CN106000384B - 一种组成可控的锡基氧化物的制备方法及其光催化应用 - Google Patents

一种组成可控的锡基氧化物的制备方法及其光催化应用 Download PDF

Info

Publication number
CN106000384B
CN106000384B CN201610326861.8A CN201610326861A CN106000384B CN 106000384 B CN106000384 B CN 106000384B CN 201610326861 A CN201610326861 A CN 201610326861A CN 106000384 B CN106000384 B CN 106000384B
Authority
CN
China
Prior art keywords
sno
tin
based oxide
reaction mixture
hydrothermal solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610326861.8A
Other languages
English (en)
Other versions
CN106000384A (zh
Inventor
付先亮
王静慧
孟苏刚
陈士夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaibei Normal University
Original Assignee
Huaibei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaibei Normal University filed Critical Huaibei Normal University
Priority to CN201610326861.8A priority Critical patent/CN106000384B/zh
Publication of CN106000384A publication Critical patent/CN106000384A/zh
Application granted granted Critical
Publication of CN106000384B publication Critical patent/CN106000384B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种组成可控的锡基氧化物的制备方法及其光催化应用,其特征在于:锡基氧化物是以二水合氯化亚锡为原料通过一步水热法制备获得,且通过控制水热溶液的组成,可选择性的合成Sn2+/SnO2、SnO/SnO2、SnO或SnO2四种组成不同的样品;其中Sn2+/SnO2和SnO/SnO2在可见光下对甲基橙表现出高效的光催化降解脱色活性。本发明采用一步水热法对这些样品进行选择合成,制备工艺简单,原料廉价易得,克服了传统合成方法的繁琐和对目标产物组成不可控的缺点,具有推广应用前景。

