CN101815575A - 用于氢化和脱氢反应的烧结稳定的催化剂及其制备方法 - Google Patents

用于氢化和脱氢反应的烧结稳定的催化剂及其制备方法 Download PDF

Info

Publication number
CN101815575A
CN101815575A CN200880110149A CN200880110149A CN101815575A CN 101815575 A CN101815575 A CN 101815575A CN 200880110149 A CN200880110149 A CN 200880110149A CN 200880110149 A CN200880110149 A CN 200880110149A CN 101815575 A CN101815575 A CN 101815575A
Authority
CN
China
Prior art keywords
catalyst
palladium
hydrogenation
chain
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880110149A
Other languages
English (en)
Inventor
A·沃尔夫
L·姆莱齐科
J·阿斯曼
F·劳谢尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of CN101815575A publication Critical patent/CN101815575A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及新的热稳定性钯催化剂、其制备方法及其在氢化反应(特别是硝基化合物的氢化)中的用途。所述催化剂包括至少一种纳米颗粒钯簇,所述纳米颗粒钯簇由含氧化锆的气体和液体可透过的壳包封。

Description

用于氢化和脱氢反应的烧结稳定的催化剂及其制备方法
本发明涉及新的热稳定性钯催化剂、其制备方法及其用于氢化(尤其是硝基化合物的氢化)的用途。
经负载的多相贵金属催化剂在很多化学生产领域中都起到重要的作用,特别是在氢化和脱氢领域中。为了调节高活性,将该催化活性组分高分散地以非常小的金属簇(尺寸为几nm)的形式施加到载体上。通过该方法得到大比表面积的金属,这导致高的催化活性。缺点是由于在较高温度下的迁移率,在该催化过程的反应条件下非常经常地发生烧结(即金属颗粒生长在一起)(Ertl等,Handbook of HeterogenousCatalysis,1997,第3卷,1276-1278)。这导致催化活性金属表面积的降低,即催化活性的降低。
在个别情况中,通过优化载体和金属簇之间的相互作用或者通过添加促进剂能实现烧结过程的减缓。
然而,由于这些已知解决方案仅能够将烧结抑制到特定的程度,因此仍存在对新型的由于其结构而防止烧结的热稳定性催化剂的需求。
因此本发明的目的是开发由于其特定的结构而能够完全防止烧结的热稳定性钯催化剂。由此该催化剂的活性应当保持尽可能长的时间段。
通过以下所述的由纳米颗粒钯和多孔氧化锆壳构成的本发明的催化剂令人惊奇地实现了该目的。
类似的结构原理对于用于CO氧化的金催化剂是已知的(Arnal等,Angew,Chem.,2006,118,8404-8407)。然而,基于此原理或类似原理的钯基催化剂目前仍未知。这可能归因于与其它金属相比,金具有高的形成纳米颗粒的趋势,这显著简化了这种催化剂的制备。
本发明提供了基于至少一种钯纳米颗粒的用于氢化和脱氢的催化剂,其具有包含氧化锆的气体和液体可透过的壳。
该钯纳米颗粒具有优选在0.1-100nm范围,特别优选在0.3-70nm范围,非常特别优选在0.5-30nm范围的中值粒度分布(d50)。
该包含氧化锆的壳的内径优选为10-1000nm,非常优选为15-500nm,非常优选为210-300nm。
该包含氧化锆的壳的层厚通常为10-100nm,优选15-80nm,特别优选15-40nm范围。
