEMS Microbiol.Lett 214:217-222)中。
2-3.编码把4-羟基丁酸酯转变成1,4-丁二醇的酶的基因的克隆
为了克隆SEQ ID NO:8和SEQ ID NO:9的编码丁基-辅酶A脱氢酶的基因,丁基-辅酶A脱氢酶是丙酮丁醇梭菌中把丁酸转变成丁醇的酶,使用基于已知的基因序列(NC_003030)合成的寡核苷酸引物,通过DNA-PCR扩增cap0035和cap0162基因。用于PCR的引物如下。
SEQ ID NO:16:CAP0035f-SacI
tttcccgagctc atgaaagttacaaatcaaaaa
SEQ ID NO:17:CAP0035b-XbaI
gc tctaga tta aaa tgc ttt tat ata gat
SEQ ID NO:18:CAP0162f-EcoRI
GGAATT C atgaaagtcacaacagtaaag
SEQ ID NO:19:CAP0162b-XbaI
gc tctaga tta agg ttg ttt ttt aaa
为了构建表达载体pTacLacCAP35和pTacLacCAP 162,将扩增的cap0035和cap0162基因独立地插入到表达载体pTacLacI中,该表达载体用SacI/XbaI和EcoRI/XbaI切割。
为了把4-羟基丁酸酯转变成4-羟基丁酸-辅酶A,使用基于SEQ ID NO:5的序列合成的寡核苷酸引物,通过DNA-PCR扩增SEQ ID NO:5的Cat2基因的操纵子。用于PCR的引物如下。
SEQ ID NO:20:cat2f-EcoRI
ggaattc ATGGAGTGGGAAGAGATATATAAAGAG
SEQ ID NO:21:cat2b-BamHI
cg ggatcc tta aaa tct ctt ttt aaa ttc att cat taa tg
为了构建表达载体pTacLacCat2,把扩增的cat2基因插入到表达载体pTacLacI中,其用EcoRI/BamHI切割。
为了把4-羟基丁酸酯转变成4-羟基丁酸-辅酶A,使用基于SEQ ID NO:6和SEQID NO:7的序列合成的寡核苷酸引物,通过DNA-PCR扩增SEQ ID NO:6和SEQ IDNO:7的ptb和buk基因的操纵子。用于PCR的引物如下。
SEQ ID NO:22:ptbf-RcoRI
ggaattc ATGATTAAGAGTTTTAATGAAATATCATG
SEQ ID NO:23:bukb-XbaI
gc tctaga tta ttt gta ttc ctt agc ttt ttc ttc tcc
为了构建表达载体,把扩增的ptb和buk基因的操纵子插入到表达载体pTacLacI中,其用EcoRI/XbaI切割,从而获得pTacLacPtbBuk。用SspI切割载体pTacLacPtbBuk,以获得包括tac启动子、ptb和buk基因和转录终止子的基因片段,并把该基因片段插入到载体pBBR1MCS2(Kovach等人,Gene.166:175,1995)中,其用EcoRV切割,从而获得载体pMCS2TacPtbBuk。
实施例3:1,4-BDO的产生
载体pTacCAP162和pMCS2Tacptbbuk用大肠杆菌XL1-Blue通过电穿孔同时转化,然后铺板于含有100μg/ml氨苄青霉素和50μg/ml醌那霉素的LB平板上,并于37℃培养过夜。把培养的克隆接种到具有3ml LB液体培养基(包含100μg/ml氨苄青霉素)的15ml管(Falcon,USA)中,并以200rpm于37℃在振动孵育箱中生长过夜。将孵育的细胞接种到新鲜的LB液体培养基(含有100ml 2%葡萄糖和100μg/ml氨苄青霉素)中,然后以200rpm于37℃生长于振动孵育箱中。当OD600达到0.7时,以1mM的终浓度添加IPTG来诱导蛋白表达,并且将细胞培养过夜。
然后,离心培养物,并从其中除去上清液。然后,将细胞沉淀用MR培养基洗涤一次,重悬于包含50ml 2%葡萄糖和2%γ-羟基丁内酯和1mM IPTG的MR培养基中,并使用5%H2、5%CO2和余量N2的气体混合物起绒毛30分钟以建立厌氧条件。培养物以200rpm于37℃在振动孵育箱中生长过夜,并持续大约3天,然后离心培养物以获得上清液。获得的上清液浓缩两次,并用作GC分析样品用于分析,以证实1,4-丁二醇的产生。在下列条件下进行分析,且结果示于图3中。
柱:AT-Waw(0.53mm ID x 15ml,1.2um u.f.毛细管)
气体流速:柱(He):4.0ml/min
烘箱温度:初始值&时间:50℃,5min
编程速率:10℃/min
终值&时间:250℃,5min
喷射器温度:250℃
检测器温度:250℃
喷射器分流比:20/1
喷射器体积:1.0μl
如图3所示,证实产生了1,4-丁二醇。
虽然已经参考其某些实施例显示和描述了本发明,本领域技术人员将理解,可以多种形式和细节对其进行各种改变,而不背离如所附权利要求所限定的本发明的精神和范围。
序列表
<110>LG化学株式会社
韩国科学技术院
<120>具有生产1,4-丁二醇能力的突变体和使用该突变体制备1,4-丁二醇的方法
<130>IP10-0298-XC37
<150>KR10-2007-0091081
<151>2007-09-07
<160>23
<170>KopatentIn 1.71
<210>1
<211>1617
<212>DNA
<213>Cat1编码基因
<400>1
atgagtaaag ggataaagaa ttcacaattg aaaaaaaaga atgtaaaggc tagtaatgtg     60
gcagaaaaga ttgaagagaa agttgaaaaa acagataagg ttgttgaaaa ggcagctgag    120
gttactgaaa aacgaattag aaacttgaag cttcaggaaa aagttgtaac agcagatgtg    180
gcagctgata tgatagaaaa cggtatgatt gttgcaatta gcggatttac tccttccggg    240
tatcctaaag aagtacctaa agcattgact aaaaaagtta atgccttaga ggaagaattc    300
aaggtaacac tttatacagg ttcatctaca ggagccgata tagacggaga atgggcaaaa    360
gcaggaataa tagaaagaag aattccatat cagacaaatt ctgatatgag gaaaaaaata    420
aatgatggtt ctattaagta tgctgatatg catttaagcc atatggctca atatattaat    480
tattctgtaa ttcctaaagt agatatagct ataatagagg cagtagctat tacagaagaa    540
ggggatatta ttccttcaac aggaattgga aatacagcta cttttgtgga aaatgcagat    600
aaggtaatag tggaaattaa tgaggctcaa ccgcttgaat tggaaggtat ggcagatata    660
tatacattaa aaaaccctcc aagaagagag cccataccta tagttaatgc aggcaatagg    720
atagggacca catatgtgac ctgtggttct gaaaaaatat gcgctatagt gatgacaaat    780
acccaggata aaacaagacc tcttacagaa gtgtctcctg tatctcaggc tatatccgat    840
aatcttatag gatttttaaa taaagaggtt gaagagggaa aattacctaa gaacctgctt    900
cctatacagt caggagttgg aagtgtagca aatgcagttt tggccggact ttgtgaatca    960
aattttaaaa atttgagttg ttatacagaa gttatacagg attctatgct gaagcttata   1020
aaatgtggta aagcagatgt ggtgtcaggc acttccataa gtccttcacc ggagatgttg   1080
cctgagttca taaaggacat aaatttcttt agagaaaaga tagtattaag accacaggaa   1140
ataagtaata atccagagat agcaagaaga ataggagtta tatccataaa cactgctttg   1200
gaagtagata tatatggtaa tgtaaactcc actcatgtta tgggaagcaa aatgatgaat   1260
ggtataggcg gttctggaga ctttgccaga aatgcatatt tgactatatt cactacagag   1320
tctatcgcca aaaaaggaga tatatcatct atagttccta tggtatccca tgtggatcat   1380
acagaacatg atgtaatggt aattgttaca gaacagggag tagcagattt aagaggtctt   1440
tctcctaggg aaaaggccgt ggctataata gaaaattgtg ttcatcctga ttacaaggat   1500
atgcttatgg aatattttga agaggcttgt aagtcatcag gtggaaatac accacataat   1560
cttgaaaaag ctctttcctg gcatacaaaa tttataaaaa ctggtagtat gaaataa      1617
<210>2
<211>1419
<212>DNA
<213>SucD编码基因
<400>2
atgagtaatg aagtatctat aaaagaatta attgaaaagg caaaggcggc acaaaaaaaa     60
ttggaagcct atagtcaaga acaagttgat gtactagtaa aagcactagg aaaagtggtt    120
tatgataatg cagaaatgtt tgcaaaagaa gcagttgaag aaacagaaat gggtgtttat    180