Description

一种组成可控的锡基氧化物的制备方法及其光催化应用
技术领域
本发明属于材料合成技术及环境污染物治理领域,具体涉及一种组成可控的锡基氧化物的制备方法及其光催化应用。
背景技术
环境污染在经济迅速发展的当代已成为人们广泛关注的问题之一,开发高效、节能、无污染的光催化技术尤其受到人们的关注。而在各类新型的技术中,光催化技术是最具前途的环境友好的技术之一,它利用光催化剂吸收的光能转化为化学能去分解有机物,半导体价带中的电子受到光的激发由价带跃迁到导带,在导带中形成光生电子,价带中形成光生空穴。光生电子与空穴具有很强的还原与氧化能力,当它们到达催化剂表面时可以将污染物氧化还原成无害的小分子,光催化剂可利用太阳光为动力进行长期、可持续工作,成本低,无毒无害,对于从根本上解决环境问题具有重要意义。
锡作为一种常见的变价金属,有二价和四价两种不同的价态,常见的锡的氧化物包括氧化亚锡(SnO)、二氧化锡(SnO2)以及混合价态的三氧化二锡(Sn2O3)和四氧化三锡(Sn3O4)。SnO2由于具有良好的导电性和稳定性,常被用作透明导电材料以及气敏材料。同时,作为一种常见的n型宽能隙半导体材料(禁带宽度为3.6eV),SnO2在污染物的光催化降解消除上也具有广泛的应用前景,但其活性仅能在紫外光下显现,对太阳光谱中占主要部分的可见光利用率低。此外,为了加速光生载流子的分离迁移,SnO2也常与其它半导体进行复合形成复合光催化剂,如SnO2/ZnSn(OH)6、SnO2/TiO2、ZnO/SnO2等。SnO作为锡基氧化物的另外一种常见形态,也广泛应用于气敏材料,并在污染物的光催化降解中有所应用。此外,由于Sn2+的引入能带来可见光吸收,基于Sn2O3和Sn3O4的可见光光催化反应也开始见于报道。总的来说,锡基氧化物是一类很重要的功能性材料,在气敏和光催化反应上均具有重要的应用前景。
目前,锡基氧化物的制备方法主要有水热方法、溶胶凝胶法、电化学沉积、高温气相沉积等方法。这些方法大部分操作繁琐,对设备要求高,制备成本大,而且绝大多数都只能针对性的制备单一物种的锡基氧化物,对产物组成的调变空间小。因此,开发一种新的制备方法,以实现通过简单的工艺操作来选择性地制备不同组成的锡基氧化物将极具现实意义。另一方面,如果对产物组成能进行调控,还有望通过引入Sn2+的能级来窄化SnO2带隙,从而拓宽SnO2光吸收范围,实现可见光催化。
发明内容
本发明是基于上述现有技术的不足,旨在提供一种可控组成的锡基氧化物的制备方法及其光催化应用,所要解决的技术问题是:通过控制水热溶液的组成,选择性地合成出Sn2+掺杂SnO2(Sn2+/SnO2)、SnO和SnO2复合物(SnO/SnO2)、SnO和SnO2等四种组成不同的样品。
本发明解决技术问题,采用如下技术方案:
本发明组组成可控的锡基氧化物的制备方法,其特征在于:所述锡基氧化物是以二水合氯化亚锡为原料通过一步水热法制备获得,且通过控制水热溶液的组成,可选择性的合成Sn2+/SnO2、SnO/SnO2、SnO或SnO2
本发明组成可控的锡基氧化物的制备方法,包括如下步骤:
a、称取二水合氯化亚锡SnCl2·2H2O加入至聚四氟乙烯容器中,并加入水;然后根据所要制备的锡基氧化物的类型,选择性的添加尿素、双氧水,并选择性的进行高纯氮气吹扫操作,获得水热溶液;
b、将盛有所述水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后放置于鼓风烘箱内进行水热处理,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和真空烘干,即得锡基氧化物。
其中:
若所要制备的锡基氧化物为Sn2+/SnO2,则水热溶液中只含有二水合氯化亚锡和水(未添加尿素和双氧水,未进行高纯氮气吹扫),水热反应温度为120~200℃,时间为24h;具体包括如下步骤:
a、取1g SnCl2·2H2O加入至聚四氟乙烯容器中,然后加入80mL水,搅拌至溶解,获得水热溶液;
b、将盛有所述水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后放置于120~200℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和80℃真空烘干,即得Sn2+/SnO2
若所要制备的锡基氧化物为SnO/SnO2,则水热溶液中含有二水合氯化亚锡、水和尿素(未添加双氧水,未进行高纯氮气吹扫),水热反应温度为160℃,时间为24h;通过控制尿素添加含量,可合成系列SnO/SnO2样品。水热过程中利用尿素受热分解产生的CO2实现对部分Sn2+的保护,从而使前驱物转化为SnO/SnO2混合物。具体包括如下步骤:
a、取1g SnCl2·2H2O和0.5~3g尿素加入至聚四氟乙烯容器中,然后加入80mL水,搅拌至溶解,获得水热溶液;
b、将盛有所述水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后放置于160℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和80℃真空烘干,即得SnO/SnO2
若所要制备的锡基氧化物为SnO,则水热溶液中含有二水合氯化亚锡、水和尿素,并进行了高纯氮气吹扫操作,水热反应温度为160℃,时间为24h;高纯氮气吹扫可以消除溶液中所溶解的氧气,避免Sn2+的氧化,从而得到SnO;具体包括如下步骤:
a、取1g SnCl2·2H2O和3g尿素加入至聚四氟乙烯容器中,然后加入80mL水,搅拌至溶解,然后进行高纯氮气吹扫10分钟,获得水热溶液;
b、将盛有所述水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后放置于160℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和80℃真空烘干,即得SnO。