在典型的实施方案中,本发明的催化剂具有很多钯催化剂,其具有包含氧化锆的气体和液体可透过的壳。
本发明进一步提供了催化剂的制备方法,其包括以下步骤:
a.)制备钯纳米颗粒
b.)用SiO2包封制备的该钯纳米颗粒
c.)将多孔氧化锆层施加到该Pd/SiO2球上
d.)用碱洗掉该SiO2层。
通过在液相中还原含钯前体制备的钯纳米颗粒来制备该催化剂。
步骤a)中的钯纳米颗粒的制备特别优选是使用可溶于醇中的钯盐作为含钯前体进行的,所述钯盐例如是PdCl2、H2PdCl4、Pd(NO3)2、三氟乙酸钯(II)、双(乙腈)氯化钯(II)和六氟乙酰丙酮钯(II)。
该含钯前体的还原能够化学和/或电化学进行。优选使用具有“活性氢”的还原性化合物,例如氢气、甲醇、乙醇、丙醇和长链醇、乙二醇、二醇、1,3-丙二醇、甘油和多元醇。特别优选使用甲醇、乙醇、丙醇和多元醇用于还原该含钯前体。
能够通过含钯前体和还原剂的比例影响该粒度和粒度分布。
该含钯前体的还原通常是在0-250℃、优选10-200℃、特别优选15-150℃的温度进行的。
该含钯前体的还原能够存在或不存在在表面活性稳定剂(也称作稳定剂或表面活性剂)的条件下进行。然而,钯纳米颗粒的合成优选使用稳定剂进行,其防止钯纳米颗粒的聚集,并可以受控地调节粒度和纳米颗粒形态。对此优选使用胶体稳定剂,例如聚乙烯基吡咯烷酮(PVP)、醇-聚乙二醇醚(例如)、聚丙烯酸酯、多元醇、长链正烷基酸、长链正烷基酸酯、长链正烷基醇和离子型表面活性剂(例如AOT、CTAB)。该含钯前体和稳定剂与还原性化合物的混合能够以半间歇模式或连续地在液相中使用适合的恒温反应器(例如搅拌釜反应器、具有静态混合内嵌件的流动反应器、微型反应器)中进行。此外,也能够将所述用于制备钯纳米颗粒的原料溶解到液滴量的液-液乳剂(例如微粒乳状液或微乳剂)中,然后通过将两种乳剂溶液混合而反应。
通过上述方法之一得到的该钯胶体优选具有非常窄的粒度分布,中值粒度分布(d50)优选为0.1-100nm,特别优选0.3-70nm范围,非常特别优选为0.5-30nm范围。上述稳定剂的使用能使该钯纳米颗粒在从反应溶液中分离(例如通过超滤或离心分离)出来之后再次分散在适合的溶剂中。此处优选使用适于施加SiO2层的溶剂,例如水、甲醇、乙醇和其它醇。
在步骤b)中,在通过离心分离、沉降等分离出来之后,步骤a)中制备的该钯纳米颗粒用硅酸盐壳包封。用SiO2包封能够通过将可水解的Si前体水解或沉淀上去而实现。作为可水解的Si前体,优选原硅酸四甲酯、原硅酸四乙酯、原硅酸四丙酯或类似的可水解的Si化合物。
该水解优选能够使用水解液体(包括氨溶液、甲醇、乙醇、丙醇、异丙醇、丁醇、1,3-丙二醇、甘油等,或其混合物)进行。
该水解特别地能够在室温(20℃)到该水解液体的沸点之间进行。该水解非常特别优选在室温进行。
步骤b)中得到的Pd-SiO2颗粒的直径优选为10-1000nm,非常优选15-500nm,非常优选20-300nm。为了进一步处理,优选通过分离循环来净化所述Pd-SiO2颗粒,例如通过沉降、离心分离或蒸发和用洗涤液体洗涤。
在步骤c)中,将步骤b)中得到的优选为球形的Pd-SiO2纳米颗粒用含氧化锆的气体和液体可透过的壳完全包封。用ZrO2包封能够通过将可水解的Zr前体水解或沉淀而实现。优选的可水解的Zr前体是锆的醇盐,例如甲醇锆、乙醇锆、正丙醇锆、正丁醇锆,或其它锆的卤化物,例如ZrCl4、ZrBr4、ZrI4,或类似的可水解的Zr化合物。
该水解能够优选使用具有活性氢原子的化合物进行,例如水、甲醇、乙醇、丙醇、甘油等。该水解非常优选在存在胶体稳定剂的条件下进行,例如醇-聚乙二醇醚(例如)、PVP、聚丙烯酸酯、多元醇、长链正烷基酸、长链正烷基酸酯、长链正烷基醇。该水解能够在0-200℃的温度进行。特别优选使用10-100℃的温度。该氧化锆层的厚度能够通过可水解的Zr前体的用量设定。
在Zr前体水解之后,优选进行1小时-5天时间的老化。然后通过常规的工业方法(离心分离、沉降、过滤等)将该颗粒从该液体中分离出来,在炉中干燥,然后煅烧。干燥能够与煅烧分开地在两个单独的步骤中进行,或者通过将温度逐渐从室温提高到煅烧温度而进行。干燥优选在100-250℃的温度范围进行,而煅烧能够优选在250-900℃的温度进行。
