CN101823691A - 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法 - Google Patents

一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法 Download PDF

Info

Publication number
CN101823691A
CN101823691A CN 201010165969 CN201010165969A CN101823691A CN 101823691 A CN101823691 A CN 101823691A CN 201010165969 CN201010165969 CN 201010165969 CN 201010165969 A CN201010165969 A CN 201010165969A CN 101823691 A CN101823691 A CN 101823691A
Authority
CN
China
Prior art keywords
solution
powder
stirring
antimony
tin oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010165969
Other languages
English (en)
Other versions
CN101823691B (zh
Inventor
谭瑞琴
郭艳群
李月
杨晔
宋伟杰
徐铁锋
聂秋华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN 201010165969 priority Critical patent/CN101823691B/zh
Publication of CN101823691A publication Critical patent/CN101823691A/zh
Application granted granted Critical
Publication of CN101823691B publication Critical patent/CN101823691B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法,具体步骤:将0.2~1mol/L的锡盐溶液与0.1~0.5mol/L的PdCl2溶液、0.1~0.5mol/L的SbCl3悬浊液及0.4~1mol/L的碱源溶液为原料;按Pd2+和/或Sb3+与Sn2+的摩尔掺杂比0.5~3.5%,边搅拌边分别将配置的PdCl2溶液和SbCl3悬浊液中的至少一种滴加至锡盐溶液中,形成混合溶液;然后边搅拌边将碱源溶液滴加至混合溶液中,直至pH值介于9~13,再搅拌使之形成伴有大量沉淀的前驱体悬浊液;将前驱体悬浊液转移到高压反应釜中,在100~200℃下反应12~36h,自然冷却至室温,得到水热产物;用去离子水和乙醇将水热产物洗涤数次,并用AgNO3溶液检测,直至Cl-完全被去除,然后在70~100℃下烘干,即得Pd和/或Sb掺杂的SnO2纳米粉体,优点在于工艺简单,环境友好,适宜工业化生产。