gaagataaag tagctaaatg tcatttgaaa tcaggagcta tttggaatca tataaaagac    240
aagaaaactg taggcataat aaaagaagaa cctgaaaggg cacttgttta tgttgctaag    300
ccaaagggag ttgtggcagc tactacgcct ataactaatc cagtggtaac tcctatgtgt    360
aatgcaatgg ctgctataaa gggcagaaat acaataatag tagcaccaca tcctaaagca    420
aagaaagttt cagctcatac tgtagaactt atgaatgctg agcttaaaaa attgggagca    480
ccagaaaata tcatacagat agtagaagca ccatcaagag aagctgctaa ggaacttatg    540
gaaagtgctg atgtagttat tgctacaggc ggtgctggaa gagttaaagc tgcttactcc    600
agtggaagac cagcttatgg cgttggacct ggaaattcac aggtaatagt tgataaggga    660
tacgattata acaaagctgc acaggatata ataacaggaa gaaaatatga caatggaatt    720
atatgttctt cagagcaatc agttatagct cctgctgaag attatgataa ggtaatagca    780
gcttttgtag aaaatggggc attctatgta gaagatgagg aaacagtaga aaagtttaga    840
tcaactttat ttaaagatgg aaaaataaac agcaagatta taggtaaatc cgtccaaatt    900
attgcggatc ttgcaggagt aaaagtacca gaaggtacta aggttatagt acttaagggt    960
aaaggtgcag gagaaaaaga tgtactttgt aaagaaaaaa tgtgtccagt tttagtagca   1020
ttgaaatatg atacttttga agaagcagtt gaaatagcta tggctaatta tatgtatgaa   1080
ggagctggtc atacagcagg catacattct gacaatgacg agaacataag atatgcaaga   1140
actgtattac ctataagcag attagttgta aatcagcctg caactactgc tggaggaact   1200
gtattaccta taagcagatt agttgtaaat cagcctgcaa ctactgctgg aggaagtttc   1260
aataatggat ttaaccctac tactacacta ggctgcggat catggggcag aaacagtatt   1320
tcagaaaatc ttacttacga gcatcttata aatgtttcaa gaatagggta tttcaataaa   1380
gaagcaaaag ttcctagcta tgaggaaata tggggataa                          1419
<210>3
<211>1116
<212>DNA
<213>4hbD编码基因
<400>3
atgaagttat taaaattggc acctgatgtt tataaatttg atactgcaga ggagtttatg     60
aaatacttta aggttggaaa aggtgacttt atacttacta atgaattttt atataaacct    120
ttccttgaga aattcaatga tggtgcagat gctgtatttc aggagaaata tggactcggt    180
gaaccttctg atgaaatgat aaacaatata attaaggata ttggagataa acaatataat    240
agaattattg ctgtaggggg aggatctgta atagatatag ccaaaatcct cagtcttaag    300
tatactgatg attcattgga tttgtttgag ggaaaagtac ctcttgtaaa aaacaaagaa    360
ttaattatag ttccaactac atgtggaaca ggttcagaag ttacaaatgt atcagttgca    420
gaattaaaga gaagacatac taaaaaagga attgcttcag acgaattata tgcaacttat    480
gcagtacttg taccagaatt tataaaagga cttccatata agttttttgt aaccagctcc    540
gtagatgcct taatacatgc aacagaagct tatgtatctc caaatgcaaa tccttatact    600
gatatgttta gtgtaaaagc tatggagtta attttaaatg gatacatgca aatggtagag    660
aaaggaaatg attacagagt tgaaataatt gaggattttg ttataggcag caattatgca    720
ggtatagctt ttggaaatgc aggagtggga gcggttcacg cactctcata tccaataggc    780
ggaaattatc atgtgcctca tggagaagca aattatctgt tttttacaga aatatttaaa    840
acttattatg agaaaaatcc aaatggcaag attaaagatg taaataaact attagcaggc    900
atactaaaat gtgatgaaag tgaagcttat gacagtttat cacaactttt agataaatta    960
ttgtcaagaa aaccattaag agaatatgga atgaaagagg aagaaattga aacttttgct   1020
gattcagtaa tagaaggaca gcagagactg ttggtaaaca attatgaacc tttttcaaga   1080
gaagacatag taaacacata taaaaagtta tattaa                             1116
<210>4
<211>1460
<212>DNA
<213>GHB编码基因
<400>4
gaattgtgaa cgatcgctcg attttagtat gatgccagat gttccaggtg cccggcagta     60
cgagataacc ccgaaaagtc gctgtcagcc tgccacgcgg caagtttttg cgcgatgatc    120
ggctgaagcg gtcccgaggg ctccggaaac gcagtagtgc aggtccattg aaacccaaga    180
cagcgggcct ggcgagcatc cgctccaggc ccgtgcaaaa gacaatttgg cggcagatcc    240
cggcaggaga caagcaaaca tggcgtttat ctactatctg acccacatcc acctggattt    300
cggcgcggta agcctgctca agtccgaatg cgagcgcatc ggcatccgcc gcccgttgct    360
ggtgaccgac aagggcgtgg tcgccgcggg agtggcgcag cgtgccatcg atgcaatgca    420
gggcctgcag gttgcggtat tcgatgaaac cccgtcgaac ccgaccgagg ccatggtgcg    480
caaggccgcc gcacaatacc gcgaggccgg ctgcgacggg ctggtggcag tgggcggcgg    540
ctcgtcgatc gacctcgcca agggcatcgc catcctggcc acgcatgagg gcgagctgac    600
cacctatgcc accatcgaag gcggcagcgc caggatcacc gacaaggcgg cgccgctgat    660
cgcggtgccc accacctcgg gcaccggcag cgaggtggcg cgcggcgcca tcatcatcct    720
ggacgacggc cgcaagctgg gcttccattc ctggcatttg ctgcccaagt ccgccgtctg    780
cgacccggaa ctgacgctgg ggctgccggc cgggctgacc gcggccaccg gcatggatgc    840
gatcgcgcac tgcatcgaga ccttcctggc ccccgccttc aacccgcccg cggacggcat    900
tgcgctggac gggctggagc gcggctgggg ccatatcgaa cgcgccaccc gcgacggtca    960
ggaccgcgac gcacgcctga acatgatgag cgcgtcgatg cagggcgcaa tggcgttcca   1020
gaaggggctg ggctgcgtgc attcgctgtc gcacccgctg ggcgggctga agatcgacgg   1080
ccgcaccggc ctgcaccacg gcacgctcaa cgcggtggtg atgccggcgg tgctgcgctt   1140
caacgccgat gcgcccacgg tggtgcgcga cgaccgctac gcacgcctgc gccgcgccat   1200
gcacctgccc gacggcgccg atatcgcgca ggccgtgcac gacatgaccg tgcgcctggg   1260