在步骤d)中,从步骤c)中制备的具有壳结构的基本为球形的Pd-SiO2-ZrO2中除去该SiO2壳。SiO2的去除优选是通过使用碱性溶液溶解该SiO2而进行的。作为该溶液的碱性组分,可以使用所有碱金属和碱土金属氢氧化物,例如NaOH、KOH、LiOH、Mg(OH)2、Ca(OH)2等。该溶液能够是水溶液或醇溶液(MeOH、EtOH、PrOH、i-PrOH等)。该SiO2核的溶解通常在0-250℃的温度,优选在10-100℃的温度实施。使该碱性溶液作用直至该SiO2核完全溶解。这通常需要该碱性溶液作用2-24小时的时间。优选使用新鲜碱性溶液进行该步骤d)多次。
在步骤d)之后,通常将得到的Pd-ZrO2纳米颗粒分离出来并干燥。该分离优选是通过离心分离、过滤或沉降实现的。干燥优选在空气流中在100-250℃的温度进行。作为替代,干燥也能够在保护气体或氢气中进行。
在该方法的另一优选实施方案中,将最初以粉末形式存在的该催化剂处理为成型体。优选制备形状为球形、环形、星形(三叶形或四叶形)、片形、圆柱形或车轮形。该尺寸优选为0.2-10mm,非常优选为0.5-7mm。通过已知方法(例如压制、喷雾干燥和挤出)特别在存在粘结剂的条件下进行处理。另一优选的替代方式是将本发明的催化剂作为修补基面涂层(Washcoat)涂覆到结构化的催化剂(整料)上。
依照本发明的Pd-SiO2纳米颗粒适合用作热稳定性催化剂。由于该ZrO2阻挡层,该Pd纳米颗粒不可能烧结,使得与常规催化剂相比,在工艺条件下的使用寿命和循环时间能够显著提高。生产时间的提高(省去催化剂再生)或生产周期的延长能使该氢化或脱氢的生产成本显著降低。
本发明还提供了本发明的催化剂在硝基化合物(例如硝基苯)或烯烃(例如乙烯、丙烯、丁烯、丁二烯、苯乙烯、α-甲基苯乙烯)的氢化和环氢化(例如苯到环己烷、萘到萘烷)和腈化合物到胺的氢化等中的用途。该氢化能够在气相中在100-800℃的温度,非常优选在150-700℃的温度进行。优选使用氢气作为氢化试剂。此处的限制因素是待加氢化合物或产物的稳定性以及反应组分的蒸气压或反应装置的耐压强度。氢化通常在1-200巴的压力进行。
本发明还提供了本发明的催化剂在硝基化合物(例如硝基苯、二硝基苯、二硝基甲苯、硝基甲苯、硝基氯苯、硝基萘、二硝基萘等)的转移氢化中的用途。该氢化能够根据该方法(液相或气相)在100-600℃的温度进行。
本发明还提供了本发明的催化剂在氢化(例如丙烷到丙烯、乙烷到乙烯、丁烷到丁烯和丁二烯、乙苯到苯乙烯)中的用途。
本发明还提供了在催化剂的存在下在气相中使用氢气将硝基苯转化为苯胺的氢化方法,其特征在于使用依照本发明的催化剂。
该催化氢化或脱氢能够优选以绝热或等温或近似等温的方式,不连续或优选连续地作为移动床或固定床方法,优选在多相催化剂上,在100-800℃,优选150-700℃,特别优选200-650℃的反应器温度,在1-250巴(10000-250000hPa),优选1-200巴的压力进行。该催化氢化或脱氢在其中进行的常用反应装置是固定床或流化床反应器。该催化氢化或脱氢还能优选在多个阶段中进行。
在该绝热、等温或近似等温的操作模式下,也可以使用具有中间冷却或加热装置的串联连接的多个(即2-10个,优选2-6个,特别优选2-5个,特别为2-3个)反应器。在氢化的情况下,能够将氢气和反应物一起在第一反应器的上游全部添加,或者能够经多个反应器散布地添加。这种串联的单个反应器也能够组合到一个装置中。
实施例
实施例1:
制备钯纳米颗粒-步骤a):