Description

一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法
技术领域
本发明涉及一种氧化锡纳米粉体的制备方法,尤其是涉及一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法。
背景技术
SnO2具有极好的光电特性和对还原性气体的敏感性能,目前已被广泛应用于气敏传感器材料、透明导电粉体以及光催化材料等领域。当SnO2材料的晶粒尺度进入纳米级后,由于纳米材料独有的小尺寸效应、量子尺寸效应及表面效应等而表现出许多特殊的物理化学性质,从而使得SnO2纳米粒子在气敏、透明导电及光催化等应用方面表现出很大的优势。但由于SnO2纳米粒子比表面能高,属于热力学不稳定体系,为了达到稳定状态,颗粒会自发团聚;另外由于SnO2纳米粒子热稳定性较差,随温度的升高晶粒会长大。颗粒团聚或晶粒长大都会因尺寸增大而降低纳米粒子在比表面积上的优势,从而影响其在气敏、透明导电及光催化等方面的应用,因此SnO2纳米材料在实际应用中要解决的关键问题是如何提高其热稳定性和控制其晶粒尺寸。众多研究表明,向纯的SnO2纳米材料中掺杂不同元素是解决此问题的有效途径。近年来,钯(Pd)和锑(Sb)掺杂一直是各国科学家研究的热点。
目前,已经可以在常规条件下经过简单的实验步骤制备具有较高质量的Pd或Sb掺杂的SnO2纳米材料,其制备方法主要有化学共沉淀法和水热法。其中,水热法是一种在高压反应釜的高压密闭环境中完成的湿化学合成方法,与化学共沉淀法相比,水热反应不需高温烧结即可直接生成晶体,所制备的粉体颗粒均匀、结晶度高、晶态完整。对于Sb掺杂的SnO2纳米材料,在化学共沉淀法中,以Sn粉和Sb的氯化物或氧化物为原料,采用共沉淀得到前驱体沉淀物,然后再将沉淀物进行洗涤,烘干,煅烧,研磨,最终得到Sb掺杂的SnO2纳米材料(李雄平吴介达韩传有,掺锑二氧化锡(ATO)导电粉体的制备和表征[J],化学世界,2006:196-198;张建荣高濂,纳米晶Sb掺杂SnO2(ATO)粉体的合成和表征[J],高等学校化学学报,2003,24(9):1544-1547);在水热法中,以金属Sn的单质或氧化物和金属Sb的单质或氧化物为主要原料,以硫酸、硝酸为酸度调节剂,以双氧水为氧化剂,最终得到Sb掺杂的SnO2纳米材料(高濂张建荣,锑掺杂氧化锡导电粉体的水热合成方法,公开号CN 1558426A,申请号200410016326.X),或者以Sn和Sb的氯化物为主要原料,以浓HCl或浓氨水为酸度调节剂,通过添加无机稳定剂酒石酸或十六烷基三甲基溴化铵等,合成纳米级Sb掺杂的SnO2导电粉体(卓立宏谢海泉郭应臣,纳米级掺锑SnO2导电粉体的水热合成及性能研究[J],2006,18(1):97-100)。对于Pd掺杂的SnO2纳米材料,合成方法主要集中在用化学共沉淀法上,以SnCl4和PdCl2为主要原料,以氨水为沉淀剂,采用共沉淀得到前驱体沉淀物,然后,再将沉淀物进行洗涤,烘干,煅烧,得到Pd掺杂的SnO2纳米材料(A.R.Phani,S.Manorama,V.J.Rao,Preparation,characterization and electrical properties of SnO2 basedliquid petroleum gas sensor[J],Materials Chemistry and Physics,1999,58(2):101-108)。对于Pd和Sb共掺杂的SnO2纳米粉体的制备报道的较少,其中,K.Chatterjee和S.Chatterjee在Materials Chemistry and Physics,2003,81(1):33-38中报道了,以SnCl2、PdCl2和Sb2O3为主要原料,以HCl和氨水为酸碱中和剂,用共沉淀法制备了Pd和Sb共掺杂的SnO2纳米粉体。
但是,上述Pd或Sb掺杂的SnO2纳米粉体的制备方法存在以下缺点:
1)、采用共沉淀法得到前驱体后,最终的产品须进行煅烧,在煅烧过程中容易引入杂质、导致纳米粉体的团聚,并引起掺杂元素的偏析,从而导致掺杂不均匀,影响粉体的最终性能。
2)、使用大量的浓盐酸、浓硫酸、浓硝酸或氨水作为酸碱调节剂或沉淀剂,运输、储存和使用不方便、不安全,同时导致生产环境恶劣。
3)、添加酒石酸或十六烷基三甲基溴化铵等无机稳定剂,使成本大幅度提高,同时在高温去除大量稳定剂时,产生的排气对环境污染较大,不利于长期大规模生产。
发明内容
本发明所要解决的技术问题是提供一种工艺简单、条件温和、环境友好的钯和/或锑掺杂的氧化锡纳米粉体的制备方法。
本发明解决上述技术问题所采用的技术方案为:一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法,其特征在于具体步骤依次为:
步骤1,将锡盐溶解到乙醇与水混合液或者乙醇中,经搅拌后形成0.2~1mol/L的锡盐溶液;将PdCl2溶解到0.5~2mol/L的盐酸水溶液中,经搅拌后形成0.1~0.5mol/L的PdCl2溶液;将SbCl3溶解到水中,经搅拌后形成0.1~0.5mol/L的悬浊液;将碱源溶解到去离子水中,经搅拌后形成0.4~1mol/L的碱源溶液;
步骤2,按照Pd2+和/或Sb3+与Sn2+的摩尔掺杂比例0.5~3.5%,在搅拌条件下分别将步骤1配置的PdCl2溶液和SbCl3悬浊液中的至少一种滴加至锡盐溶液中,然后再搅拌一段时间,形成混合溶液;
步骤3,边搅拌边将碱源溶液滴加至步骤2得到的混合溶液中,直至pH值介于9~13,然后再搅拌一段时间,形成伴有大量沉淀的前驱体悬浊液;
步骤4,将步骤3得到的前驱体悬浊液转移到高压反应釜中,在100~200℃下反应12~36h,然后自然冷却至室温,得到水热产物;
步骤5,依次用去离子水和乙醇将步骤4得到的水热产物洗涤数次,并且用AgNO3溶液检测,直至Cl-完全被去除,然后在70~100℃下烘干,即得到Pd和/或Sb掺杂的SnO2纳米粉体。