cctgcccacc gggctgcgtc agatgggtgt caccgaggac atgttcgaca aggtgattgc   1320
cggtgcgctg gtcgaccatt gccacaagac caacccgaaa gaagccagcg ccgcggatta   1380
tcggcgtatg cttgagcagt ccatgtagca cacagcggct tcccgccggt cagaccgacc   1440
aagcggctgt ccggcggccc                                               1460
<210>5
<211>1290
<212>DNA
<213>4HB-辅酶A转移酶编码基因
<400>5
atggagtggg aagagatata taaagagaaa ctggtaactg cagaaaaagc tgtttcaaaa     60
atagaaaacc atagcagggt agtttttgca catgcagtag gagaacccgt agatttagta    120
aatgcactag ttaaaaataa ggataattat ataggactag aaatagttca catggtagct    180
atgggcaaag gtgtatatac aaaagagggt atgcaaagac attttagaca taatgctttg    240
tttgtaggcg gatctactag agatgcagta aattcaggaa gagcagttta tacaccttgt    300
tttttctatg aagtgccaag tttgtttaaa gaaaaacgtt tgcctgtaga tgtagcactt    360
attcaggtaa gtgagccaga taaatatggc tactgcagtt ttggagtttc caatgactat    420
accaagccag cagcagaaag tgctaagctt gtaattgcag aagtgaataa aaacatgcca    480
agaactcttg gagattcttt tatacatgta tcagatattg attatatagt ggaagcttca    540
cacccattgt tagaattgca gcctcctaaa ttgggagatg tagaaaaagc cataggagaa    600
aactgtgcat ctttaattga agatggagct actcttcagc ttggaatagg tgctatacca    660
gatgcggtac ttttattctt aaagaacaaa aagaatttag gaatacattc tgagatgata    720
tcagatggtg tgatggaact ggtgaaggca ggggttatca ataacaagaa aaagaccctc    780
catccaggca aaatagttgt aacattttta atgggaacaa aaaaattata tgattttgta    840
aacaataatc caatggtaga aacttattct gtagattatg taaataatcc actggtaatt    900
atgaaaaatg acaatatggt ttcaataaat tcttgtgttc aagtagactt aatgggacaa    960
gtatgttctg aaagtatagg attgaaacag ataagtggag tgggaggcca ggtagatttt   1020
attagaggag ctaatctatc aaagggtgga aaggctatta tagctatacc ttccacagct   1080
ggaaaaggaa aagtttcaag aataactcca cttctagata ctggtgctgc agttacaact   1140
tctagaaatg aagtagatta tgtagttact gaatatggtg ttgctcatct taagggcaaa   1200
actttaagaa atagggcaag agctctaata aatatcgctc atccaaaatt cagagaatca   1260
ttaatgaatg aatttaaaaa gagattttag                                    1290
<210>6
<211>906
<212>DNA
<213>Ptb编码基因
<400>6
gtgattaaga gttttaatga aattatcatg aaggtaaaga gcaaagaaat gaaaaaagtt     60
gctgttgctg tagcacaaga cgagccagta cttgaagcag taagagatgc taagaaaaat    120
ggtattgcag atgctattct tgttggagac catgacgaaa tcgtgtcaat cgcgcttaaa    180
ataggaatgg atgtaaatga ttttgaaata gtaaacgagc ctaacgttaa gaaagctgct    240
ttaaaggcag tagagcttgt atcaactgga aaagctgata tggtaatgaa gggacttgta    300
aatacagcaa ctttcttaag atctgtatta aacaaagaag ttggacttag aacaggaaaa    360
actatgtctc acgttgcagt atttgaaact gagaaatttg atagactatt atttttaaca    420
gatgttgctt tcaatactta tcctgaatta aaggaaaaaa ttgatatagt aaacaattca    480
gttaaggttg cacatgcaat aggaattgaa aatccaaagg ttgctccaat ttgtgcagtt    540
gaggttataa accctaaaat gccatcaaca cttgatgcag caatgctttc aaaaatgagt    600
gacagaggac aaattaaagg ttgtgtagtt gacggacctt tagcacttga tatagcttta    660
tcagaagaag cagcacatca taagggagta acaggagaag ttgctggaaa agctgatatc    720
ttcttaatgc caaacataga aacaggaaat gtaatgtata agactttaac atatacaact    780
gattcaaaaa atggaggaat cttagttgga acttctgcac cagttgtttt aacttcaaga    840
gctgacagcc atgaaacaaa aatgaactct atagcacttg cagctttagt tgcaggcaat    900
aaataa                                                               906
<210>7
<211>1068
<212>DNA
<213>Buk编码基因
<400>7
atgtatagat tactaataat caatcctggc tcgacctcaa ctaaaattgg tatttatgac     60
gatgaaaaag agatatttga gaagacttta agacattcag ctgaagagat agaaaaatat    120
aacactatat ttgatcaatt tcaattcaga aagaatgtaa ttttagatgc gttaaaagaa    180
gcaaacatag aagtaagttc tttaaatgct gtagttggaa gaggcggact cttaaagcca    240
atagtaagtg gaacttatgc agtaaatcaa aaaatgcttg aagaccttaa agtaggagtt    300
caaggtcagc atgcgtcaaa tcttggtgga attattgcaa atgaaatagc aaaagaaata    360
aatgttccag catacatagt tgatccagtt gttgtggatg agcttgatga agtttcaaga    420
atatcaggaa tggctgacat tccaagaaaa agtatattcc atgcattaaa tcaaaaagca    480
gttgctagaa gatatgcaaa agaagttgga aaaaaatacg aagatcttaa tttaatcgta    540
gtccacatgg gtggaggtac ttcagtaggt actcataaag atggtagagt aatagaagtt    600
aataatacac ttgatggaga aggtccattc tcaccagaaa gaagtggtgg agttccaata    660
ggagatcttg taagattgtg cttcagcaac aaatatactt atgaagaagt aatgaaaaag    720
ataaacggca aaggcggagt tgttagttac ttaaatacta tcgattttaa ggctgtagtt    780
gataaagctc ttgaaggaga taagaaatgt gcacttatat atgaagcttt cacattccag    840
gtagcaaaag agataggaaa atgttcaacc gttttaaaag gaaatgtaga tgcaataatc    900
ttaacaggcg gaattgcgta caacgagcat gtatgtaatg ccatagagga tagagtaaaa    960
ttcatagcac ctgtagttag atatggtgga gaagatgaac ttcttgcact tgcagaaggt   1020
ggacttagag ttttaagagg agaagaaaaa gctaaggaat acaaataa                1068
<210>8