若所要制备的锡基氧化物为SnO2,则水热溶液中含有二水合氯化亚锡、水、尿素和双氧水,水热反应温度为160℃,时间为24h;双氧水可以使Sn2+被氧化为Sn4+,以得到SnO2。具体包括如下步骤:
a、取1g SnCl2·2H2O和3g尿素加入至聚四氟乙烯容器中,然后加入80mL水和1mL质量浓度为30%的双氧水,搅拌均匀获得水热溶液;
b、将盛有所述水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后放置于160℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和80℃真空烘干,即得SnO2
本发明还公开了上述制备方法所制备的锡基氧化物的光催化应用,即用于可见光光催化降解甲基橙。尤其是Sn2+/SnO2和SnO/SnO2在可见光下对甲基橙表现出高效的光催化降解脱色活性。
与已有技术相比,本发明的有益效果体现在:
1、本发明提出了一种组成可控的锡基氧化物的制备方法,通过控制水热溶液的组成,可以选择性地合成出Sn2+/SnO2、SnO/SnO2、SnO和SnO2四种组成不同的样品,制备工艺简单、反应条件温和,所需原料廉价易得,克服了传统合成方法的繁琐和对目标产物不可控的缺点,具有推广应用前景。
2、本发明提出的制备方法,通过在合成过程中调控尿素用量及氧的含量,可以简单地合成出不同组成的锡基氧化物;
3、本发明所得催化剂Sn2+/SnO2、SnO/SnO2、SnO、SnO2应用于光催化领域,可以高效稳定地降解、矿化染料废水。尤其是Sn2+/SnO2和SnO/SnO2在可见光下对甲基橙表现出高效的可见光光催化降解脱色活性;
4、本发明所得自掺杂的锡基氧化物(Sn2+/SnO2)以及复合催化剂(SnO/SnO2)相比于单一氧化物型催化剂,其对甲基橙的降解率有了显著提高;
附图说明
图1为实施例1~4所得光催化剂样品的X射线粉末衍射图。
图2为实施例1~4所得样品的紫外可见漫反射光谱图。
图3为实施例1、3所得样品的扫描电镜图。
图4为实施例2、4所得样品的扫描电镜图。
图5为实施例2中3g尿素添加量时所得样品的透射电镜图。
图6为实施例1、3所得样品在可见光下(波长>400nm)降解甲基橙时溶液随光照时间的紫外可见吸收图谱。
图7为实施例2、4所得样品在可见光下(波长>400nm)降解甲基橙时溶液随光照时间的紫外可见吸收图谱。
图8为实施例1~4所得样品在可见光下(波长>400nm)降解甲基橙速率图。
图9为实施例1~4所得样品在可见光照射下(波长>400nm)的光电流图。
图10为实施例1(水热温度160℃时)、2(尿素添加量3g时)所得样品在可见光照射下(波长>400nm)形成的羟基自由基被对苯二甲酸捕获后的产物荧光光谱图。
图11为实施例1(160℃时)、实施例2(尿素添加量3g时)、实施例3和4所得样品的X射线光电子能谱分析图。
具体实施方式
实施例1
本实施例按如下步骤制备Sn2+/SnO2
a、取1g SnCl2·2H2O加入至聚四氟乙烯容器中,然后加入80mL水,搅拌至溶解,获得水热溶液;平行做五份样品;
b、将五份盛有水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后分别放置于120℃、140℃、160℃、180℃、200℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对产物溶液进行离心分离、洗涤和80℃真空烘干,即得Sn2+/SnO2样品。所得样品为淡黄色固体,随着温度的增加样品颜色逐渐加深。
实施例2
本实施例按如下步骤制备SnO/SnO2
a、用电子天平称取1g SnCl2·2H2O加入至聚四氟乙烯容器中,并分别加入0.5g、1g、2g、3g尿素,然后加入80mL水,搅拌至溶解,获得水热溶液;
b、将盛有水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜,然后放置于160℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和80℃真空烘干,即得SnO/SnO2。所得样品为灰黑色固体,随着尿素的量的增加样品颜色逐渐加深。
实施例3
本实施例按如下步骤制备SnO2
a、取1g SnCl2·2H2O和3g尿素加入至聚四氟乙烯容器中,然后加入80mL水和1mL质量浓度为30%的双氧水,搅拌均匀获得水热溶液;
b、将盛有水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜,然后放置于160℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对产物溶液进行离心分离、洗涤和80℃真空烘干,即得SnO2。所得样品为白色粉末固体。
实施例4
本实施例按如下步骤制备SnO:
a、取1g SnCl2·2H2O和3g尿素加入至聚四氟乙烯容器中,然后加入80mL水,搅拌至溶解,然后进行高纯氮气吹扫10分钟,除去水中的氧,形成厌氧氛围,获得水热溶液;
b、将盛有水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜,然后放置于160℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对产物溶液进行离心分离、洗涤和80℃真空烘干,即得SnO。所得样品为黑色固体。
实施例5
本实施例按如下步骤对上述实施例1~4所得样品进行可见光降解甲基橙的活性评测:
a、用电子天平称取0.1g上述实施例所得催化剂于光催化反应器内,加入100mL甲基橙溶液(10ppm),搅拌混合,形成悬浊液;
b、将上述盛有悬浊液的光催化反应器接入冷凝水(20℃),依次开启搅拌器(500r/min)、冷凝水装置;
c、搅拌半小时,使催化剂表面达到吸附平衡后,打开氙灯光源(波长>400nm),开始降解反应;