所述的锡盐为氯化亚锡或氯化锡中的一种。
所述的碱源为尿素、氨水、氢氧化钠、氢氧化钾或氢氧化钙中的一种。
所述的搅拌为磁力搅拌,在滴加碱源溶液时的搅拌强度比其他过程大。
步骤5中洗涤次数为:依次用去离子水洗涤4次和乙醇洗涤2次。
所述的AgNO3溶液的浓度为1mol/L。
与现有技术相比,本发明的优点在于:
a.采用低温水热法实现了Pd和/或Sb在SnO2中的均匀掺杂,所得Pd和/或Sb掺杂的SnO2纳米粉体的粒径小,高温下的热稳定性明显提高。
b.本发明不需要高温煅烧,避免了高温煅烧引起钯和锑在粉体中的偏析,有利于Pd和/或Sb在SnO2中的均匀掺杂。
c.原料简单易得,工艺简单无污染,制备周期短,条件温和,成本低,适宜工业化生产。
附图说明
图1为本发明具体实施例3中所得产物的XRD图;
图2为本发明具体实施例3中所得产物的透射电镜图;
图3为本发明具体实施例1,2,3中所得产物与未掺杂的氧化锡纳米粉体在不同热
处理温度下平均晶粒尺寸的比较图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
具体实施实例1
步骤1,将2.7078g的SnCl2·2H2O溶解到20mL乙醇中,经搅拌形成0.6mol/L的透明溶液;按照Pd2+与Sn2+的摩尔比为2.5%称取适量的PdCl2溶解到1.0mol/L的盐酸水溶液中,经搅拌形成0.3mol/L的溶液;将NaOH溶解到一定量的去离子水中,经搅拌形成1mol/L的NaOH溶液;
步骤2,在搅拌条件下,将步骤1配置的PdCl2溶液均匀地滴加至SnCl2溶液中,然后再搅拌10分钟,形成混合溶液;
步骤3,边搅拌边将NaOH溶液均匀的滴加至步骤2得到的混合溶液中,直至pH值为12,然后再搅拌1h,形成伴有大量沉淀的前驱体悬浊液;
步骤4,将步骤3得到的前驱体悬浊液转移到高压反应釜中,在180℃下反应12h,然后自然冷却至室温,得到水热产物;
步骤5,将步骤4得到水热产物依次用去离子水洗涤4次和乙醇洗涤2次,并且用1mol/L的AgNO3溶液检测,确定将Cl-完全去除,在抽真空条件下90℃烘干1h得到深褐色的Pd掺杂的SnO2纳米粉体,平均晶粒尺寸大约为5nm。
具体实施实例2
步骤1,将2.7078g的SnCl2·2H2O溶解到20mL乙醇中,经搅拌形成0.6mol/L的透明溶液;按照Sb3+与Sn2+的摩尔比为2.5%称取适量的SbCl3溶解到水中,经搅拌形成伴有白色沉淀的0.3mol/L悬浊液;将NaOH溶解到一定量的去离子水中,经搅拌形成1mol/L的NaOH溶液;
步骤2,在搅拌条件下,将步骤1配置的SbCl3悬浊液均匀地滴加至SnCl2溶液中,然后再搅拌20分钟,形成混合溶液;
步骤3,边搅拌边将NaOH溶液均匀的滴加至步骤2所述的混合溶液中,直至pH值为12,然后再搅拌1h,形成伴有大量沉淀的前驱体悬浊液;
步骤4,将步骤3所述的前驱体悬浊液转移到高压反应釜中,在180℃下反应24h,然后自然冷却至室温,得到水热产物;
步骤5,将步骤4得到水热产物依次用去离子水洗涤4次和乙醇洗涤2次,并且用1mol/L的AgNO3溶液检测,确定将Cl-完全去除,在抽真空条件下90℃烘干1h得到黄色的Sb掺杂的SnO2纳米粉体,平均晶粒尺度大约为8nm。
具体实施实例3
步骤1,将2.7078g的SnCl2·2H2O溶解到20mL乙醇中,经搅拌形成0.6mol/L的透明溶液;按照Pd2+与Sn2+的摩尔比为2.5%称取适量的PdCl2溶解到1.0mol/L的盐酸水溶液中,经搅拌形成0.3mol/L的枣红色溶液;按照Sb3+与Sn2+的摩尔比为2.5%称取适量的SbCl3溶解到水中,经搅拌形成伴有白色沉淀的0.3mol/L悬浊液;将NaOH溶解到一定量的去离子水中,经搅拌形成1mol/L的NaOH溶液;
步骤2,在搅拌条件下,分别将步骤1配置的PdCl2和SbCl3溶液均匀地滴加至SnCl2溶液中,然后再搅拌30分钟,形成混合溶液;
步骤3,边搅拌边将NaOH溶液均匀地滴加至步骤2所述的混合溶液中,直至pH值为12,然后再搅拌1h,形成伴有大量沉淀的前驱体悬浊液;
步骤4,将步骤3所述的前驱体悬浊液转移到高压反应釜中,在180℃下反应24h,然后自然冷却至室温,得到水热产物;
步骤5,将步骤4得到水热产物依次用去离子水洗涤4次和乙醇洗涤2次,并且用1mol/L的AgNO3溶液检测,确定将Cl-完全去除,在抽真空条件下90℃烘干1h得到深褐色的Pd和Sb共掺杂的SnO2纳米粉体,平均晶粒尺度大约为6nm。
为了进一步分析掺杂元素对SnO2热稳定性的影响,上述各实施实例所得的产物分别在300℃、400℃、500℃、700℃、900℃下热处理3h,热处理过程中的升温速率均为5℃/min。
根据谢乐公式分别采用SnO2的(110)、(101)和(211)面衍射峰的半峰宽估算上述实施实例所得产物的平均晶粒尺寸:
D=Kλ/B1/2cosθ
其中D为晶粒的平均尺寸(nm),K为常数(对于球形晶粒为0.89,对应立方体晶粒为0.94),λ是X射线的波长,为0.15406nm,B1/2为衍射线剖面的半高宽(单位为弧度,rad)。所得结果如附图3所示,可以得出:
对Pd、Sb及二者共掺杂SnO2纳米粉体的热稳定性研究表明:在低退火温度(500℃、700℃)下,Pd和/或Sb的掺杂能够抑制SnO2晶粒长大;在高退火温度(900℃)下,Pd的掺杂反而促进了SnO2晶粒长大,而Sb的掺杂能够有效抑制SnO2晶粒长大;与Pd、Sb单独掺杂体系相比,Pd-Sb二者共掺杂体系,可以更加有效的提高粉体在高退火温度下的热稳定性。
由上得,本发明采用低温水热法实现了Pd和/或Sb在SnO2中的均匀掺杂;与未掺杂的SnO2相比,采用本方法实现的掺杂SnO2纳米粉体的热稳定性明显提高。
总之,本方法没有使用任何表面活性剂,具有产品品质高、产率高、成本低以及可以规模生产等特点,是一种环境友好型的合成方法。