<211>2577
<212>DNA
<213>丁基-辅酶A脱氢酶(cAP0035)编码基因
<400>8
atgaaagtta caaatcaaaa agaactaaaa caaaagctaa atgaattgag agaagcgcaa     60
aagaagtttg caacctatac tcaagagcaa gttgataaaa tttttaaaca atgtgccata    120
gccgcagcta aagaaagaat aaacttagct aaattagcag tagaagaaac aggaataggt    180
cttgtagaag ataaaattat aaaaaatcat tttgcagcag aatatatata caataaatat    240
aaaaatgaaa aaacttgtgg cataatagac catgacgatt ctttaggcat aacaaaggtt    300
gctgaaccaa ttggaattgt tgcagccata gttcctacta ctaatccaac ttccacagca    360
attttcaaat cattaatttc tttaaaaaca agaaacgcaa tattcttttc accacatcca    420
cgtgcaaaaa aatctacaat tgctgcagca aaattaattt tagatgcagc tgttaaagca    480
ggagcaccta aaaatataat aggctggata gatgagccat caatagaact ttctcaagat    540
ttgatgagtg aagctgatat aatattagca acaggaggtc cttcaatggt taaagcggcc    600
tattcatctg gaaaacctgc aattggtgtt ggagcaggaa atacaccagc aataatagat    660
gagagtgcag atatagatat ggcagtaagc tccataattt tatcaaagac ttatgacaat    720
ggagtaatat gcgcttctga acaatcaata ttagttatga attcaatata cgaaaaagtt    780
aaagaggaat ttgtaaaacg aggatcatat atactcaatc aaaatgaaat agctaaaata    840
aaagaaacta tgtttaaaaa tggagctatt aatgctgaca tagttggaaa atctgcttat    900
ataattgcta aaatggcagg aattgaagtt cctcaaacta caaagatact tataggcgaa    960
gtacaatctg ttgaaaaaag cgagctgttc tcacatgaaa aactatcacc agtacttgca   1020
atgtataaag ttaaggattt tgatgaagct ctaaaaaagg cacaaaggct aatagaatta   1080
ggtggaagtg gacacacgtc atctttatat atagattcac aaaacaataa ggataaagtt   1140
aaagaatttg gattagcaat gaaaacttca aggacattta ttaacatgcc ttcttcacag   1200
ggagcaagcg gagatttata caattttgcg atagcaccat catttactct tggatgcggc   1260
acttggggag gaaactctgt atcgcaaaat gtagagccta aacatttatt aaatattaaa   1320
agtgttgctg aaagaaggga aaatatgctt tggtttaaag tgccacaaaa aatatatttt   1380
aaatatggat gtcttagatt tgcattaaaa gaattaaaag atatgaataa gaaaagagcc   1440
tttatagtaa cagataaaga tctttttaaa cttggatatg ttaataaaat aacaaaggta   1500
ctagatgaga tagatattaa atacagtata tttacagata ttaaatctga tccaactatt   1560
gattcagtaa aaaaaggtgc taaagaaatg cttaactttg aacctgatac tataatctct   1620
attggtggtg gatcgccaat ggatgcagca aaggttatgc acttgttata tgaatatcca   1680
gaagcagaaa ttgaaaatct agctataaac tttatggata taagaaagag aatatgcaat   1740
ttccctaaat taggtacaaa ggcgatttca gtagctattc ctacaactgc tggtaccggt   1800
tcagaggcaa caccttttgc agttataact aatgatgaaa caggaatgaa atacccttta   1860
acttcttatg aattgacccc aaacatggca ataatagata ctgaattaat gttaaatatg   1920
cctagaaaat taacagcagc aactggaata gatgcattag ttcatgctat agaagcatat   1980
gtttcggtta tggctacgga ttatactgat gaattagcct taagagcaat aaaaatgata   2040
tttaaatatt tgcctagagc ctataaaaat gggactaacg acattgaagc aagagaaaaa   2100
atggcacatg cctctaatat tgcggggatg gcatttgcaa atgctttctt aggtgtatgc   2160
cattcaatgg ctcataaact tggggcaatg catcacgttc cacatggaat tgcttgtgct   2220
gtattaatag aagaagttat taaatataac gctacagact gtccaacaaa gcaaacagca   2280
ttccctcaat ataaatctcc taatgctaag agaaaatatg ctgaaattgc agagtatttg   2340
aatttaaagg gtactagcga taccgaaaag gtaacagcct taatagaagc tatttcaaag   2400
ttaaagatag atttgagtat tccacaaaat ataagtgccg ctggaataaa taaaaaagat   2460
ttttataata cgctagataa aatgtcagag cttgcttttg atgaccaatg tacaacagct   2520
aatcctaggt atccacttat aagtgaactt aaggatatct atataaaatc attttaa      2577
<210>9
<211>2589
<212>DNA
<213>丁基-辅酶A脱氢酶(CAP0162)编码基因
<400>9
atgaaagtca caacagtaaa ggaattagat gaaaaactca aggtaattaa agaagctcaa     60
aaaaaattct cttgttactc gcaagaaatg gttgatgaaa tctttagaaa tgcagcaatg    120
gcagcaatcg acgcaaggat agagctagca aaagcagctg ttttggaaac cggtatgggc    180
ttagttgaag acaaggttat aaaaaatcat tttgcaggcg aatacatcta taacaaatat    240
aaggatgaaa aaacctgcgg tataattgaa cgaaatgaac cctacggaat tacaaaaata    300
gcagaaccta taggagttgt agctgctata atccctgtaa caaaccccac atcaacaaca    360
atatttaaat ccttaatatc ccttaaaact agaaatggaa ttttcttttc gcctcaccca    420
agggcaaaaa aatccacaat actagcagct aaaacaatac ttgatgcagc cgttaagagt    480
ggtgccccgg aaaatataat aggttggata gatgaacctt caattgaact aactcaatat    540
ttaatgcaaa aagcagatat aacccttgca actggtggtc cctcactagt taaatctgct    600
tattcttccg gaaaaccagc aataggtgtt ggtccgggta acaccccagt aataattgat    660
gaatctgctc atataaaaat ggcagtaagt tcaattatat tatccaaaac ctatgataat    720
ggtgttatat gtgcttctga acaatctgta atagtcttaa aatccatata taacaaggta    780
aaagatgagt tccaagaaag aggagcttat ataataaaga aaaacgaatt ggataaagtc    840
cgtgaagtga tttttaaaga tggatccgta aaccctaaaa tagtcggaca gtcagcttat    900
actatagcag ctatggctgg cataaaagta cctaaaacca caagaatatt aataggagaa    960
gttacctcct taggtgaaga agaacctttt gcccacgaaa aactatctcc tgttttggct   1020
atgtatgagg ctgacaattt tgatgatgct ttaaaaaaag cagtaactct aataaactta   1080