d、氙灯开启后每隔10min取一次样,对样品进行离心、分离,取上层清液,用紫外可见分光光度计进行分析。
性能测试
图1为实施例1~4所得光催化剂样品的粉末X射线衍射图。图1a为所合成Sn2+/SnO2样品(实施例1)的XRD谱图。由于样品为Sn2+自掺杂样品,且Sn2+和Sn4+离子半径的相似性,图1a所得的衍射谱图与纯相SnO2的谱图一致,未观察到其他杂质衍射峰。图1b为所合成SnO/SnO2样品(实施例2)的XRD谱图,其衍射峰由四方相SnO2和SnO的衍射峰叠加而成。图1c为所合成纯的SnO2样品(实施例3)的XRD谱图,其衍射峰可归属为四方相SnO2(JCPDS No.77-447)。图1d为所合成纯相SnO样品(实施例4)的XRD谱图,其衍射峰可归属为四方相的SnO(JCPDS No.78-1913)。
图2为实施例1~4所得样品的紫外可见漫反射光谱图。从图2a中可以看出Sn2+/SnO2样品的光吸收带边在430nm,随着温度的升高吸收带边逐渐发生蓝移。Sn2+/SnO2和纯相SnO2两者对应的带隙能分别为3.2和3.7eV左右。从图2b可看出SnO/SnO2复合样品的吸收带边随着尿素含量的增加有红移现象产生,其带隙能在3.2~3.5eV之间,而纯的SnO带隙能为2.4eV。从图2可以看出掺杂和复合的锡基氧化物都具有明显的可见光吸收,这是样品能否表现出可见光活性的首要前提。
图3为实施例1、3所得样品的扫描电镜图。从图中可以看出所合成的Sn2+/SnO2具有棒状结构(图3a-d),纳米棒的平均尺寸为5μm,表面光滑。随着水热制备温度的升高,棒状结构逐渐开始分解,表面变得粗糙,并出现很多无特定形貌的纳米颗粒(图3b-d),当温度达到200℃时,样品已看不到明显的棒状颗粒,完全由无特定形貌的纳米小颗粒构成。加入双氧水的SnO2也由无特定形貌的颗粒构成(图3f)。
图4为实施例2、4所得样品的扫描电镜图(图4a为不添加尿素时所得样品,也即实施例1中水热温度160℃时的样品)。很明显,所合成的SnO/SnO2也具有棒状结构,但随着尿素的添加,棒状表面出现明显毛刺,并逐渐有很多小颗粒富集在表面(图4b~e)。如图4f所示,合成的SnO样品为片状结构堆积而成,其尺寸在10μm左右。
图5为实施例2所得样品的透射电镜图。从图5a、5b可以看到样品有片状和棒状两种结构,其中片状颗粒主要分布在外部,而棒状颗粒则在内部(图5b)。选区电子衍射(图5c)和高分辨电镜图(图5d、5e)表明层状样品为SnO2组分。图5d、5e所观察到的0.33和0.26nm的晶格条纹可归属到SnO2的(110)和(101)晶面。如图5f所示,对棒状颗粒的高分辨表征显示出0.29nm的晶格条纹,这可归属到四方相SnO的(101)晶面,表明棒状样品为SnO组分。
图6为实施例1、3所得样品在可见光下降解甲基橙时溶液随光照时间的紫外可见吸收谱图。从图中可知低温合成的Sn2+/SnO2(图6a-d)相比于高温合成的样品(图6e)及纯相SnO2(图6f)具有较好的可见光光催化活性,空白对照实验(图6g~h)表明,缺少催化剂或光照的平行试验不具备降解甲基橙的能力。
图7为实施例2、4所得样品在可见光下降解甲基橙时溶液随光照时间的紫外可见吸收谱图。从图7e中可知纯SnO样品在降解甲基橙过程中,光照60min后甲基橙溶液并没有发生变化,表明其虽有可见光吸收,但并不具有可见光光催化活性。而图7a-d则表明,SnO/SnO2复合样品具有良好的可见光催化活性,光照40min后,溶液吸光度基本达到零。
图8为实施例1~4所得样品在可见光下(波长>400nm)降解甲基橙溶液的速率变化图。图8a表明随着水热制备温度的升高,所得样品的光催化活性先增后减,160℃水热所制备的Sn2+/SnO2具有最佳活性。而对于SnO/SnO2样品,图8b表明尿素含量的增加对样品的光催化活性影响不大。纯相SnO和SnO2均未表现出明显的可见光活性。
图9为实施例1~4所得样品在可见光照射下(波长>400nm)的光电流图。从图9a中可以看出Sn2+/SnO2样品在光激发下均表现出显著的光电流,其中160℃合成的Sn2+/SnO2样品所产生的光电流最大。而图9b则表明,合成的SnO/SnO2样品随着尿素含量的增加其产物的光电流强度也随之逐渐增加。在相同的测试条件下,纯相的SnO和SnO2均未表现出明显的光电流。这是可能是由于,在SnO中,可见光激发的光生载流子并不能有效分离形成电流,而对于SnO2,则是根本就不能被可见光激发。
图10为实施例1、2所得样品在可见光照射下(波长>400nm)形成的羟基自由基被对苯二甲酸(TA)捕获后的产物(即TA-OH)的荧光光谱图。分别以160℃和3g尿素下合成的Sn2+/SnO2(图10a)和SnO/SnO2(图10b)样品为例。很明显,捕获产物TA-OH的荧光强度随光照时间逐渐增加,表明在可见光照射下,Sn2+/SnO2和SnO/SnO2均具有产生羟基自由基能力。这些羟基自由基是导致甲基橙可见光脱色降解的活性物种。
图11为实施例1~4中所合成的Sn2+/SnO2(160℃下)、SnO/SnO2(3g尿素下)以及纯相SnO和SnO2的X射线光电子能谱图。图11a表明,所合成SnO的Sn 3d5/2峰可拆分为2个峰,其中结合能为486.4eV的峰可归属为Sn2+,而结合能为487.1eV处的峰可归属为Sn4+。该结果表明SnO表面主要由Sn2+构成,但同时还存在部分Sn4+组分。这一组分可能是因为SnO不稳定,在空气中被氧化成SnO2所导致。图11b表明SnO/SnO2主要组分是SnO2,含有一定量SnO。而对于Sn2+/SnO2样品,Sn2+组分较少,表明样品为Sn2+自掺杂样品,而不是类似图11b的复合样品。对于合成的纯相SnO2,仅观察到Sn4+组分存在。XPS的表征结果进一步证明了通过本发明所描述的合成方法,我们可以对锡基氧化物的组成进行调控合成,可分别合成出Sn2+自掺杂SnO2(Sn2+/SnO2),SnO和SnO2复合样品(SnO/SnO2)以及纯相的SnO和SnO2