在具有磁搅拌器、冷却器和加热装置的烧瓶中,将106.4mg(2.0mmol)的PdCl2与6ml的HCl(0.2M)和294ml的蒸馏H2O混合。得到约300ml的2.0mM H2PdCl4溶液。将15ml的该2.0mM H2PdCl4溶液(30μmol Pd)与31.5ml的H2O和3.5ml的甲醇在100ml烧瓶中混合。此外,添加300μmol(33.25mg)的PVP 40(Sigma-Aldrich),将总的混合物在回流下(温度=80℃)在空气气氛中加热3小时。一旦加热该溶液立即变为褐色。将具有沉淀钯纳米颗粒的冷却溶液以10000转每分离心分离。随后倾析出上层清液。该湿钯颗粒能够以该形式用于随后的合成。图1显示了所得到的钯纳米颗粒的透射电子显微镜照片(仪器:Tecnai 20 LaB6阴极,照相机:Tietz F114T 1×1K,来自FEI/Philips;方法依照该制造商的说明书)。平均粒径为8nm。
制备Pd-SiO2纳米颗粒-步骤b):
将步骤a)的钯纳米颗粒再次分散在3ml的H2O中(超声浴:10min)。在合成开始之前,必须制备以下溶液:
a.乙醇-NH3溶液(总量10.5ml):将0.5ml的浓氨溶液(28-30%)与10ml的乙醇混合
b.乙醇-TEOS溶液(总量7.6ml):将0.6ml的原硅酸四乙酯与7ml的乙醇混合。
将该含水的钯纳米颗粒分散体(3ml)剧烈搅拌(5min)。然后添加该乙醇-NH3混合物。然后立即非常迅速地添加乙醇-TEOS混合物。将该反应混合物在室温(20℃)搅拌整晚。将Pd-SiO2纳米颗粒离心分离(10000转每分;25min),并用水洗涤两次,并用无水乙醇洗涤一次,其中在每一情况下在离心分离之后倾析出上层清液并使用超声浴(5min)将剩余的固体(胶体)再次分散在适合的洗涤液体中,然后再次离心分离。最后,将该Pd-SiO2纳米颗粒置于无水乙醇(40g)中,并使用超声浴(5min超声浴)再次分散。这样得到的Pd-SiO2纳米颗粒能够储存或直接用于下一步骤。图2显示了这样得到的Pd-SiO2纳米颗粒的透射电子显微镜照片(仪器:Tecnai 20LaB6阴极,照相机:Tietz F 114T1×1K,来自FEI/Philips;方法依照该制造商的说明书)。该Pd-SiO2纳米颗粒的中值(mittle)直径为120nm。
制备Pd-SiO2-ZrO2纳米颗粒-步骤c):
在合成开始之前,通过将0.43g的
Figure GPA00001084197100061
溶解在11g的H2O中制备
Figure GPA00001084197100062
O13/40溶液(乙氧化异十三烷醇;来自Sasol)。将步骤b)得到的Pd-SiO2纳米颗粒(30μmol金属批次)分散到40g乙醇中并使用无水乙醇(25g)转移到用隔膜封闭的100ml烧瓶中,然后加热到30℃,将之前制备的0.125mL(125μL)水溶液添加到已经调温到30℃并经搅拌的该Pd-SiO2纳米颗粒的分散体中。在30分钟之后,添加0.45ml正丁醇锆(在丁醇中80重量%)。在搅拌4小时之后,用水置换该分散体的液相。为此目的,将该分散体离心分离(10000转每分;15min),倾析出上层清液,在将上层清液倾析出之后将该固体再次分散在25ml的水中(超声浴:5min)。将该离心分离和再次分散的次序(Sequenz)进行3次。然后将该颗粒在室温老化2天。然后将该样品在空气气氛下在炉中干燥和煅烧。为此目的,在7.5h的总时间中阶梯式地将温度从100℃升高到900℃。制备Pd-ZrO2纳米颗粒-步骤d):
将步骤c)中得到的Pd-SiO2-ZrO2纳米颗粒(30μmol金属批次)在50ml的1摩尔浓度NaOH溶液中在室温搅拌约3小时。然后通过离心分离(10000转每分;30min)、倾析出上层清液和置于50ml的1摩尔浓度NaOH溶液中,对该胶体进行洗涤。将该分散体在50℃搅拌2小时,然后在室温干燥整晚。最后用水通过离心分离/再次分散次序将该颗粒洗涤5次。这样得到Pd-ZrO2颗粒不再具有SiO2核,且在该多孔壳中具有烧结阻挡层。图3a显示了透射电子显微镜照片(仪器:Tecnai 20LaB6阴极,照相机:Tietz F114T 1×1K,来自FEI/Philips;方法依照该制造商的说明书),图3b显示了XPS分析结果(仪器:Phoenix,来自EDAX/Ametek;方法依照该制造商的说明书)。该Pd-ZrO2颗粒的平均粒径为130nm。从XPS分析中看出,在该纳米颗粒中不再存在SiO2

Claims (11)

1.用于氢化和脱氢的催化剂,包括至少一种纳米颗粒钯簇和包含氧化锆的气体和液体可透过的壳。
2.权利要求1的催化剂,其特征在于该纳米颗粒钯簇具有在0.1-100nm范围的中值粒度分布(d50),该包含氧化锆的壳具有在10-1000nm范围的内径。
3.权利要求1或2的催化剂,其特征在于该包含氧化锆的壳的层厚为10-100nm范围。
4.在存在催化剂的条件下在气相中使用氢气对有机化合物进行氢化的方法,其特征在于使用权利要求1-3中任一项的催化剂。
5.权利要求1-3中任一项的催化剂在硝基化合物的氢化或转移氢化中或者在脱氢反应中的用途。
6.权利要求5的用途,其中该催化剂用于在100-600℃的温度下在液相或气相中硝基化合物的氢化。
7.在存在催化剂的条件下在气相中使用氢气将硝基苯转变为苯胺的方法,其特征在于使用权利要求1-3中任一项的催化剂。
8.在存在催化剂的条件下在气相中将有机化合物脱氢的方法,其特征在于使用权利要求1-3中任一项的催化剂。
9.催化剂的制备方法,其包括以下步骤:
a.)制备具有0.1-100nm范围的中值粒度分布(d50)的钯纳米颗粒
b.)用SiO2包封制备的该钯纳米颗粒
c.)将氧化锆层施加到该Pd/SiO2球上
d.)用碱洗掉该SiO2层。
10.权利要求9的方法,其特征在于步骤a)中的钯纳米颗粒的制备是通过在液相中在存在至少一种胶体稳定剂的情况下还原含钯前体进行的,该胶体稳定剂选自由聚乙烯基吡咯烷酮、醇-聚乙二醇醚、聚丙烯酸酯、多元醇、长链正烷基酸、长链正烷基酸酯、长链正烷基醇和离子型表面活性剂组成的组。
11.权利要求9或10的方法,其特征在于步骤c)中施加氧化锆层是通过在存在至少一种胶体稳定剂的情况下使可水解的Zr前体水解或沉淀进行的,该胶体稳定剂选自由醇-聚乙二醇醚、聚乙烯基吡咯烷酮、聚丙烯酸酯、多元醇、长链正烷基酸、长链正烷基酸酯和长链正烷基醇组成的组。
CN200880110149A 2007-10-04 2008-09-20 用于氢化和脱氢反应的烧结稳定的催化剂及其制备方法 Pending CN101815575A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007047434.4 2007-10-04
DE102007047434A DE102007047434A1 (de) 2007-10-04 2007-10-04 Sinterstabiler Katalysator für die Hydrierung und Dehydrierungen und Verfahren zu dessen Herstellung
PCT/EP2008/007954 WO2009043496A2 (de) 2007-10-04 2008-09-20 Sinterstabiler katalysator für die hydrierung und dehydrierungen und verfahren zu dessen herstellung