ggaggcctcg gccatacctc aggaatatat gcagatgaaa taaaagcacg agataaaata   1140
gatagattta gtagtgccat gaaaaccgta agaacctttg taaatatccc aacctcacaa   1200
ggtgcaagtg gagatctata taattttaga ataccacctt ctttcacgct tggctgcgga   1260
ttttggggag gaaattctgt ttccgagaat gttggtccaa aacatctttt gaatattaaa   1320
accgtagctg aaaggagaga aaacatgctt tggtttagag ttccacataa agtatatttt   1380
aagttcggtt gtcttcaatt tgctttaaaa gatttaaaag atctaaagaa aaaaagagcc   1440
tttatagtta ctgatagtga cccctataat ttaaactatg ttgattcaat aataaaaata   1500
cttgagcacc tagatattga ttttaaagta tttaataagg ttggaagaga agctgatctt   1560
aaaaccataa aaaaagcaac tgaagaaatg tcctccttta tgccagacac tataatagct   1620
ttaggtggta cccctgaaat gagctctgca aagctaatgt gggtactata tgaacatcca   1680
gaagtaaaat ttgaagatct tgcaataaaa tttatggaca taagaaagag aatatatact   1740
ttcccaaaac tcggtaaaaa ggctatgtta gttgcaatta caacttctgc tggttccggt   1800
tctgaggtta ctccttttgc tttagtaact gacaataaca ctggaaataa gtacatgtta   1860
gcagattatg aaatgacacc aaatatggca attgtagatg cagaacttat gatgaaaatg   1920
ccaaagggat taaccgctta ttcaggtata gatgcactag taaatagtat agaagcatac   1980
acatccgtat atgcttcaga atacacaaac ggactagcac tagaggcaat acgattaata   2040
tttaaatatt tgcctgaggc ttacaaaaac ggaagaacca atgaaaaagc aagagagaaa   2100
atggctcacg cttcaactat ggcaggtatg gcatccgcta atgcatttct aggtctatgt   2160
cattccatgg caataaaatt aagttcagaa cacaatattc ctagtggcat tgccaatgca   2220
ttactaatag aagaagtaat aaaatttaac gcagttgata atcctgtaaa acaagcccct   2280
tgcccacaat ataagtatcc aaacaccata tttagatatg ctcgaattgc agattatata   2340
aagcttggag gaaatactga tgaggaaaag gtagatctct taattaacaa aatacatgaa   2400
ctaaaaaaag ctttaaatat accaacttca ataaaggatg caggtgtttt ggaggaaaac   2460
ttctattcct cccttgatag aatatctgaa cttgcactag atgatcaatg cacaggcgct   2520
aatcctagat ttcctcttac aagtgagata aaagaaatgt atataaattg ttttaaaaaa   2580
caaccttaa                                                           2589
<210>10
<211>1449
<212>DNA
<213>GabD编码基因
<400>10
atgaaactta acgacagtaa cttattccgc cagcaggcgt tgattaacgg ggaatggctg     60
gacgccaaca atggtgaagc catcgacgtc accaatccgg cgaacggcga caagctgggt    120
agcgtgccga aaatgggcgc ggatgaaacc cgcgccgcta tcgacgccgc caaccgcgcc    180
ctgcccgcct ggcgcgcgct caccgccaaa gaacgcgcca ccattctgcg caactggttc    240
aatttgatga tggagcatca ggacgattta gcgcgcctga tgaccctcga acagggtaaa    300
ccactggccg aagcgaaagg cgaaatcagc tacgccgcct cctttattga gtggtttgcc    360
gaagaaggca aacgcattta tggcgacacc attcctggtc atcaggccga taaacgcctg    420
attgttatca agcagccgat tggcgtcacc gcggctatca cgccgtggaa cttcccggcg    480
gcgatgatta cccgcaaagc cggtccggcg ctggcagcag gctgcaccat ggtgctgaag    540
cccgccagtc agacgccgtt ctctgcgctg gcgctggcgg agctggcgat ccgcgcgggc    600
gttccggctg gggtatttaa cgtggtcacc ggttcggcgg gcgcggtcgg taacgaactg    660
accagtaacc cgctggtgcg caaactgtcg tttaccggtt cgaccgaaat tggccgccag    720
ttaatggaac agtgcgcgaa agacatcaag aaagtgtcgc tggagctggg cggtaacgcg    780
ccgtttatcg tctttgacga tgccgacctc gacaaagccg tggaaggcgc gctggcctcg    840
aaattccgca acgccgggca aacctgcgtc tgcgccaacc gcctgtatgt gcaggacggc    900
gtgtatgacc gttttgccga aaaattgcag caggcagtga gcaaactgca catcggcgac    960
gggctggata acggcgtcac catcgggccg ctgatcgatg aaaaagcggt agcaaaagtg   1020
gaagagcata ttgccgatgc gctggagaaa ggcgcgcgcg tggtttgcgg cggtaaagcg   1080
cacgaacgcg gcggcaactt cttccagccg accattctgg tggacgttcc ggccaacgcc   1140
aaagtgtcga aagaagagac gttcggcccc ctcgccccgc tgttccgctt taaagatgaa   1200
gctgatgtga ttgcgcaagc caatgacacc gagtttggcc ttgccgccta tttctacgcc   1260
cgtgatttaa gccgcgtctt ccgcgtgggc gaagcgctgg agtacggcat cgtcggcatc   1320
aataccggca ttatttccaa tgaagtggcc ccgttcggcg gcatcaaagc ctcgggtctg   1380
ggtcgtgaag gttcgaagta tggcatcgaa gattacttag aaatcaaata tatgtgcatc   1440
ggtctttaa                                                           1449
<210>11
<211>1287
<212>DNA
<213>DctA编码基因
<400>11
atgaaaacct ctctgtttaa aagcctttac tttcaggtcc tgacagcgat agccattggt     60
attctccttg gccatttcta tcctgaaata ggcgagcaaa tgaaaccgct tggcgacggc    120
ttcgttaagc tcattaagat gatcatcgct cctgtcatct tttgtaccgt cgtaacgggc    180
attgcgggca tggaaagcat gaaggcggtc ggtcgtaccg gcgcagtcgc actgctttac    240
tttgaaattg tcagtaccat cgcgctgatt attggtctta tcatcgttaa cgtcgtgcag    300
cctggtgccg gaatgaacgt cgatccggca acgcttgatg cgaaagcggt agcggtttac    360
gccgatcagg cgaaagacca gggcattgtc gccttcatta tggatgtcat cccggcgagc    420
gtcattggcg catttgccag cggtaacatt ctgcaggtgc tgctgtttgc cgtactgttt    480
ggttttgcgc tccaccgtct gggcagcaaa ggccaactga tttttaacgt catcgaaagt    540
ttctcgcagg tcatcttcgg catcatcaat atgatcatgc gtctggcacc tattggtgcg    600