Claims (2)

1.一种组成可控的锡基氧化物的制备方法,其特征在于:所述锡基氧化物是以二水合氯化亚锡为原料通过一步水热法制备获得,且通过控制水热溶液的组成,可选择性的合成Sn2+/SnO2、SnO/SnO2、SnO或SnO2
若所要制备的锡基氧化物为Sn2+/SnO2,则包括如下步骤:
a、取1g SnCl2·2H2O加入至聚四氟乙烯容器中,然后加入80mL水,搅拌至溶解,获得水热溶液;
b、将盛有所述水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后放置于120~200℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和80℃真空烘干,即得Sn2+/SnO2
若所要制备的锡基氧化物为SnO/SnO2,则包括如下步骤:
a、取1g SnCl2·2H2O和0.5~3g尿素加入至聚四氟乙烯容器中,然后加入80mL水,搅拌至溶解,获得水热溶液;
b、将盛有所述水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后放置于160℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和80℃真空烘干,即得SnO/SnO2
若所要制备的锡基氧化物为SnO,则包括如下步骤:
a、取1g SnCl2·2H2O和3g尿素加入至聚四氟乙烯容器中,然后加入80mL水,搅拌至溶解,然后进行高纯氮气吹扫10分钟,获得水热溶液;
b、将盛有所述水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后放置于160℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和80℃真空烘干,即得SnO;
若所要制备的锡基氧化物为SnO2,则包括如下步骤:
a、取1g SnCl2·2H2O和3g尿素加入至聚四氟乙烯容器中,然后加入80mL水和1mL质量浓度为30%的双氧水,搅拌均匀获得水热溶液;
b、将盛有所述水热溶液的聚四氟乙烯容器密封并装入不锈钢水热釜中,然后放置于160℃的鼓风烘箱中水热处理24h,自然冷却至室温后得产物溶液;
c、对所述产物溶液进行离心分离、洗涤和80℃真空烘干,即得SnO2
2.一种权利要求1所述制备方法所制备的锡基氧化物的光催化应用,其特征在于:用于可见光光催化降解甲基橙溶液。
CN201610326861.8A 2016-05-13 2016-05-13 一种组成可控的锡基氧化物的制备方法及其光催化应用 Expired - Fee Related CN106000384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610326861.8A CN106000384B (zh) 2016-05-13 2016-05-13 一种组成可控的锡基氧化物的制备方法及其光催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610326861.8A CN106000384B (zh) 2016-05-13 2016-05-13 一种组成可控的锡基氧化物的制备方法及其光催化应用