Claims (6)

1.一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法,其特征在于具体步骤依次为:
步骤1,将锡盐溶解到乙醇与水混合液或者乙醇中,经搅拌后形成0.2~1mol/L锡盐的溶液;将PdCl2溶解到0.5~2mol/L的盐酸水溶液中,经搅拌后形成0.1~0.5mol/L的PdCl2溶液;将SbCl3溶解到水中,经搅拌后形成0.1~0.5mol/L的悬浊液;将碱源溶解到去离子水中,经搅拌后形成0.4~1mol/L的碱源溶液;
步骤2,按照Pd2+和/或Sb3+与Sn2+的摩尔掺杂比例0.5~3.5%,在搅拌条件下分别将步骤1配置的PdCl2溶液和SbCl3悬浊液中的至少一种滴加至锡盐溶液中,然后再搅拌一段时间,形成混合溶液;
步骤3,边搅拌边将碱源溶液滴加至步骤2得到的混合溶液中,直至pH值介于9~13,然后再搅拌一段时间,形成伴有大量沉淀的前驱体悬浊液;
步骤4,将步骤3得到的前驱体悬浊液转移到高压反应釜中,在100~200℃下反应12~36h,然后自然冷却至室温,得到水热产物;
步骤5,依次用去离子水和乙醇将步骤4得到的水热产物洗涤数次,并且用AgNO3溶液检测,直至Cl-完全被去除,然后在70~100℃下烘干,即得Pd和/或Sb掺杂SnO2纳米粉体。
2.根据权利要求1所述的一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法,其特征在于:所述的锡盐为氯化亚锡或氯化锡中的一种。
3.根据权利要求1所述的一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法,其特征在于:所述的碱源为尿素、氨水、氢氧化钠、氢氧化钾或氢氧化钙中的一种。
4.根据权利要求1所述的一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法,其特征在于:所述的搅拌为磁力搅拌,在滴加碱源溶液过程中的搅拌强度比其他过程大。
5.根据权利要求1所述的一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法,其特征在于:步骤5中洗涤次数为:依次用去离子水洗涤4次和乙醇洗涤2次。
6.根据权利要求1所述的一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法,其特征在于:所述的AgNO3溶液的浓度为1mol/L。
CN 201010165969 2010-05-06 2010-05-06 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法 Expired - Fee Related CN101823691B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010165969 CN101823691B (zh) 2010-05-06 2010-05-06 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010165969 CN101823691B (zh) 2010-05-06 2010-05-06 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法