ttcggggcaa tggcgtttac catcggtaaa tacggcgtcg gcacactggt gcaactgggg    660
cagctgatta tctgtttcta cattacctgt atcctgtttg tggtgctggt attgggttca    720
atcgctaaag cgactggttt cagtatcttc aaatttatcc gctacatccg tgaagaactg    780
ctgattgtac tggggacttc atcttccgag tcggcgctgc cgcgtatgct cgacaagatg    840
gagaaactcg gctgccgtaa atcggtggtg gggctggtca tcccgacagg ctactcgttt    900
aaccttgatg gcacatcgat atacctgaca atggcggcgg tgtttatcgc ccaggccact    960
aacagtcaga tggatatcgt ccaccaaatc acgctgttaa tcgtgttgct gctttcttct   1020
aaaggggcgg caggggtaac gggtagtggc tttatcgtgc tggcggcgac gctctctgcg   1080
gtgggccatt tgccggtagc gggtctggcg ctgatcctcg gtatcgaccg ctttatgtca   1140
gaagctcgtg cgctgactaa cctggtcggt aacggcgtag cgaccattgt cgttgctaag   1200
tgggtgaaag aactggacca caaaaaactg gacgatgtgc tgaataatcg tgcgccggat   1260
ggcaaaacgc acgaattatc ctcttaa                                       1287
<210>12
<211>44
<212>DNA
<213>人工序列
<220>
<223>Catlf-SacI引物
<400>12
tttcccgagc tctgtgaggc gattaaatga gtaaagggat aaag 44
<210>13
<211>40
<212>DNA
<213>人工序列
<220>
<223>4hbDb-XabI引物
<400>13
gctctagatt agataaaaaa gaggacattt cacaatatgg                              40
<210>14
<211>31
<212>DNA
<213>人工序列
<220>
<223>DctAf-EcoRI引物
<400>14
ggaattcatg aaaacctctc tgtttaaaag c                                       31
<210>15
<211>35
<212>DNA
<213>人工序列
<220>
<223>gctAb-XbaI引物
<400>15
gctctagatt aagaggataa ttcgtgcgtt ttgcc                                   35
<210>16
<211>33
<212>DNA
<213>人工序列
<220>
<223>CAP0035f-SacI引物
<400>16
tttcccgagc tcatgaaagt tacaaatcaa aaa                                    33
<210>17
<211>29
<212>DNA
<213>人工序列
<220>
<223>CAP0035b-XbaI引物
<400>17
gctctagatt aaaatgcttt tatatagat                                        29
<210>18
<211>28
<212>DNA
<213>人工序列
<220>
<223>CAP0162f-EcoRI引物
<400>18
ggaattcatg aaagtcacaa cagtaaag                                        28
<210>19
<211>26
<212>DNA
<213>人工序列
<220>
<223>CAP0162b-XbaI引物
<400>19
gctctagatt aaggttgttt tttaaa                                            26
<210>20
<211>34
<212>DNA
<213>人工序列
<220>
<223>cat2f-EcoRI引物
<400>20
ggaattcatg gagtgggaag agatatataa agag                                   34
<210>21
<211>40
<212>DNA
<213>人工序列
<220>
<223>cat2b-BamHI引物
<400>21
cgggatcctt aaaatctctt tttaaattca ttcattaatg                             40
<210>22
<211>37
<212>DNA
<213>人工序列
<220>
<223>ptbf-EcoRI引物
<400>22
ggaattcatg attaagagtt ttaatgaaat tatcatg                                   37
<210>23
<211>38
<212>DNA
<213>人工序列
<220>
<223>bukb-XbaI引物
<400>23
gctctagatt atttgtattc cttagctttt tcttctcc                                 38

Claims (27)

1.一种细菌,其通过在能够生产琥珀酸的细菌中引入或增强编码把琥珀酸转变成4-羟基丁酸酯和把4-羟基丁酸酯转变成1,4-丁二醇的酶的基因来制备,
所述编码把琥珀酸转变成4-羟基丁酸酯的酶的基因选自编码琥珀酰辅酶A转移酶、琥珀酸半醛脱氢酶、4-羟基丁酸脱氢酶4hbD和4-羟基丁酸脱氢酶GHB的基因,以及
所述编码把4-羟基丁酸酯转变成1,4-丁二醇的酶的基因是i)编码4-羟基丁酸-辅酶A转移酶的基因和编码使4-羟基丁酸-辅酶A还原的醇脱氢酶的基因;或者ii)编码磷酸转丁酰酶的基因、编码丁酰激酶的基因和编码使4-羟基丁酸-辅酶A还原的醇脱氢酶的基因。
2.根据权利要求1所述的细菌,其中,所述细菌选自腔细菌(Lumen bacteria)、棒状杆菌(Corynebacterium species)、短杆菌(Brevibacterium species)和大肠杆菌(E.coli)。
3.根据权利要求2所述的细菌,其中,所述腔细菌具有失活的编码乳酸脱氢酶(ldhA)和丙酮酸-甲酸裂解酶(pfl)的基因。
4.根据权利要求2所述的细菌,其中,所述腔细菌具有失活的编码乳酸脱氢酶(ldhA)、丙酮酸-甲酸裂解酶(pfl)、磷酸转乙酰酶(pta)和乙酸激酶(ackA)的基因。
5.根据权利要求2所述的细菌,其中,所述腔细菌具有失活的编码乳酸脱氢酶(ldhA)、丙酮酸-甲酸裂解酶(pfl)和磷酸丙酮酸羧化酶(ppc)的基因。
6.根据权利要求2所述的细菌,其中,所述腔细菌选自曼海姆氏菌(Mannheimiasp.)、放线杆菌(Actinobacillus sp.)和厌氧螺菌(Anaerobiospirillum sp.)。
7.根据权利要求6所述的细菌,其中,所述腔细菌是曼海姆氏菌。
8.根据权利要求7所述的细菌,其中,所述腔细菌选自Mannheimiasucciniciproducens MBEL55E KCTC0769BP和曼海姆氏菌LPK KCTC10558BP、LPK4和LPK7KCTC10626BP中。
9.根据权利要求2所述的细菌,其中,所述大肠杆菌具有失活的编码葡萄糖磷酸转移酶(ptsG)和丙酮酸激酶(pykA和pykF)的基因。
10.根据权利要求9所述的细菌,其中,所述大肠杆菌细菌是W3110GFA。
11.根据权利要求1所述的细菌,其中,所述编码把琥珀酸转变成4-羟基丁酸酯的酶的基因来源于科氏梭菌(Clostridium kluyveri)。
12.根据权利要求1所述的细菌,其中,所述编码琥珀酰辅酶A转移酶的基因如SEQ ID NO:1的碱基序列所示,所述编码琥珀酸半醛脱氢酶的基因如SEQ ID NO:2的碱基序列所示,所述编码4-羟基丁酸脱氢酶4hbD的基因如SEQ ID NO:3的碱基序列所示,以及所述编码4-羟基丁酸脱氢酶GHB的基因如SEQ ID NO:4的碱基序列所示。
13.根据权利要求1所述的细菌,其中,所述细菌包含编码琥珀酰辅酶A转移酶的基因;编码琥珀酸半醛脱氢酶的基因;和编码4-羟基丁酸脱氢酶4hbD的基因或编码4-羟基丁酸脱氢酶的基因GHB。
14.根据权利要求1所述的细菌,其中,所述编码把4-羟基丁酸酯转变成1,4-丁二醇的酶的基因来源于丙酮丁醇梭菌(Clostridium acetobutylicum)。
15.根据权利要求1所述的细菌,其中,所述编码4-羟基丁酸-辅酶A转移酶的基因如SEQ ID NO:5的碱基序列所示。
16.根据权利要求1所述的细菌,其中,所述编码磷酸转丁酰酶的基因和编码丁酰激酶的基因分别如SEQ ID NO:6和SEQ ID NO:7的碱基序列所示。
17.根据权利要求1所述的细菌,其中,所述醇脱氢酶是来源于丙酮丁醇梭菌的丁基-辅酶A脱氢酶。
18.根据权利要求17所述的细菌,其中,所述编码丁基-辅酶A脱氢酶的基因如SEQ ID NO:8或SEQ ID NO:9的碱基序列所示。
19.根据权利要求1所述的细菌,其中,该细菌具有失活的与把琥珀酸半醛转变成琥珀酸相关的基因。
20.根据权利要求19所述的细菌,其中,所述与把琥珀酸半醛转变成琥珀酸相关的基因是编码琥珀酸半醛脱氢酶的基因。
21.根据权利要求20所述的细菌,其中,所述编码琥珀酸半醛脱氢酶的基因如SEQ ID NO:10的碱基序列所示。
22.根据权利要求1所述的细菌,其中,在所述细菌中另外引入或增强编码与琥珀酸转运相关的C4-二羧酸转运蛋白的基因。
23.根据权利要求22所述的细菌,其中,所述编码C4-二羧酸转运蛋白的基因如SEQ ID NO:11的碱基序列所示。