Publications (2)

Publication Number Publication Date
CN106000384A CN106000384A (zh) 2016-10-12
CN106000384B true CN106000384B (zh) 2018-04-10

Family

ID=57098552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610326861.8A Expired - Fee Related CN106000384B (zh) 2016-05-13 2016-05-13 一种组成可控的锡基氧化物的制备方法及其光催化应用

Country Status (1)

Country Link
CN (1) CN106000384B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675545B (zh) * 2018-12-20 2020-06-02 华中科技大学 一种具有多层结构的SnOx催化剂、其制备方法和应用
CN110171842B (zh) * 2019-04-17 2021-08-31 华中科技大学 一种混合价态锡基氧化物半导体材料的制备方法及应用
CN110064386B (zh) * 2019-05-30 2021-08-24 济南大学 一种锡纳米颗粒修饰的具氧空位四氧化三锡纳米片复合光催化材料及制备方法
CN110739221B (zh) * 2019-10-23 2022-07-05 昆明物理研究所 带隙可调的锡氧化物薄膜制备方法
CN111333104B (zh) * 2020-02-28 2022-09-20 中国科学院宁波材料技术与工程研究所 一种纳米级二氧化锡的制备方法及其应用
CN113862716B (zh) * 2021-10-19 2023-07-25 浙江工业大学 一种纳米锡氧化物负载铂合金催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579624A (zh) * 2009-06-11 2009-11-18 华南师范大学 二氧化锡光催化剂的制备方法
CN101823691A (zh) * 2010-05-06 2010-09-08 宁波大学 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法
CN103263906A (zh) * 2013-05-16 2013-08-28 陕西科技大学 一种纳米晶氧化锡光催化剂及其制备方法
CN103877966A (zh) * 2014-04-09 2014-06-25 扬州大学 一种异质结构光催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360333B2 (ja) * 1992-12-22 2002-12-24 株式会社豊田中央研究所 光触媒の製造方法、及びその光触媒