Publications (1)

Publication Number Publication Date
CN101815575A true CN101815575A (zh) 2010-08-25

Family

ID=40386027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880110149A Pending CN101815575A (zh) 2007-10-04 2008-09-20 用于氢化和脱氢反应的烧结稳定的催化剂及其制备方法

Country Status (8)

Country Link
US (2) US20100204518A1 (zh)
EP (1) EP2200739A2 (zh)
JP (1) JP5415425B2 (zh)
CN (1) CN101815575A (zh)
BR (1) BRPI0817590A2 (zh)
DE (1) DE102007047434A1 (zh)
RU (1) RU2480278C2 (zh)
WO (1) WO2009043496A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972651A (zh) * 2010-10-20 2011-02-16 中南民族大学 一种金属钯纳米材料催化剂及其制备和应用
CN103480369A (zh) * 2012-06-13 2014-01-01 中国石油天然气股份有限公司 一种铂纳米复合催化剂及其制备和应用
CN103990453A (zh) * 2014-05-30 2014-08-20 南京工业大学 一种催化加氢用催化剂制备方法
US9433932B2 (en) 2014-08-29 2016-09-06 National Cheng Kung University Hydrogenation catalyst and method of manufacturing the same
CN110252272A (zh) * 2019-06-17 2019-09-20 万华化学集团股份有限公司 一种连续大规模制备烯烃环氧化催化剂的方法及装置
CN112934220A (zh) * 2021-02-05 2021-06-11 浙江工业大学上虞研究院有限公司 一种中空型钯催化剂微球的制备方法
CN112958081A (zh) * 2021-02-05 2021-06-15 浙江工业大学上虞研究院有限公司 一种中空型复合钯催化剂的制备方法
CN112958080A (zh) * 2021-02-05 2021-06-15 浙江工业大学上虞研究院有限公司 一种介孔型钯催化剂的制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060259A1 (de) * 2008-12-03 2010-06-10 Bayer Technology Services Gmbh Katalysator für Oxidationsreaktionen in Gegenwart von Chlorwasserstoff und/oder Chlor und Verfahren zu dessen Herstellung, sowie dessen Verwendung
DE102009056700A1 (de) 2009-12-02 2011-06-16 Bayer Technology Services Gmbh Katalysator bestehend aus Silikathüllen und darin befindlichen, räumlich orientierten Nanopartikeln einer Rutheniumverbindung
WO2012140675A1 (en) * 2011-04-11 2012-10-18 Council Of Scientific & Industrial Research Stable oxide encapsulated metal clusters and nano particles
US9855547B2 (en) 2015-10-05 2018-01-02 GM Global Technology Operations LLC Low-temperature oxidation catalysts
US10046310B2 (en) 2015-10-05 2018-08-14 GM Global Technology Operations LLC Catalytic converters with age-suppressing catalysts
US9827562B2 (en) 2015-10-05 2017-11-28 GM Global Technology Operations LLC Catalytic converters with age-suppressing catalysts
US10422036B2 (en) 2015-10-23 2019-09-24 GM Global Technology Operations LLC Suppressing aging of platinum group metal particles in a catalytic converter
US9901907B1 (en) 2016-08-31 2018-02-27 GM Global Technology Operations LLC Catalytic converters with age-suppressing catalysts
US10035133B2 (en) 2016-10-25 2018-07-31 GM Global Technology Operations LLC Catalysts with atomically dispersed platinum group metal complexes and a barrier disposed between the complexes
US10159960B2 (en) 2016-10-25 2018-12-25 GM Global Technology Operations LLC Catalysts with atomically dispersed platinum group metal complexes