24.一种细菌,其通过在能够生产琥珀酸的细菌中引入或增强编码Cat1的基因;编码SucD的基因;编码4hbD或GHB的基因;编码4-羟基丁酸-辅酶A转移酶的基因或编码Ptb的基因和编码Buk的基因;和编码丁基-辅酶A脱氢酶的基因而制备。
25.根据权利要求24所述的细菌,其中,在所述细菌中使编码GabD的基因失活。
26.根据权利要求24所述的细菌,其中,在所述细菌中引入或增强编码与琥珀酸转运相关的DctA的基因。
27.一种制备1,4-丁二醇的方法,包括:
在含有碳源的培养基中培养根据权利要求1到26中任一项所述的细菌;和
从所述培养基中收获1,4-丁二醇。
CN2008801059842A 2007-09-07 2008-08-13 具有生产1,4-丁二醇能力的突变体和使用该突变体制备1,4-丁二醇的方法 Active CN101883853B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020070091081A KR101042242B1 (ko) 2007-09-07 2007-09-07 1,4-부탄디올 생성능을 가지는 변이체 및 이를 이용한1,4-부탄디올의 제조방법
KR10-2007-0091081 2007-09-07
PCT/KR2008/004700 WO2009031766A2 (en) 2007-09-07 2008-08-13 Mutants having capability to produce 1,4-butanediol and method for preparing 1,4-butanediol using the same

Publications (2)

Publication Number Publication Date
CN101883853A CN101883853A (zh) 2010-11-10
CN101883853B true CN101883853B (zh) 2013-12-25

Family

ID=40429511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801059842A Active CN101883853B (zh) 2007-09-07 2008-08-13 具有生产1,4-丁二醇能力的突变体和使用该突变体制备1,4-丁二醇的方法

Country Status (8)

Country Link
US (2) US9096860B2 (zh)
EP (1) EP2201115B2 (zh)
KR (1) KR101042242B1 (zh)
CN (1) CN101883853B (zh)
AU (1) AU2008295788B2 (zh)
DK (1) DK2201115T4 (zh)
ES (1) ES2396179T5 (zh)
WO (1) WO2009031766A2 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105936887A (zh) 2007-03-16 2016-09-14 基因组股份公司 用于1,4-丁二醇和其前体生物合成的组合物和方法
US7947483B2 (en) * 2007-08-10 2011-05-24 Genomatica, Inc. Methods and organisms for the growth-coupled production of 1,4-butanediol
EP2245137B1 (en) 2008-01-22 2017-08-16 Genomatica, Inc. Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol
EP2262901B1 (en) 2008-03-05 2018-11-21 Genomatica, Inc. Primary alcohol producing organisms
JP5912529B2 (ja) 2008-09-10 2016-04-27 ゲノマチカ, インク. 1,4−ブタンジオールの生成のための微生物体
CN102625846B (zh) 2009-04-30 2016-08-03 基因组股份公司 用于生产1,3-丁二醇的生物
WO2010127303A1 (en) 2009-04-30 2010-11-04 Genomatica, Inc. Organisms for the production of isopropanol, n-butanol, and isobutanol
CN102498215A (zh) 2009-06-04 2012-06-13 基因组股份公司 生产1,4-丁二醇的微生物和相关方法
EP3199511B1 (en) 2009-06-04 2020-01-29 Genomatica, Inc. Process of separating components of a fermentation broth
US20110124911A1 (en) 2009-08-05 2011-05-26 Burk Mark J Semi-synthetic terephthalic acid via microorganisms that produce muconic acid
MX2012003025A (es) * 2009-09-09 2012-06-27 Genomatica Inc Microorganismos y metodos para la co-produccion de isopropanol con alcoholes, dioles y acidos primarios.
BR112012009332A2 (pt) 2009-10-23 2015-09-15 Genomatica Inc micro-organismo para a produção de anilina
US8530210B2 (en) 2009-11-25 2013-09-10 Genomatica, Inc. Microorganisms and methods for the coproduction 1,4-butanediol and gamma-butyrolactone
CN109136161A (zh) * 2009-12-10 2019-01-04 基因组股份公司 合成气或其他气态碳源和甲醇转化为1,3-丁二醇的方法和有机体
EP2529011A4 (en) 2010-01-29 2015-07-15 Genomatica Inc MICROORGANISMS AND METHODS FOR BIOSYNTHESIS OF P-TOLUATE AND TEREPHTHALATE
EP2534141B1 (en) 2010-02-11 2016-04-20 Metabolix, Inc. Process for gamma-butyrolactone production
US9023636B2 (en) 2010-04-30 2015-05-05 Genomatica, Inc. Microorganisms and methods for the biosynthesis of propylene
BR112013001635A2 (pt) 2010-07-26 2016-05-24 Genomatica Inc micro-organismo e métodos para a biossíntese de aromáticos, 2, 4-pentadienoato e 1,3-butadieno
CN102191237A (zh) * 2011-03-25 2011-09-21 福建省麦丹生物集团有限公司 一种增强l-苯丙氨酸合成代谢途径的方法
WO2012170793A1 (en) 2011-06-08 2012-12-13 Metabolix, Inc. Biorefinery process for thf production
CA2839373A1 (en) * 2011-06-15 2012-12-20 B.R.A.I.N. Biotechnology Research And Information Network Ag New means and methods for producing propanediol
AU2012272856A1 (en) 2011-06-22 2013-05-02 Genomatica, Inc. Microorganisms for producing 1,4-butanediol and methods related thereto
EP2742143A1 (en) 2011-08-10 2014-06-18 Metabolix, Inc. Post process purification for gamma-butyrolactone production
KR101587618B1 (ko) * 2011-12-07 2016-01-22 한국과학기술원 4-하이드록시부티릭산 고생성능을 가지는 변이 미생물 및 이를 이용한 4-하이드록시부티릭산의 제조방법
KR20130094115A (ko) * 2012-02-15 2013-08-23 삼성전자주식회사 1,4-부탄디올의 생산을 위한 변형 미생물
EP2855687B1 (en) 2012-06-04 2020-04-22 Genomatica, Inc. Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds
KR20140014648A (ko) 2012-07-25 2014-02-06 삼성전자주식회사 1,4-부탄디올의 고효율 생산을 위한 변형 미생물
KR102023618B1 (ko) 2012-07-27 2019-09-20 삼성전자주식회사 1,4-bdo 생성능이 개선된 변이 미생물 및 이를 이용한 1,4-bdo의 제조방법
US9657316B2 (en) 2012-08-27 2017-05-23 Genomatica, Inc. Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,4-butanediol related thereto
US11535874B2 (en) 2012-10-22 2022-12-27 Genomatica, Inc. Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing succinate related thereto