Publications (2)

Publication Number Publication Date
CN101823691A true CN101823691A (zh) 2010-09-08
CN101823691B CN101823691B (zh) 2012-12-19

Family

ID=42687892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010165969 Expired - Fee Related CN101823691B (zh) 2010-05-06 2010-05-06 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法

Country Status (1)

Country Link
CN (1) CN101823691B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145916A (zh) * 2011-03-28 2011-08-10 宁波大学 一种Sn3O4纳米粉体的制备方法
CN102899040A (zh) * 2011-07-26 2013-01-30 北京化工大学 一种单分散掺杂氧化锡纳米颗粒的低温制备方法
CN103058278A (zh) * 2012-12-31 2013-04-24 宜昌三峡中润纳米材料有限公司 一种氧化锡锑纳米粉体的制备方法
CN104483351A (zh) * 2014-11-27 2015-04-01 武汉工程大学 一种钯掺杂中空多孔二氧化锡微立方体及其制备方法和应用
CN106000384A (zh) * 2016-05-13 2016-10-12 淮北师范大学 一种组成可控的锡基氧化物的制备方法及其光催化应用
CN107228927A (zh) * 2017-06-22 2017-10-03 云南大学 一种高灵敏度甲烷气体敏感材料及其制备方法与应用
CN108213453A (zh) * 2018-01-25 2018-06-29 叶剑 一种多金属纳米材料的制备方法
EP3351324A4 (en) * 2015-09-18 2018-10-24 Tanaka Kikinzoku Kogyo K.K. Precious metal powder production method
CN108998022A (zh) * 2018-08-29 2018-12-14 江苏科技大学 一种具有类过氧化物酶特性的氧化锡锑纳米颗粒及其制备方法和应用
CN111982981A (zh) * 2020-08-17 2020-11-24 合肥微纳传感技术有限公司 一种SnO2基气敏材料、气敏材料的制备方法及其应用
CN113731444A (zh) * 2021-08-26 2021-12-03 杭州电子科技大学 一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用
CN114923961A (zh) * 2022-04-29 2022-08-19 安徽维纳物联科技有限公司 一种SnO2基一氧化碳气体传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558426A (zh) * 2004-02-13 2004-12-29 中国科学院上海硅酸盐研究所 锑掺杂氧化锡导电粉体的水热合成方法
CN101327948A (zh) * 2008-07-31 2008-12-24 浙江大学 一种锑掺杂二氧化锡纳米粉体的水热法制备方法
US20100101637A1 (en) * 2007-02-27 2010-04-29 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1558426A (zh) * 2004-02-13 2004-12-29 中国科学院上海硅酸盐研究所 锑掺杂氧化锡导电粉体的水热合成方法
US20100101637A1 (en) * 2007-02-27 2010-04-29 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
CN101327948A (zh) * 2008-07-31 2008-12-24 浙江大学 一种锑掺杂二氧化锡纳米粉体的水热法制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Materials Letters》 20091231 Yue Li et al. Synthesis of SnO2 nano-sheets by a template-free hydrothermal method 全文 1-6 , *
《硅酸盐学报》 20060430 张建荣等 水热法合成单分散性锑掺杂氧化锡纳米导电粉体 全文 1-6 第34卷, 第4期 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145916A (zh) * 2011-03-28 2011-08-10 宁波大学 一种Sn3O4纳米粉体的制备方法
CN102899040A (zh) * 2011-07-26 2013-01-30 北京化工大学 一种单分散掺杂氧化锡纳米颗粒的低温制备方法
CN102899040B (zh) * 2011-07-26 2014-06-18 北京化工大学 一种单分散掺杂氧化锡纳米颗粒的低温制备方法
CN103058278A (zh) * 2012-12-31 2013-04-24 宜昌三峡中润纳米材料有限公司 一种氧化锡锑纳米粉体的制备方法
CN103058278B (zh) * 2012-12-31 2015-06-10 宜昌三峡中润纳米材料有限公司 一种氧化锡锑纳米粉体的制备方法
CN104483351A (zh) * 2014-11-27 2015-04-01 武汉工程大学 一种钯掺杂中空多孔二氧化锡微立方体及其制备方法和应用
US10569334B2 (en) 2015-09-18 2020-02-25 Tanaka Kikinzoku Kogyo K.K. Process for producing noble-metal powder
EP3351324A4 (en) * 2015-09-18 2018-10-24 Tanaka Kikinzoku Kogyo K.K. Precious metal powder production method
CN106000384B (zh) * 2016-05-13 2018-04-10 淮北师范大学 一种组成可控的锡基氧化物的制备方法及其光催化应用
CN106000384A (zh) * 2016-05-13 2016-10-12 淮北师范大学 一种组成可控的锡基氧化物的制备方法及其光催化应用
CN107228927A (zh) * 2017-06-22 2017-10-03 云南大学 一种高灵敏度甲烷气体敏感材料及其制备方法与应用
CN107228927B (zh) * 2017-06-22 2019-08-13 云南大学 一种高灵敏度甲烷气体敏感材料及其制备方法与应用
CN108213453A (zh) * 2018-01-25 2018-06-29 叶剑 一种多金属纳米材料的制备方法
CN108998022A (zh) * 2018-08-29 2018-12-14 江苏科技大学 一种具有类过氧化物酶特性的氧化锡锑纳米颗粒及其制备方法和应用
CN111982981A (zh) * 2020-08-17 2020-11-24 合肥微纳传感技术有限公司 一种SnO2基气敏材料、气敏材料的制备方法及其应用
CN113731444A (zh) * 2021-08-26 2021-12-03 杭州电子科技大学 一种用于降解有机废水的Sb-SnO2/SnS2纳米催化剂及其制备方法和应用
CN114923961A (zh) * 2022-04-29 2022-08-19 安徽维纳物联科技有限公司 一种SnO2基一氧化碳气体传感器及其制备方法

Also Published As

Publication number Publication date
CN101823691B (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
CN101823691B (zh) 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法
Ye et al. Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior
CN101580270B (zh) 纳米掺杂氧化锡溶胶的制备方法
Soler-Illia et al. Synthesis of nickel hydroxide by homogeneous alkalinization. Precipitation mechanism
CN103539197B (zh) 锑掺杂二氧化锡纳米材料的制备方法及锑掺杂二氧化锡纳米材料
CN104150528B (zh) 一种掺杂二氧化锡导电纳米粉体的制备方法
CN106542586B (zh) 一种钨酸钴纳米棒的制备方法
CN102082270A (zh) 一类锰系尖晶石纳米材料及其制备方法和应用
Sun et al. Embellishing {0 0 1} surface of Bi2MoO6 nanobelts with enhanced photocatalytic performance and mechanisms exploration
CN102702518A (zh) 一种二氧化锡/聚苯胺复合材料的制备方法
CN102826597B (zh) 一种制备纳米二氧化钛的方法
CN108807986A (zh) 一种碱式氯化铅微纳结构晶体的制备方法
CN103787405A (zh) 一种金红石相二氧化锡溶胶的制备方法
CN104607216A (zh) 磷铝共掺杂型导电氧化锌纳米催化剂的一步合成方法
Sharma et al. Controlled growth of α-MoO3 nanostructures with enhanced optical and electrochemical properties without capping agents
Blessi et al. Effect of zinc substitution on the physical and electrochemical properties of mesoporous SnO2 nanoparticles
CN105800604A (zh) 一种石墨烯负载铁酸钴量子点的制备方法
CN101570349B (zh) 一种超级电容器材料NiO的合成方法
CN103523819A (zh) 一种单分散锑掺杂氧化锡纳米粉体的制备方法
Wang et al. Continuous and ultrafast preparation of In (OH) 3, InOOH, and In2O3 series in a microreactor for gas sensors
CN103641157A (zh) 一种制备低电阻纳米粉体的方法
CN101704505B (zh) 基于钙掺杂的高热稳定性氧化锡纳米粉体的制备方法
CN105060339A (zh) 一种二氧化锡量子点的低温制备方法
CN101693520A (zh) 一种稀土元素掺杂的氧化铈纳米棒的工业化制备方法
CN104556193A (zh) 一种采用热辅助溶胶-凝胶法制备 Sm2O3/SnO2 纳米复合物的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121219

Termination date: 20160506