CN101787565B - 多晶硅锗合金及其制备方法 - Google Patents

多晶硅锗合金及其制备方法 Download PDF

Info

Publication number
CN101787565B
CN101787565B CN200911000089.7A CN200911000089A CN101787565B CN 101787565 B CN101787565 B CN 101787565B CN 200911000089 A CN200911000089 A CN 200911000089A CN 101787565 B CN101787565 B CN 101787565B
Authority
CN
China
Prior art keywords
rod
silicon
alloy
starting gas
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200911000089.7A
Other languages
English (en)
Other versions
CN101787565A (zh
Inventor
L·法布里
M·索芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Polymer Systems GmbH and Co KG
Original Assignee
Wacker Polymer Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Polymer Systems GmbH and Co KG filed Critical Wacker Polymer Systems GmbH and Co KG
Publication of CN101787565A publication Critical patent/CN101787565A/zh
Application granted granted Critical
Publication of CN101787565B publication Critical patent/CN101787565B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Abstract

本发明涉及具有0.5m至4m的长度且具有25mm至220mm的直径的棒,其中,该棒包括由0.1至50mol%的锗和99.9至50mol%硅构成的高纯度合金,该合金沉积在细硅棒或细硅锗合金棒上,该合金具有多晶结构。

Description

多晶硅锗合金及其制备方法
技术领域
本发明涉及多晶硅锗合金及其制备方法。
背景技术
硅锗合金在诸多应用方面比多晶硅有优势。这样,使用半导体硅锗合金可设定在1.7-1.1ev之间的带隙。这使得提高太阳能组件中SiGe堆积电池(stackedcell)的效能成为可能,例如,如果低端电池具有约1.2-1.4ev的带隙以及顶端电池具有约1.7ev的带隙。因此特别对于太阳能硅晶片,需要硅锗合金。从JP5074783A2(Fujitsu)的摘要中进一步得知,硅锗合金晶体中金属杂质的吸气比在纯Si晶体中更为有效。据估计,锗可以对缺陷的形成产生有利的影响。电荷载体的移动性在应变SSi结构中也比在纯单晶硅中更高。
迄今,驰豫的SiGe晶片层上的SSi层(SSi:应变硅)的制备需要额外的支出,它是通过在晶体提拉装置中掺杂锗晶体(参见,例如,EP1777753)或者通过在外延反应器中含锗气体在纯硅上的沉积(参见,例如,US20050012088)而实现的。
发明内容
本发明的一个目的是提供一种高纯度多晶硅锗合金棒以及一种简单的、成本合算的制备它的方法。
所述第一个目的是通过具有0.5m至4m的长度且具有25mm至220mm的直径的棒实现的,该棒包括由0.1至50mol%锗和99.9至50mol%硅组成的高纯度合金,该合金沉积在细硅棒上或细硅锗合金棒上,该合金具有多晶结构。
就本发明的目的而言,高纯度应该被理解成意指硅锗合金棒含有最多1ppma的每种掺杂剂、0.3ppma的碳以及最多0.1ppma的除锗以外的其它金属。
在这种情况下,掺杂剂应该被优选理解成意指浅供体(shallowdonor)如P、As、Sb和/或浅受体(shallowacceptor)如B、Al、Ga、In。
优选地,在这个棒中,浅供体的密度(P、As、Sb的量)小于3ppma,优选小于1ppba,特别优选小于0.3ppba,浅受体的密度(B、Al、Ga、In的量)小于3ppma,优选小于1ppma,更优选小于0.3ppma,特别优选小于0.1ppba。这样的材料特别适于光伏太阳能应用。
大多数太阳能电池是由硼掺杂的P-型硅制备的。如果根据本发明的多晶棒必须被过度补偿,为了能获得低硼掺杂的特定的100-300ppba的净受体密度,那么供体密度优选小于1ppma,特别优选小于0.3ppma。
除锗之外的金属杂质优选不多于1ppba。
就本发明的目的而言,多晶结构应该理解成意指该棒包含被晶界彼此分开的单晶,这些单晶具有0.1至100微米之间的平均晶粒尺寸。
本发明所述的硅锗合金棒可用于FZ(区熔(floatzone))晶体提拉法或者用于Czochralski法的装料。此类方法的实施类似于由硅组成的单晶的制备,例如F.Shimura的SemiconductorSiliconCrystalTechnology(AcademicPress,London1988,第124-127页,130-131页,135和179页)。
用已知方法可将根据本发明的硅锗合金棒粉碎成碎块。例如,此类方法记载在US2006/0088970A1或US2007/0235574A1中。所述碎块可用做制备弛豫的SSi产品和/或整体铸造(blockcasting)多晶产品的原料,而无需迄今所需的额外的锗掺杂。
根据本发明的硅锗合金棒可用如下方法制备:将起始气体送入西门子(Siemens)反应器中并在那里与炽热的(glowing)细棒接触,在细棒上发生来自起始气体的沉积,其中细棒包括硅或硅锗合金,起始气体包括氢气、至少一种含硅化合物和至少一种含锗化合物。
为了利用西门子技术实现多晶超纯硅的商业制备,使用了两种主要在起始气体的组成上有所不同的改良方法。在第一种不含氯的改良方法中,单硅烷和氢气的混合物作为起始气体被送入西门子反应器,并与电加热的炽热硅棒相接触。在第二种改良的被更广泛地使用的方法中,起始气体包括氢气、三氯硅烷和/或二氯硅烷,起始气体被依次送入带电加热的炽热硅棒(细棒)的西门子反应器中。通过加入气态含锗化合物,用于制备多晶硅的这两种常见的改良方法被转换成根据本发明的方法。由此,根据本发明的方法使得在常规的诸如用于制备多晶超纯硅的西门子反应器中制备多晶硅锗合金成为可能。细棒包括硅或硅锗合金。
在根据本发明的不含氯的改良方法中,根据本发明的棒通过如下方法制备:将包括氢气和单锗烷以及单硅烷或二硅烷的混合物的起始气体送入西门子反应器中与由硅或硅锗合金组成的炽热棒接触,在棒上发生由锗和硅组成的多晶合金的沉积。
沉积材料的组成和形貌可通过改变起始气体中的单锗烷与单硅烷或单锗烷与二硅烷的比例以及细棒或其上实现沉积的基底的温度而设定。
因为单锗烷和二硅烷有大致相同的热稳定性,如果起始气体中使用了单锗烷/二硅烷混合物,那么沉积的由锗和硅构成的多晶合金中锗的摩尔分数就近似对应于起始气体中锗与硅的摩尔比例。因此,起始气体中的单锗烷/二硅烷混合物就使得通过相应调整起始气体中单锗烷与二硅烷的比例而简单地调整根据本发明的棒的合金组成成为可能。因此,在单锗烷/二硅烷混合物中以对应于多晶硅锗合金棒上所需锗含量的比例使用单锗烷是优选的。一般而言,在这个改良方法中,起始气体种所用的单锗烷与二硅烷的摩尔比是0.1∶49.95(对于含有约0.1mol%Ge的合金)至2∶1(对于含有约50mol%Ge的合金)。
在这个改良方法中,沉积优选在300℃至800℃的温度下以及0.5-20mol%的起始气体的饱和度(含锗和含硅化合物占含氢气混合物的摩尔比)下进行。
气体的加入量依赖于温度和可用的基底面积,也就是说西门子反应器中棒的数量、长度和当前的直径。以使得硅/锗合金的沉积速率为0.1至1.5mm/h来选择起始气体的加入量是有利的。通过反应参数例如气体流速、起始气体饱和度以及基底温度的合理组合,能够调整方法和产品的特征如转化率、沉积速率、沉积合金的形貌以及均匀沉积的硅的比例。优选地,沉积希望在0.5-5mol%的起始气体饱和度、350℃至600℃的基底温度和每1m2基底面积10-150mol的气体流速(GeH4+1/2Si2H6)下进行。
多晶硅锗合金棒在西门子反应器中沉积且在起始气体使用单锗烷/甲硅烷混合物的改良方法中,单硅烷优选地从所述气体混合物中转化。因为经济原因,这个改良方法较不适合制备具有高锗含量的多晶硅锗合金棒。但是,如果要制备具有低锗含量的多晶硅锗合金棒,应该被优选理解成意指锗含量<20mol%时,这个改良方法就是有利的。在单锗烷/单硅烷的混合物中锗含量小于20mol%的情况下,单锗烷完全转化了,流出反应器的废气相应地也不含有锗。这就简化了废气处理,并使后者可被进一步使用,而无需在几乎总被用于超纯硅的商业制备的组合体系中的额外分离方法(例如,参见US4826668)。优选地,因此在这个改良方法中使用单锗烷与单硅烷的摩尔比为0.1∶99.9至50∶50的混合物。
在这个改良方法中,沉积条件优选与由SiH4制备高纯度硅所用的条件相对应:基底温度优选落在400℃和1000℃之间,起始气体的饱和度优选落在0.1mol%和10mol%之间。选择起始气体的加入量以使SiGe的沉积速率为0.1至1.5mm/h是有利的。如果GeH4和SiH4的总通过量在10至150mol/m2基底面积之间,此沉积速率就是建立在特定的温度和饱和度上。
根据本发明的方法与制备多晶硅的西门子方法的所述第二种改良方式的区别在于,除二氯硅烷和/或三氯硅烷外,还在西门子反应器中送入四氯化锗或者三氯锗烷。在这种情况下,四氯化锗最适合SiGe多晶的沉积,因此它被优选地使用。
由二氯硅烷、三氯硅烷和四氯化锗构成的SiGe多晶的沉积提供了有利之处,这是因为,第一,这些化合物的热稳定性大致相同,以及第二,废气中只含一种额外的含锗化合物,也就是未转化的GeCl4
沉积优选在700℃至1200℃之间的基底温度且优选在5至50mol%的所述气体混合物中起始气体饱和度下实现。选择起始气体的加入量以使得SiGe的沉积速率为0.1至1.5mm/h是有利的。如果二氯硅烷、三氯硅烷和四氯化锗的总通过量在50至5000mol/m2基底面积之间,此沉积速率就是建立在特定的温度和饱和度上的。
根据本发明的这两种改良方式均可用于制备具有半导体品质和太阳能品质的多晶硅锗合金棒。
在此情况下,半导体品质应优选理解成意指按重量计99.9999999%(9N)的硅锗合金(GexSi1-x,0.001<x<0.5)包含最多0.3ppba的浅供体、最多0.1ppba的浅受体、最多0.3ppma的碳以及最多1ppba的除锗之外的碱金属、碱土金属、过渡金属和重金属。
在此情况下,太阳能品质应优选理解成意指按重量计99.9999%(6N)的硅锗合金(GexSi1-x,0.001<x<0.5)包含最多1ppma的浅供体、最多1ppma的浅受体、最多2ppma的碳以及最多500ppba的除锗之外的碱金属、碱土金属、过渡金属和重金属。
具有上述一种组成的棒是根据本发明的棒中特别优选的实施方式。
具体实施方式
下面的实施例用来进一步阐明本发明。所有的实施例均是在具有8个细棒的西门子反应器中进行的。用于沉积的细棒包括超纯硅,具有1m的长度和5×5mm的横截面。因为细棒在沉积后的粗棒中所占的比例很小(<0.5%),因而它对沉积后的整个棒组成的影响是非常小的。在所有实施例中,按沉积速率在0.1至1.5mm/h的最佳范围内控制气体流速。当使用的反应器具有不同数目或长度的细棒时,如果要获得相同的沉积速率就必须相应地调整气体流速。如果采用其他基底(例如管或多边形)或温度,这也同样适用。在下面的实施例中,依据生长速率调整气体的加入量。通过棒直径的增加控制生长速率。或者,可依据流出反应器的废气的组成计算出沉积速率。
实施例1
使用GeH4和Si2H6作为起始化合物。将所述的起始化合物和氢气(摩尔比:GeH41.0%、Si2H64.5%,其余为H2)一起通过喷嘴送入西门子反应器中。在整个沉积时间内棒的温度为500℃。250小时后,结束沉积过程(沉积在恒定生长速率下进行)。棒的平均直径为132mm。多晶SiGe棒中Ge的摩尔含量为9.5%。
实施例2
使用GeH4和SiH4作为起始化合物。将所述的起始化合物和氢气(摩尔比:GeH40.5%、SiH44.5%,其余为H2)一起通过喷嘴送入西门子反应器中。沉积在700℃的棒温下以恒定生长速率进行并持续200小时。在这种情况下,棒获得大约135mm的直径且具有18mol%的Ge含量。
实施例3
用二氯硅烷和四氯化锗作为起始化合物。将所述的起始气体和氢气(摩尔比:二氯硅烷5%、四氯化锗5%,其余为H2)一起通过喷嘴送入西门子反应器中。沉积在1000℃的棒温下以恒定生长速率进行并持续200小时。调整气体的流速以使沉积速率为约0.3mm/h。220小时后沉积结束。棒约137mm粗且具有约49mol%的Ge含量。
实施例4
沉积过程中使用的气体混合物包含1mol%四氯化锗、4mol%二氯硅烷和15mol%四氯硅烷以及氢气。棒的温度为1050℃。调整气体的流速以使沉积速率为0.45mm/h。170小时后沉积结束。沉积的棒具有159mm的直径且含有大约7mol%的Ge。

Claims (4)

1.一种具有0.5m至4m长度且具有25mm至220mm直径的棒,其中,该棒包括由0.1至小于20mol%锗和99.9至80mol%硅构成的合金,该合金沉积在细硅棒上或细硅锗合金棒上,该合金具有多晶结构,所述多晶结构是指该棒包含被晶界彼此分开的单晶,这些单晶具有0.1至100微米之间的平均晶粒尺寸。
2.制备如权利要求1所述的棒的方法,其中,将起始气体引入西门子反应器中并在那里与温度为400℃至1000℃的由细棒构成的基底接触,在细棒上发生来自起始气体的沉积,其中细棒包括硅或者硅锗合金,起始气体包括氢气及由单锗烷和单硅烷组成的混合物,所述混合物的锗含量小于20mol%。
3.如权利要求2所述的方法,其中将起始气体以使硅/锗合金以0.1至1.5mm/h的速率在基底上沉积的量送入西门子反应器中,起始气体的饱和度为0.1mol%至10mol%,单锗烷和单硅烷的总通过量为10至150mol/m2基底面积。
4.权利要求1、2或3所述的棒用于FZ晶体提拉的用途,或者用于在Czochralski法中再填料的用途。
CN200911000089.7A 2008-12-11 2009-12-11 多晶硅锗合金及其制备方法 Expired - Fee Related CN101787565B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054519A DE102008054519A1 (de) 2008-12-11 2008-12-11 Polykristallines germaniumlegiertes Silicium und ein Verfahren zu seiner Herstellung
DE102008054519.8 2008-12-11

Publications (2)

Publication Number Publication Date
CN101787565A CN101787565A (zh) 2010-07-28
CN101787565B true CN101787565B (zh) 2016-06-15

Family

ID=42060597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200911000089.7A Expired - Fee Related CN101787565B (zh) 2008-12-11 2009-12-11 多晶硅锗合金及其制备方法

Country Status (8)

Country Link
US (2) US20100147209A1 (zh)
EP (1) EP2196435B1 (zh)
JP (1) JP5340902B2 (zh)
KR (1) KR101145788B1 (zh)
CN (1) CN101787565B (zh)
CA (1) CA2686640C (zh)
DE (1) DE102008054519A1 (zh)
ES (1) ES2589960T3 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109562951A (zh) * 2016-12-14 2019-04-02 瓦克化学股份公司 用于制备多晶硅的方法
CN110184490A (zh) * 2019-06-19 2019-08-30 四川大学 一种纯相硅锗合金固溶体颗粒及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146123A (en) * 1954-05-18 1964-08-25 Siemens Ag Method for producing pure silicon
US4826668A (en) * 1987-06-11 1989-05-02 Union Carbide Corporation Process for the production of ultra high purity polycrystalline silicon
CN101311351A (zh) * 2007-05-16 2008-11-26 瓦克化学有限公司 用于区域精制的多晶硅棒及其生产方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3011877A (en) * 1956-06-25 1961-12-05 Siemens Ag Production of high-purity semiconductor materials for electrical purposes
US3030189A (en) * 1958-05-19 1962-04-17 Siemens Ag Methods of producing substances of highest purity, particularly electric semiconductors
GB1368868A (en) * 1971-11-25 1974-10-02 Siemens Ag Optical wave guides
US4148931A (en) * 1976-03-08 1979-04-10 Siemens Aktiengesellschaft Process for depositing elemental silicon semiconductor material from a gas phase
JPS61101410A (ja) * 1984-10-24 1986-05-20 Hiroshi Ishizuka 多結晶珪素の製造法及びそのための装置
US5801396A (en) 1989-01-18 1998-09-01 Stmicroelectronics, Inc. Inverted field-effect device with polycrystalline silicon/germanium channel
JPH0574783A (ja) 1991-09-13 1993-03-26 Fujitsu Ltd シリコンウエハーおよびウエハーゲツタリングの処理方法
JPH0873297A (ja) * 1994-09-05 1996-03-19 Shin Etsu Chem Co Ltd 太陽電池用基板材料の製法とこれを用いた太陽電池
WO1997044277A1 (fr) * 1996-05-21 1997-11-27 Tokuyama Corporation Barreau de silicium polycristallin et son procede de preparation
US6791106B2 (en) 2001-12-26 2004-09-14 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
DE102004048948A1 (de) 2004-10-07 2006-04-20 Wacker Chemie Ag Vorrichtung und Verfahren zum kontaminationsarmen, automatischen Brechen von Siliciumbruch
US7557027B2 (en) * 2005-01-24 2009-07-07 Interuniversitair Microelektronica Centrum Method of producing microcystalline silicon germanium suitable for micromachining
JP2007019209A (ja) * 2005-07-07 2007-01-25 Sumco Solar Corp 太陽電池用多結晶シリコンおよびその製造方法
US8017862B2 (en) 2005-10-21 2011-09-13 Sumco Solar Corporation Solar-cell single-crystal silicon substrate, solar cell element, and method for producing the same
US7514726B2 (en) * 2006-03-21 2009-04-07 The United States Of America As Represented By The Aministrator Of The National Aeronautics And Space Administration Graded index silicon geranium on lattice matched silicon geranium semiconductor alloy
DE102006016323A1 (de) 2006-04-06 2007-10-11 Wacker Chemie Ag Verfahren und Vorrichtung zum Zerkleinern und Sortieren von Polysilicium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146123A (en) * 1954-05-18 1964-08-25 Siemens Ag Method for producing pure silicon
US4826668A (en) * 1987-06-11 1989-05-02 Union Carbide Corporation Process for the production of ultra high purity polycrystalline silicon
CN101311351A (zh) * 2007-05-16 2008-11-26 瓦克化学有限公司 用于区域精制的多晶硅棒及其生产方法

Also Published As

Publication number Publication date
EP2196435B1 (de) 2016-06-08
CA2686640A1 (en) 2010-06-11
EP2196435A3 (de) 2010-10-27
KR101145788B1 (ko) 2012-05-16
KR20100067613A (ko) 2010-06-21
EP2196435A2 (de) 2010-06-16
US20100147209A1 (en) 2010-06-17
ES2589960T3 (es) 2016-11-17
US20160369393A1 (en) 2016-12-22
JP2010138065A (ja) 2010-06-24
DE102008054519A1 (de) 2010-06-17
JP5340902B2 (ja) 2013-11-13
CN101787565A (zh) 2010-07-28
CA2686640C (en) 2012-10-02

Similar Documents

Publication Publication Date Title
CN101460398B (zh) 通过闭合环路方法生产硅
CN101815671B (zh) 多晶硅及其生产方法
US8637761B2 (en) Solar cells fabricated by using CVD epitaxial Si films on metallurgical-grade Si wafers
CN102557038B (zh) 一种多晶硅制备方法
EP2257655A2 (en) Substrates for silicon solar cells and methods of producing the same
JP5311930B2 (ja) シリコンの製造方法
CN101560693A (zh) 一种含有掺杂元素的太阳能级硅晶体的制备方法
CN101805923A (zh) 掺镓太阳能硅片及生产工艺
CN101787565B (zh) 多晶硅锗合金及其制备方法
Ciszek Photovoltaic materials and crystal growth research and development in the Gigawatt era
US8173094B2 (en) Method for producing polycrystalline silicon
CN103723732A (zh) 用于沉积多晶硅的方法
CN108862281A (zh) 一种棒状多晶硅和颗粒多晶硅的联合生产方法
Ceccaroli et al. New advances in polysilicon processes correlating feedstock properties and good crystal and wafer performances
TWI546427B (zh) 形成多晶矽的方法
CN108394904A (zh) 一种圆台形冷却夹套的甲硅烷热分解炉
CN102485974B (zh) 一种采用cvd反应直接生长单晶硅的方法
US9230806B2 (en) Method for preparing a coarse-grain crystallized silicon layer
JPH06168883A (ja) 多結晶シリコン薄膜の製造方法
KR20120059095A (ko) 반도체 소자용 기판의 제조 방법 및 이를 이용한 태양 전지
Gu et al. Recent Patenting Activities in Low-Cost Silicon Raw Materials for Silicon Solar Cells
Wang et al. New Approaches to Solar-Grade Silicon Feedstock and Silane Productions
CN103038004A (zh) 晶体半导体材料的制备
CN110550634A (zh) 多晶硅棒
JPH06168882A (ja) 多結晶シリコン薄膜の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160615

Termination date: 20161211

CF01 Termination of patent right due to non-payment of annual fee