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579624A (zh) * 2009-06-11 2009-11-18 华南师范大学 二氧化锡光催化剂的制备方法
CN101823691A (zh) * 2010-05-06 2010-09-08 宁波大学 一种钯和/或锑掺杂的氧化锡纳米粉体的制备方法
CN103263906A (zh) * 2013-05-16 2013-08-28 陕西科技大学 一种纳米晶氧化锡光催化剂及其制备方法
CN103877966A (zh) * 2014-04-09 2014-06-25 扬州大学 一种异质结构光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO2 nanoparticles;C. Karunakaran et al.;《Journal of Alloys and Compounds》;20120924;第549卷;第269-275页 *
纳来晶氧化锡的承热合成与表征;张建荣 等;《化学学报》;20031231;第61卷(第12期);第1965-1968页 *

Also Published As

Publication number Publication date
CN106000384A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106000384B (zh) 一种组成可控的锡基氧化物的制备方法及其光催化应用
Chen et al. Rapid fabrication of KTa0. 75Nb0. 25/g-C3N4 composite via microwave heating for efficient photocatalytic H2 evolution
Yang et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency
Tan et al. Hierarchical flower-like SnSe2 supported Ag3PO4 nanoparticles: towards visible light driven photocatalyst with enhanced performance
Liu et al. Preparation of AgInS2/TiO2 composites for enhanced photocatalytic degradation of gaseous o-dichlorobenzene under visible light
Du et al. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation
Li et al. Hierarchically Z-scheme photocatalyst of Ag@ AgCl decorated on BiVO4 (0 4 0) with enhancing photoelectrochemical and photocatalytic performance
He et al. Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation
Jitta et al. Defect pyrochlore oxides: as photocatalyst materials for environmental and energy applications‐a review
Yu et al. Fast fabrication of Co3O4 and CuO/BiVO4 composite photocatalysts with high crystallinity and enhanced photocatalytic activity via ultrasound irradiation
Liu et al. Preparation and photocatalytic activity of ZnO/Fe2O3 nanotube composites
Shen et al. ZnmIn2S3+ m (m= 1–5, integer): A new series of visible-light-driven photocatalysts for splitting water to hydrogen
Xu et al. Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity
Gao et al. Multilayer ultrathin Ag-δ-Bi2O3 with ultrafast charge transformation for enhanced photocatalytic nitrogen fixation
Xu et al. Band gap-tunable (CuIn) x Zn 2 (1− x) S 2 solid solutions: preparation and efficient photocatalytic hydrogen production from water under visible light without noble metals
Barkul et al. Visible active nanocrystalline N-doped anatase TiO2 particles for photocatalytic mineralization studies
Regmi et al. Cobalt-doped BiVO 4 (Co-BiVO 4) as a visible-light-driven photocatalyst for the degradation of malachite green and inactivation of harmful microorganisms in wastewater
Chen et al. Microwave heating assisted synthesis of novel SnSe/g-C3N4 composites for effective photocatalytic H2 production
Jiang et al. Wide-spectrum response urchin-like Bi2S3 spheres and ZnS quantum dots co-decorated mesoporous g-C3N4 nanosheets heterojunctions for promoting charge separation and enhancing photothermal-photocatalytic performance
Lu et al. All-solid Z-scheme Bi/γ-Bi2O3/O-doped g-C3N4 heterojunction with Bi as electron shuttle for visible-light photocatalysis
Xie et al. Functions of boric acid in fabricating TiO2 for photocatalytic degradation of organic contaminants and hydrogen evolution
KR101798129B1 (ko) 금속산화물의 환원방법 및 이를 이용한 환원된 타이타니아의 제조방법
CN109985618A (zh) 一种H占据BiVO4-OVs的光催化材料、制备方法及其应用
Lam et al. Hydrothermal synthesis of coral-like palladium-doped BiFeO3 nanocomposites with enhanced photocatalytic and magnetic properties
Gao et al. Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180410

CF01 Termination of patent right due to non-payment of annual fee