CN109833879B (zh) * 2017-11-24 2021-08-06 中国石油化工股份有限公司 一种渣油加氢催化剂及其制备方法
CN116351441B (zh) * 2023-03-21 2024-07-02 北京化工大学 具有协同位点负载型选择性加氢催化剂及其制备方法和应用
CN116060137B (zh) * 2022-11-23 2023-10-27 中国农业大学 用于液体有机储氢材料加氢与脱氢的纳米金属催化剂及其制备方法和应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111719A1 (de) * 1991-04-10 1992-10-15 Studiengesellschaft Kohle Mbh Verfahren zur herstellung hochaktiver, dotierter metall-traegerkatalysatoren
DE4319909C2 (de) * 1993-06-16 1996-11-07 Solvay Deutschland Palladium, Platin, Nickel, Kobalt und/oder Kupfer umfassender Aerogel-Trägerkatalysator, Verfahren zu seiner Herstellung und Verwendung eines Palladium-Aerogel-Trägerkatalysators
JPH09225305A (ja) * 1996-02-27 1997-09-02 Chunkuo Suuyuu Kofun Yugenkoshi 卵殻状金属触媒の製造方法
DE19753464A1 (de) * 1997-12-02 1999-06-10 Basf Ag Palladium-Cluster und ihre Verwendung als Katalysatoren
JP3867232B2 (ja) * 2004-03-25 2007-01-10 株式会社 東北テクノアーチ 触媒ナノ粒子
US8211486B2 (en) * 2005-05-09 2012-07-03 Basf Corporation Process for the hydrogenation of unsaturated triglycerides
JP2007029778A (ja) * 2005-07-22 2007-02-08 Nissan Motor Co Ltd 排ガス浄化触媒及びその製造方法
RU2289565C1 (ru) * 2005-11-09 2006-12-20 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ селективного гидрирования ацетиленовых углеводородов в газовых смесях, богатых олефинами
RU2299190C1 (ru) * 2005-11-09 2007-05-20 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Способ окислительного дегидрирования легких парафинов
KR100745744B1 (ko) * 2005-11-11 2007-08-02 삼성전기주식회사 나노 입자 코팅 방법
JP4402724B2 (ja) * 2005-11-30 2010-01-20 財団法人大阪産業振興機構 中空層多孔質カプセルに包接された触媒及びその製造方法
DE102006007619A1 (de) * 2006-02-18 2007-08-23 Bayer Materialscience Ag Verfahren zur Herstellung von Anilin
FR2898519B1 (fr) * 2006-03-20 2009-01-09 Commissariat Energie Atomique Nanoparticules notamment a structure coeur coquilles, enrobees

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972651A (zh) * 2010-10-20 2011-02-16 中南民族大学 一种金属钯纳米材料催化剂及其制备和应用
CN103480369A (zh) * 2012-06-13 2014-01-01 中国石油天然气股份有限公司 一种铂纳米复合催化剂及其制备和应用
CN103480369B (zh) * 2012-06-13 2015-05-20 中国石油天然气股份有限公司 一种铂纳米复合催化剂及其制备和应用
CN103990453A (zh) * 2014-05-30 2014-08-20 南京工业大学 一种催化加氢用催化剂制备方法
US9433932B2 (en) 2014-08-29 2016-09-06 National Cheng Kung University Hydrogenation catalyst and method of manufacturing the same
CN110252272A (zh) * 2019-06-17 2019-09-20 万华化学集团股份有限公司 一种连续大规模制备烯烃环氧化催化剂的方法及装置
CN110252272B (zh) * 2019-06-17 2022-04-22 万华化学集团股份有限公司 一种连续大规模制备烯烃环氧化催化剂的方法及装置
CN112934220A (zh) * 2021-02-05 2021-06-11 浙江工业大学上虞研究院有限公司 一种中空型钯催化剂微球的制备方法
CN112958081A (zh) * 2021-02-05 2021-06-15 浙江工业大学上虞研究院有限公司 一种中空型复合钯催化剂的制备方法
CN112958080A (zh) * 2021-02-05 2021-06-15 浙江工业大学上虞研究院有限公司 一种介孔型钯催化剂的制备方法
CN112934220B (zh) * 2021-02-05 2022-10-04 浙江工业大学上虞研究院有限公司 一种中空型钯催化剂微球的制备方法

Also Published As

Publication number Publication date
US20130035511A1 (en) 2013-02-07
JP5415425B2 (ja) 2014-02-12
DE102007047434A1 (de) 2009-04-09
WO2009043496A2 (de) 2009-04-09
JP2010540232A (ja) 2010-12-24
BRPI0817590A2 (pt) 2015-03-31
EP2200739A2 (de) 2010-06-30
US20100204518A1 (en) 2010-08-12
RU2480278C2 (ru) 2013-04-27
RU2010116815A (ru) 2011-11-10
WO2009043496A3 (de) 2009-06-18

Similar Documents

Publication Publication Date Title
CN101815575A (zh) 用于氢化和脱氢反应的烧结稳定的催化剂及其制备方法
JP7019813B2 (ja) アセトフェノンの水素化によってα-フェニルエタノールを製造するための触媒、その製造方法および応用
CN100551523C (zh) 一种金属氧化物负载的贵金属催化剂制备方法
CN105536779B (zh) 一种Pd/TiO2纳米线催化剂的制备方法、制得的催化剂及其应用
CN105727930B (zh) 一种用于丙烷脱氢制丙烯的催化剂及其制备方法与应用
CN109718806A (zh) 一种贵金属单原子催化剂及其制备方法和应用
WO2013086691A1 (zh) 一种CO气相氧化偶联制草酸酯用纳米Pd催化剂及制备方法
CN101264453A (zh) 一种钛硅分子筛/硅藻土复合催化剂及制备方法
CN102205242B (zh) 六元瓜环分散的形貌可控钯纳米颗粒催化剂的制备方法
CN107597109A (zh) 纳米金属氧化物掺杂的负载型金催化剂及其制备方法与应用
CN104907103A (zh) 一种球形氧化铝载体的制备方法
CN107486195A (zh) 低碳烷烃脱氢催化剂的制备方法
CN101049562A (zh) 用卤代硝基苯催化加氢制卤代苯胺的催化剂及其制备方法
CN104511279A (zh) 一种高效甲烷二氧化碳重整Ni/SiO2催化剂及其静电纺丝的制备方法
CN110508317A (zh) 一种低碳烷烃脱氢制烯烃的整体式催化剂制备方法
EP2214816A2 (en) Single-step catalytic preparation of para-aminophenol
CN111389398B (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
CN108579742A (zh) 脱氢催化剂及其制备方法
CN101455962A (zh) 由环己酮二聚物脱氢制备邻苯基苯酚的催化剂及其制备方法
CN105536816A (zh) 一种异丁烷脱氢催化剂及其制备方法
CN100435944C (zh) 一种负载型纳米金催化剂及制备方法
CN105413676A (zh) 一种三维有序大孔V-Mg氧化物材料的制备方法及材料的应用
CN102698814A (zh) 一种介孔材料及其制备方法与催化剂及其制备方法
CN111054384B (zh) 有机液体储氢材料脱氢的催化剂及其制备方法
CN104741120B (zh) Cu/Mg/Al/Zr高分散铜基脱氢催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

Free format text: FORMER OWNER: BAYER AG

Effective date: 20130813

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130813

Address after: German Monheim

Applicant after: Bayer Pharma Aktiengesellschaft

Address before: Germany Leverkusen

Applicant before: Bayer Ag

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20100825