EP3862421A1 (en) 2012-12-17 2021-08-11 Genomatica, Inc. Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing adipate, 6-aminocaproate, hexamethylenediamine or caprolactam related thereto
AU2014239256B2 (en) 2013-03-15 2018-11-08 Genomatica, Inc. Process and systems for obtaining 1,4-butanediol from fermentation broths
KR101581504B1 (ko) * 2013-03-18 2015-12-31 지에스칼텍스 주식회사 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
EP2818551B1 (en) * 2013-06-28 2017-04-05 Samsung Electronics Co., Ltd Corynebacterium, in which a gene encoding CoA independent succinate semialdehyde dehydrogenase and a gene encoding L-lactate dehydrogenase are attenatued and method of producing C4 compounds, e.g. 4-hydroxybutyrate
KR102097065B1 (ko) 2013-08-23 2020-04-03 삼성전자주식회사 4-히드록시부티레이트 생산 균주 및 이를 이용한 4-히드록시부티레이트의 혐기적 생산 방법
KR101748930B1 (ko) * 2015-02-09 2017-06-20 지에스칼텍스 주식회사 다이올 생산용 재조합 미생물
CN104926930B (zh) * 2015-06-30 2018-02-06 西南大学 出芽短梗霉二羧酸转运蛋白及其重组载体和应用
CN108884467A (zh) * 2015-10-13 2018-11-23 朗泽科技新西兰有限公司 包含产能发酵途径的基因工程菌
CN105647953A (zh) * 2016-03-18 2016-06-08 黑龙江大学 高产2,3-丁二醇的产酸克雷伯氏基因工程菌株的构建方法及其发酵方法
CN112877269B (zh) * 2020-01-15 2021-12-24 中国科学院天津工业生物技术研究所 生产赖氨酸的微生物以及赖氨酸的生产方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117658A (en) * 1997-02-13 2000-09-12 James Madison University Methods of making polyhydroxyalkanoates comprising 4-hydroxybutyrate monomer units
GB0219062D0 (en) * 2002-08-15 2002-09-25 Rockwool Int Method and environment for growing plants
NZ547305A (en) * 2003-11-27 2009-05-31 Korea Advanced Inst Sci & Tech Rumen bacteria variants and process for preparing succinic acid employing the same
KR100630819B1 (ko) * 2004-04-23 2006-10-02 한국과학기술원 신규 루멘 박테리아 변이균주 및 이를 이용한 숙신산의제조방법
GB0409704D0 (en) * 2004-04-30 2004-06-02 Nokia Corp A method for verifying a first identity and a second identity of an entity
KR20060001134A (ko) * 2004-06-30 2006-01-06 삼성전기주식회사 고주파 id 리더간 통신 기능을 갖는 고주파 id 리더
KR100656590B1 (ko) 2004-07-30 2006-12-11 한국과학기술원 박테리아 변이균주 및 이를 이용한 숙신산 및 아미노산의제조방법
KR20070096348A (ko) 2006-03-23 2007-10-02 주식회사 엘지화학 1,4―butanediol〔1,4―BDO〕생성능을가지는 변이체 및 이를 이용한 1,4―BDO의 제조방법
US7947483B2 (en) * 2007-08-10 2011-05-24 Genomatica, Inc. Methods and organisms for the growth-coupled production of 1,4-butanediol

Also Published As

Publication number Publication date
CN101883853A (zh) 2010-11-10
KR101042242B1 (ko) 2011-06-17
KR20090025902A (ko) 2009-03-11
EP2201115B2 (en) 2016-07-20
US20100330634A1 (en) 2010-12-30
AU2008295788B2 (en) 2013-01-17
WO2009031766A3 (en) 2009-04-30
EP2201115A2 (en) 2010-06-30
US9920325B2 (en) 2018-03-20
DK2201115T4 (en) 2016-11-07
US20150353964A1 (en) 2015-12-10
ES2396179T3 (es) 2013-02-19
US9096860B2 (en) 2015-08-04
DK2201115T3 (da) 2013-02-11
EP2201115B1 (en) 2012-10-24
WO2009031766A2 (en) 2009-03-12
AU2008295788A1 (en) 2009-03-12
ES2396179T5 (es) 2017-02-01
EP2201115A4 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
CN101883853B (zh) 具有生产1,4-丁二醇能力的突变体和使用该突变体制备1,4-丁二醇的方法
US10975400B2 (en) 5-aminolevulinic acid high-yield bacterial strain, preparation method and use thereof
CN101389752B (zh) 能够产生有机酸的细菌以及产生有机酸的方法
KR20070096348A (ko) 1,4―butanediol〔1,4―BDO〕생성능을가지는 변이체 및 이를 이용한 1,4―BDO의 제조방법
CN101693896B (zh) 醛脱氢酶基因
CN102165056B (zh) 生产l-氨基酸的微生物和使用其生产l-氨基酸的方法
CN109415418B (zh) 通过包含编码糖磷酸转移酶系统(pts)的基因的微生物发酵产生感兴趣的分子的方法
WO2005010182A1 (ja) コリネ型細菌形質転換体及びそれを用いるジカルボン酸の製造方法
CN108350040A (zh) 用于精细化学品的改进生产的重组微生物
DK2264051T3 (en) New gene products that form or degrade poly-amino acids of Bacillus licheniformis and this supporting improved biotechnological production methods
Chistoserdova et al. Molecular characterization of a chromosomal region involved in the oxidation of acetyl-CoA to glyoxylate in the isocitrate-lyase-negative methylotroph Methylobacterium extorquens AM1
CN101679963A (zh) 用于产生3-羧基黏康酸内酯的基因被破坏的菌株、重组质粒、转化体和方法
JP4627778B2 (ja) 加水分解物原料からコハク酸を生産する方法
CN101463358B (zh) 一种腈水合酶基因簇及其应用
US7354751B2 (en) Alcohol dehydrogenase gene of acetic acid bacterium
CN106062178A (zh) 具有增加的碳通量效率的方法和生物
KR20200033943A (ko) 높은 글리세린 함량을 갖는 배양 배지 상에서의 발효에 의한 개선된 1,3-프로판디올 생산을 위한 미생물 및 방법
KR100957772B1 (ko) 4―hydroxybutyrate(4HB)생성능을가지는 변이체 및 이를 이용한 4HB의 제조방법
KR20200023450A (ko) 기능적 dna 서열의 안정화된 카피 수를 갖는 미생물 및 관련 방법
Edelshtein et al. Characterization of genes involved in poly-β-hydroxybutyrate metabolism in Azospirillum brasilense
JP2005013083A (ja) タンパク質gluk、その遺伝子、高度な酢酸耐性を有する微生物、及び該微生物を用いた食酢の製造方法
JP2005040080A (ja) タンパク質gadh、その遺伝子、高度な酢酸耐性を有する微生物、及び該微生物を用いた食酢の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant