CN101622478A - 自动变速器的控制装置 - Google Patents

自动变速器的控制装置 Download PDF

Info

Publication number
CN101622478A
CN101622478A CN200880006706A CN200880006706A CN101622478A CN 101622478 A CN101622478 A CN 101622478A CN 200880006706 A CN200880006706 A CN 200880006706A CN 200880006706 A CN200880006706 A CN 200880006706A CN 101622478 A CN101622478 A CN 101622478A
Authority
CN
China
Prior art keywords
automatic transmission
gear
input torque
speed
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880006706A
Other languages
English (en)
Other versions
CN101622478B (zh
Inventor
田中直人
丰田晋哉
日野显
松井康成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101622478A publication Critical patent/CN101622478A/zh
Application granted granted Critical
Publication of CN101622478B publication Critical patent/CN101622478B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1208Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures with diagnostic check cycles; Monitoring of failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/124Limiting the input power, torque or speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1264Hydraulic parts of the controller, e.g. a sticking valve or clogged channel

Abstract

本发明提供一种带式无级变速器的控制装置,所述带式无级变速器具有使主动带轮的槽宽变化的液压致动器、使从动带轮的槽宽变化的液压致动器、以及对提供给从动带轮的液压致动器的液压进行控制的带夹压力控制电磁元件,在所述控制装置中,设置有运算主动带轮和从动带轮之间的变速比、并基于该运算变速比来判断有无带打滑的单元、和对带夹压力控制电磁元件的正常进行判断的单元,将实际发生了带打滑时、即故障判断时的输入转矩作为正常判断时的条件。通过这样的条件设定,能够将用于正常判断的正常判断阈值(输入转矩值α)取为较小的值,能够抑制正常判断的误判断。

Description

自动变速器的控制装置
技术领域
本发明涉及安装在车辆上的自动变速器的控制装置。
背景技术
在安装有发动机的车辆中,作为根据车辆的行驶状态来将发动机产生的转矩和转速适当地传递给驱动轮的变速器,已知自动对发动机和驱动轮之间的变速比进行最优设定的自动变速器。
作为安装在车辆上的自动变速器,例如,具有使用离合器和制动器等摩擦接合元件和行星齿轮装置来设定变速比(传动比)的有级式自动变速器、和对变速比进行无级调整的带式无级变速器(CVT:ContinuouslyVariable Transmission)。
在安装了有级式自动变速器的车辆中,具有用于获得与车速和加速器开度(或者节气门开度)对应的最优档位的变速线(档位的切换线)的变速映射(map)被存储在ECU(Electronic Control Unit)等中,基于车速和加速器开度,参照变速映射来算出目标档位,基于该目标档位,通过在预定的状态下使作为摩擦接合元件的离合器、制动器以及单向离合器(one-way clutch)等接合或者分离,来自动设定变速档(档位)。
带式无级变速器,被构成为:在具备带轮槽(V槽)的主动带轮(输入侧带轮)和从动带轮(输出侧带轮)上卷绕带,在扩大一方的带轮的带轮槽的槽宽的同时,缩小另一方的带轮的带轮槽的槽宽,由此使带对各个带轮的卷绕半径(有效直径)连续变化,从而对变速比进行无级设定。在该带式无级变速器中进行传递的转矩,成为与在使带和带轮相互接触的方向上作用的载荷对应的转矩,因此由带轮夹住带,使得对带付与张力。
另外,带式无级变速器的变速如上所述那样,是通过扩大、缩小带轮槽的槽宽来进行的。具体而言,分别利用固定滑轮(sheave)和可动滑轮来构成主动带轮和从动带轮,通过设置在可动滑轮背面一侧的液压致动器使可动滑轮在轴方向上前后移动,由此来进行变速。
在这样的带式无级变速器中,例如如下述的专利文献1所记载的那样,使用升档用变速控制阀门和降档用变速控制阀门来对变速比进行控制。对这两个变速控制阀门供给线压来作为源压。
在升档用变速控制阀门和降档用变速控制阀门上,连接有负载电磁阀(duty solenoid valve)(以下,称为负载电磁元件(solenoid)),根据该负载电磁元件所输出的控制液压,升档用变速控制阀门和降档用变速控制阀门进行切换,对经由升档用变速控制阀门提供给主动带轮的液压致动器的液量、以及从主动带轮的液压致动器经由降档用变速控制阀门而排出的液量进行控制。这样,通过对主动带轮的液压致动器的液压进行控制,使主动带轮的槽宽、即主动带轮一侧的带的卷绕半径发生变化,从而对变速比进行控制。
另外,在从动带轮的液压致动器上连接有带夹压力控制阀门。向带夹压力控制阀门提供线压,将线性电磁阀(以下,有时也称为带夹压力控制电磁元件)输出的控制液压作为辅助压(pilot pressure)进行控制,将该线压提供给从动带轮的液压致动器,由此对带夹压力进行控制。
用于以上的变速控制以及带夹压力控制的线压,通过利用线压控制阀门(primary regulator valve:第一调节阀)对油泵产生的液压进行调压来产生。线压控制阀门被构成为:将线压控制用的线性电磁阀(以下,有时也称为线压控制电磁元件)输出的控制液压作为辅助压来进行工作。
另外,作为与带式无级变速器的带打滑有关的技术,具有下述专利文献2中记载的技术。在该专利文献2所记载的技术中,在无级变速器中,基于对实际产生的变速比的变化状态、和作为变速比的目标的变化状态进行比较后的结果,对无级变速器的打滑进行判断。
另外,在下述的专利文献3中公开了如下技术:在判断出旋转部件(驱动带轮)和转矩传递部件(从动带轮)之间发生打滑的情况下使无级变速器的输入转矩降低的控制装置中,基于使输入转矩降低后的上述打滑的状态,使之从使上述输入转矩降低后的状态恢复。
专利文献1:日本特开2007-177833号公报
专利文献2:日本特开2004-251359号公报
专利文献3:日本特开2003-42276号公报
发明内容
在带式无级变速器的控制装置中,实施带夹压力控制电磁元件等的电气部件的异常判断、正常判断。具体而言,根据带式无级变速器的变速比(主动带轮和从动带轮之间的变速比)来判断有无带打滑,当发生带打滑时判断为“异常”。另外,这样的异常判断之后,当向带式无级变速器输入了电磁元件故障时最低压下能够容许的输入转矩值以上的转矩时,在未发生带打滑这样的条件成立时,判断为“正常”(恢复正常判断)。所谓的电磁元件故障时最低压,例如是当带夹压力控制电磁元件(normal opentype:常开式)或者线压控制电磁元件(常开式)为发生了导通(ON)故障时被固定的必要最小限度的液压。
但是,用于实际的正常判断的正常判断阈值,考虑电磁元件的硬件偏差和防止误判断容限(margin)量,需要估计成高于电磁元件故障时最低压下可以容许的输入转矩,因此在通常行驶时(例如低负荷行驶时等)会变成无法判断的程度的较高值。为此,存在通常行驶时无法执行正常判断处理的情况。
当变成这样的状态时,尽管电磁元件为正常状态,但是存在无法对“正常”进行判断的情况,正常判断的精度变差。另外,当无法执行正常判断处理时,存在无法可靠进行异常判断的清除(恢复正常判断)的情况。例如,在因某些理由(例如带夹压力控制阀的阀门卡住)而发生了异常之后,在消除了其异常主要原因的情况下,需要清除异常判断,但当不能执行正常判断时,则无法清除异常判断。
需说明的是,在有级式自动变速器中,在通过检测摩擦接合元件(例如输入离合器)有无打滑,来实施对控制向摩擦接合元件的液压伺服器的工作油的供给和排放的电磁阀的正常/异常进行判断的判断处理的情况下,也会产生与上述的带式无级变速器同样的问题。
本发明是对那样的实际情况进行考虑而完成的发明,其目的在于提供一种可以可靠地进行液压控制系统的电磁阀的正常判断的自动变速器的控制装置。
为了实现上述目的,本发明在具有控制变速部的液压的电磁阀的自动变速器的控制装置中,其特征在于:具备对所述变速部的驱动力传递元件的打滑进行判断的打滑判断单元、运算所述自动变速器的输入转矩的输入转矩运算单元、对所述电磁阀的正常进行判断的正常判断单元,将所述驱动力传递元件打滑时的输入转矩用于所述正常判断时的条件。具体而言,其特征在于:将所述打滑判断单元判断出所述驱动力传递元件的打滑时的所述驱动力传递元件的打滑时的输入转矩,用于所述正常判断单元中的所述正常判断时的条件。在此说的所述驱动力传递元件的打滑时的输入转矩,如上所述是指通过所述输入转矩运算单元进行运算的输入转矩。
根据本发明,由于将驱动力传递元件实际发生了打滑时(故障判断时)的输入转矩作为正常判断时的条件,因此与以往的判断处理相比较,能够将正常判断阈值取为较小的值。即,当将实际发生了打滑时的输入转矩用于正常判断时的条件时,则不需要考虑电磁元件的硬件偏差量等,因此,能够与相当于其硬件偏差等的量的程度相应地将正常判断阈值取为较小的值。并且,通过这样地将用于正常判断的正常判断阈值(输入转矩值)取为较小的值,即使在通常行驶时,自动变速器的实际输入转矩也能超过正常判断阈值。由此,可以提高故障(异常)判断后的恢复正常判断的精度。
作为本发明的具体结构,可以列举以下结构。
作为具体的结构可以为如下结构:以具有主动带轮和从动带轮、卷绕在所述主动带轮和从动带轮上的带、使所述主动带轮的槽宽变化的液压致动器、使所述从动带轮的槽宽变化的液压致动器、以及对提供给所述从动带轮的液压致动器的液压进行控制的电磁阀(带夹压力控制电磁元件)的带式无级变速器的控制装置作为前提,对这样的控制装置设置有对所述带式无级变速器有无带打滑进行判断的打滑判断单元、运算所述带式无级变速器的输入转矩的输入转矩运算单元、以及对所述电磁阀的正常进行判断的正常判断单元,将所述带式无级变速器的带打滑时的输入转矩用于所述正常判断时的条件。在该结构中,当比带打滑时的输入转矩大的转矩被输入到带式无级变速器时,在带没有打滑的情况下可以判断为电磁阀(以下也称为电磁元件)正常。
根据所述结构,因为将实际发生带打滑时、也即是将故障判断时的输入转矩作为正常判断时的条件,因此,因与上述相同的理由,可以将用于正常判断的输入转矩值(正常判断阈值)取为较小的值。由此,即使在通常行驶时,带式无级变速器的实际转矩变成超过正常判断阈值,从而可以抑制电磁元件的正常判断的误判断,可以高精度地进行正常判断。由此,能够可靠地进行故障(异常)判断后的异常判断清除。
关于有无带打滑的判断,例如可以是如下单元:运算主动带轮和从动带轮之间的变速比,基于该运算变速比来判断有无带打滑。在该情况下,例如,将比带式无级变速器的最大变速比大的值(低档的值)作为判断值,当运算变速比为该判断值之上时,判断为“有带打滑”即可。
作为其他的具体结构,也可以是如下结构:将具有通过使多个摩擦接合元件选择性接合来建立变速比不同的多个变速档的变速部、和控制所述摩擦接合元件的接合压的电磁阀的有级式自动变速器的控制装置作为前提,对这样的控制装置设置有对所述摩擦接合元件有无打滑进行判断的打滑判断单元、运算所述有级式自动变速器的输入转矩的输入转矩运算单元、以及对所述电磁阀的正常进行判断的正常判断单元,将所述摩擦接合元件打滑时的输入转矩用于所述正常判断时的条件。在该结构中,当比摩擦接合元件打滑时的输入转矩大的转矩被输入到有级式自动变速器时,在摩擦接合元件没有打滑(离合器打滑)的情况下,可以判断电磁阀(以下也称为电磁元件)正常。
根据该结构,因为将实际发生了摩擦接合元件打滑(离合器打滑)时、也即是故障判断时的输入转矩作为正常判断时的条件,因此由于与上述相同的理由,能够将用于正常判断的输入转矩值(正常判断阈值)取为较小的值。由此即使在通常行驶时,有级式自动变速器的输入转矩也能超过正常判断阈值,从而能够可靠地进行正常判断。
关于摩擦接合元件有无打滑的判断,可以根据有级式自动变速器的特定变速档(例如1档)中的输入轴转速和输出轴转速来运算传动比,基于该运算传动比来判断摩擦接合元件有无打滑。在该情况下,例如,预先通过实验、计算等来求得特定变速档的传动比的正常范围,当运算传动比大于正常范围时,判断为“有摩擦接合元件打滑(有离合器打滑)”即可。
根据本发明,因为将驱动力传递元件实际发生了打滑时(故障判断时)的输入转矩作为正常判断时的条件,因此可以将正常判断阈值取为较小的值。由此,即使在通常行驶时,自动变速器的实际输入转矩也能超过正常判断阈值,从而能够可靠地进行电磁阀的正常判断。
附图说明
图1是表示安装有适用本发明的带式无级变速器的车辆的一个例子的概略结构图。
图2是液压控制回路中控制带式无级变速器的主动带轮的液压致动器的液压控制回路的回路结构图。
图3是液压控制回路中对带式无级变速器的带的夹压力进行控制的液压控制回路的回路结构图。
图4是表示用于带式无级变速器的变速控制的映射的一个例子的图。
图5是表示用于带式无级变速器的带夹压力控制的映射的一个例子的图。
图6是表示ECU等控制系统的结构的框图。
图7是表示ECU执行的正常判断处理以及异常判断处理的各控制程序的一个例子的流程图。
图8是表示适用本发明的自动变速器的其他例子的概略结构图。
图9是图8所示的自动变速器的工作表。
图10是表示图8所示的自动变速器的液压控制回路的一部分的回路结构图。
图11是表示ECU等控制系统的其他结构的框图。
图12是表示用于变速控制的变速映射的一个例子的图。
符号说明
1发动机
2变矩器(torque converter)
3前进后退切换装置
4带式无级变速器
41主动带轮
413液压致动器
42从动带轮
423液压致动器
101发动机转速传感器
105主动带轮转速传感器
106从动带轮转速传感器
20液压控制回路
7油泵
8ECU
201线性电磁元件(SLT)
202线性电磁元件(SLS)
203第一调节阀
301升档用变速控制阀门
302降档用变速控制阀门
303带夹压力控制阀门
700自动变速器
C1第一离合器(摩擦接合元件)
800液压控制回路
801线性电磁元件(SL1)
924输入轴转速传感器
925输出轴转速传感器
1000ECU
具体实施方式
以下,根据附图详细说明本发明的实施方式。
[实施方式1]
图1是适用本发明的车辆的概略结构图。
该例的车辆为FF(前置发动机、前轮驱动)型车辆,其安装有作为行驶用动力源的发动机(内燃机)1、作为流体传递装置的变矩器2、前进后退切换装置3、带式无级变速器(CVT)4、减速齿轮装置5、差动齿轮装置6以及ECU8等,通过其ECU8、后述的液压控制回路20、主动带轮转速传感器105以及从动带轮转速传感器106等来实现自动变速器的控制装置。
作为发动机1的输出轴的曲轴(crank shaft)11与变矩器2连结,发动机1的输出从变矩器2经由前进后退切换装置3、带式无级变速器4以及减速齿轮装置5,传递到差动齿轮装置6,被分配给左右的驱动轮(未图示)。
以下,对这些发动机1、变矩器2、前进后退切换装置3、带式无级变速器4以及ECU8的各部分进行说明。
-发动机-
发动机1例如是多汽缸汽油发动机。被吸入到发动机1的吸入空气量,通过电子控制式的节气门(throttle valve)12来进行调整。节气门12可以与驾驶者的加速踏板(accelerator pedal)操作独立地对节气门开度进行电控制,其开度(节气门开度)通过节气门开度传感器102来进行检测。另外,发动机1的冷却水温通过水温传感器103来进行检测。
节气门12的节气门开度通过ECU8来进行驱动控制。具体而言,控制节气门12的节气门开度,使得获得与由发动机转速传感器101检测出的发动机转速Ne、以及驾驶者的加速踏板踩踏量(加速器操作量Acc)等发动机1的运行状态相对应的最佳吸入空气量(目标吸气量)。更详细而言是,利用节气门开度传感器102对节气门12的实际的节气门开度(实际节气门开度)进行检测,对节气门12的节气门电机13进行反馈控制,使得其实际节气门开度与得到上述目标吸气量的节气门开度(目标节气门开度)一致。
-变矩器-
变矩器2具备输入一侧的泵轮(pump impeller)21、输出一侧的涡轮(turbine runner)22以及呈现转矩放大功能的定子(stator)23等,在泵轮21和涡轮22之间经由流体来进行动力传递。泵轮21与发动机1的曲轴11连结。涡轮22经由涡轮轴(turbine shaft)27与前进后退切换装置3连结。
在变矩器2上设置有对该变矩器2的输入侧和输出侧进行直接连结的锁止离合器(lock up clutch)24。锁止离合器24通过控制接合侧油室25内的液压和分离侧油室26内的液压的差压(锁止差压),来进行完全接合、半接合(打滑状态下的接合)或者分离。
通过使锁止离合器24完全接合,泵轮21和涡轮22一体进行旋转。另外,通过在预定的打滑状态(半接合状态)下使锁止离合器24接合,在驱动时涡轮22以预定的打滑量跟随泵轮21进行旋转。另一方面,通过将锁止差压设为负,从而使锁止离合器24变成分离状态。
并且,在变矩器2上设置有与泵轮21连结而被驱动的机械式油泵(液压发生源)7。
-前进后退切换装置-
前进后退切换装置3具备双小齿轮(double pinion)型的行星齿轮机构30、前进用离合器(输入离合器)C1以及后退用制动器B1。
行星齿轮机构30的太阳轮31与变矩器2的涡轮轴27一体连结,齿轮架(carrier)33与带式无级变速器4的输入轴一体连结。另外,这些齿轮架33和太阳轮31经由前进用离合器C1而被选择性连结,齿圈32经由后退用制动器B1而被选择性固定于机架(housing)。
前进用离合器C1和后退用制动器B1是通过下述的液压控制回路20来进行接合/分离的液压式摩擦接合元件,通过接合前进用离合器C1、分离后退用制动器B1,从而使前进后退切换装置3成为一体旋转状态,建立(实现)前进用动力传递路径,在该状态下,前进方向的驱动力向带式无级变速器4一侧进行传递。
另一方面,当接合后退用制动器B1、分离前进用离合器C1时,通过前进后退切换装置3建立(实现)后退用动力传递路径。在该状态下,输入轴40相对于涡轮轴27向反方向旋转,该后退方向的驱动力向带式无级变速器4一侧传递。另外,当同时分离前进用离合器C1和后退用制动器B1时,前进后退切换装置3成为切断动力传递的空挡(neutral)(切换状态)。
-带式无级变速器-
带式无级变速器4具备输入侧的主动带轮41、输出侧的从动带轮42以及卷绕在这些主动带轮41和从动带轮42上的金属制的带43等。
主动带轮41为有效直径可变的可变带轮,由固定在输入轴40上的固定滑轮411、和以仅可轴方向的滑动的状态设置在输入轴40上的可动滑轮412构成。从动带轮42同样也为有效直径可变的可变带轮,由固定在输出轴44上的固定滑轮421、和以仅可轴方向的滑动的状态设置在输出轴44上的可动滑轮422构成。
在主动带轮41的可动滑轮412一侧,配置有用于变更固定滑轮411和可动滑轮412之间的V槽宽的液压致动器413。另外,在从动带轮42的可动滑轮422一侧,同样也配置有用于变更固定滑轮421和可动滑轮422之间的V槽宽的液压致动器423。
在以上结构的带式无级变速器4中,通过对主动带轮41的液压致动器413的液压进行控制,主动带轮41和从动带轮42的各槽宽发生变化,变更带43的卷绕直径(有效直径),变速比γ(γ=主动带轮转速(输入轴转速)Nin/从动带轮转速(输出轴转速)Nout)连续变化。另外,以利用不发生带打滑的预定的夹压力来对带43进行夹压的方式,控制从动带轮42的液压致动器423的液压。这些控制通过ECU8和液压控制回路20来实施。
-液压控制回路-
液压控制回路20如图1所示,由变速速度控制部20a、带夹压力控制部20b、线压控制部20c、锁止接合压控制部20d、离合器压力控制部20e以及手动阀(manual valve)20f等构成。
另外,对构成液压控制回路20的变速速度控制用的负载电磁元件(DS1)304和负载电磁元件(DS2)305、带夹压力控制用的线性电磁元件(SLS)202、线压控制用的线性电磁元件(SLT)201以及锁止接合压控制用的负载电磁元件(DSU)307供给来自ECU8的控制信号。
接着,参照图2和图3来说明液压控制回路20中的、带式无级变速器4的主动带轮41的液压致动器413的液压控制回路(变速速度控制部20a的具体的液压回路结构)、以及从动带轮42的液压致动器423的液压控制回路(带夹压力控制部20b的具体的液压回路结构)。
首先,如图3所示,油泵7产生的液压通过第一调节阀203调压来生成线压PL。经由离合器应用控制阀门(clutch apply control valve)204向第一调节阀203提供线性电磁元件(SLT)201输出的控制液压,将该控制液压作为辅助压进行工作。
有时也通过离合器应用控制阀门204的切换,将来自线性电磁元件(SLS)202的控制液压提供给第一调节阀203,将该控制液压作为辅助压来对线压PL进行调压。向这些线性电磁元件(SLT)201以及线性电磁元件(SLS)202提供将线压PL作为源压而由调节阀门(modulator valve)205调压后的液压。
线性电磁元件(SLT)201根据由从ECU8发送来的负载信号(负载值)决定的电流值来输出控制液压。线性电磁元件(SLT)201是常开式的电磁阀。
另外,线性电磁元件(SLS)202根据由从ECU8发送来的负载信号(负载值)决定的电流值来输出控制液压。该线性电磁元件(SLS)202与上述线性电磁元件(SLT)201同样地,也是常开式的电磁阀。
在图2和图3所示的液压控制回路中,调节阀门206将调节阀门205输出的液压调压成一定的压力,供给至后述的负载电磁元件(DS1)304、负载电磁线圈(DS2)305以及带夹压力控制阀303等。
[变速速度控制]
接着,对主动带轮41的液压致动器413的液压控制回路进行说明。如图2所示,在主动带轮41的液压致动器413上连接有升档用变速控制阀门301。
在升档用变速控制阀门301上,设置有可以在轴方向上移动的滑柱(Spool)311。在滑柱311的一端侧(图2的上端侧)配置有弹簧(spring)312,夹着该滑柱311在与弹簧312相反一侧的端部形成有第一液压口315。另外,在设置有弹簧312的上述的一端侧形成有第二液压口316。
在第一液压口315上,连接有根据由从ECU8发送来的负载信号(负载值)决定的电流值来输出控制液压的负载电磁元件(DS1)304,该负载电磁元件(DS1)304输出的控制液压被施加到第一液压口315。在第二液压口316上连接有根据由从ECU8发送来的负载信号(负载值)决定的电流值来输出控制液压的负载电磁元件(DS2)305,该负载电磁元件(DS2)305输出的控制液压被施加到第二液压口316。
而且,在升档用变速控制阀门301上,形成有提供线压PL的输入口313、与主动带轮41的液压致动器413连接(连通)的输入输出口314以及输出口317,当滑柱311位于升档位置(图2的右侧位置)时,输出口317关闭,线压PL从输入口313经由输入输出口314供给至主动带轮41的液压致动器413。另一方面,当滑柱311位于关闭位置(图2的左侧位置)时,输入口313关闭,主动带轮41的液压致动器413经由输入输出口314与输出口317连通。
在降档用变速控制阀门302上,设置有能够在轴方向上移动的滑柱321。在滑柱321的一端侧(图2的下端侧)配置有弹簧322,并且在该一端侧形成有第一液压口326。另外,夹着滑柱321在与弹簧322相反一侧的端部形成有第二液压口327。在第一液压口326上,连接有上述负载电磁元件(DS1)304,该负载电磁元件(DS1)304输出的控制液压被施加到第一液压口326。在第二液压口327上连接有上述负载电磁元件(DS2)305,该负载电磁元件(DS2)305输出的控制液压被施加到第二液压口327。
而且,在降档用变速控制阀门302上形成有输入口323、输入输出口324以及输出口325。在输入口323上连接有旁路控制(bypass control)阀门306,对其供给由该旁路控制阀门306对线压PL进行调压后的液压。
并且,在这样的降档用变速控制阀门302中,当滑柱321位于降档位置(图2的左侧位置)时,输入输出口324与排出口325连通。另一方面,当滑柱321位于关闭位置(图2的右侧位置)时,输入输出口324关闭。降档用变速控制阀门302的输入输出接口324,与升档用变速控制阀门301的输出口317连接。
在以上的图2的液压控制回路中,当将负载电磁元件(DS1)304输出的控制液压供给到升档用变速控制阀门301的第一液压口315时,由于与该控制液压对应的推力,滑柱311向升档位置一侧(图2的上侧)移动。通过该滑柱311的移动(向升档一侧的移动),工作油(线压PL)以与控制液压对应的流量从输入口313经由输入输出口314供给到主动带轮41的液压致动器413,并且输出口317关闭,阻止工作油向降档变速控制阀门302的流通。由此变速控制压升高,主动带轮41的V槽宽度变窄,变速比γ变小(升档)。
当将负载电磁元件(DS1)304输出的控制液压供给到降档用变速控制阀门302的第一液压口326时,滑柱321向图2的上侧移动,输入输出口324关闭。
另一方面,当将负载电磁元件(DS2)305输出的控制液压供给到升档用变速控制阀门301的第二液压口316时,由于与该控制液压相对应的推力,滑柱311向降档位置一侧(图2的下侧)移动。通过该滑柱311的移动(向降档一侧的移动),主动带轮41的液压致动器413内的工作油,以与控制液压对应的流量流入升档用变速控制阀门301的输入输出口314。流入该升档用变速控制阀门301的工作油,经由输出口317和降档用变速控制阀门302的输入输出口324从排出口325排出。由此,变速控制压降低,输入侧可变带轮42的V槽宽度变宽,变速比γ变大(降档)。
当将负载电磁元件(DS2)305输出的控制液压供给到降档用变速控制阀门302的第二液压口327时,线管321向图2的下侧移动,输入输出口324和排出口325连通。
如上所述,当从负载电磁元件(DS1)304输出控制液压时,从升档用变速控制阀门301将工作油供给到主动带轮41的液压致动器413,变速控制压连续地进行升档。另外,当从负载电磁元件(DS2)305输出控制液压时,主动带轮41的液压致动器413内的工作油从降档用变速控制阀门302的排出口325排出,变速控制压连续进行降档。
并且,在该例子中,例如如图4所示那样,将表示驾驶者的输出要求量的加速器操作量Acc以及车速V作为参数,根据预先设定的变速映射来算出输入侧的目标转速Nint,以使实际的输入轴转速Nin与目标转速Nint一致的方式,根据它们是偏差(Nint-Nin)通过带式无级变速器4的变速控制、即对于主动带轮41的液压致动器413的工作油的供给/排出来控制变速控制压,变速比γ连续地变化。图4的映射相当于变速条件,其被存储在ECU8的ROM82(参考图6)内。
在图4的映射中,设定有车速V越小、加速器操作量Acc越大则越变为较大的变速比γ的目标转速Nint。另外,车速V与从动带轮转速(输出轴转速)Nout相对应,因此作为主动带轮转速(输入轴转速)Nin的目标值的目标转速Nint与目标变速比相对应,在带式无级变速器4的最小变速比γmin和最大变速比γmax的范围内进行设定。
[带夹压力控制]
接着,参考图3对从动带轮42的液压致动器423的液压控制回路进行说明。
如图3所示,在从动带轮42的液压致动器423上连接有带夹压力控制阀门303。
在带夹压力控制阀门303上,设置有能够在轴方向上移动的滑柱331。在滑柱331的一端侧(图3的下端侧)配置有弹簧332,并且在该一端侧形成有第一液压口335。另外,夹着滑柱331在与弹簧332相反一侧的端部形成有第二液压口336。
在第一液压口335上连接有线性电磁元件(SLS)202,该线形电磁元件(SLS)202输出的控制液压被施加到第一液压口335。在第二液压口336上施加来自调节阀门206的液压。
而且,在带夹压力控制阀门303上,形成有提供线压PL的输入口333、以及与从动带轮42的液压致动器423连接(连通)的输出口334。
在该图3的液压控制回路中,当由对从动带轮42的液压致动器423提供预定的液压的状态开始,线性电磁元件(SLS)202输出的控制液压增大时,带夹压力控制阀门303的滑柱331向图3的上侧移动。在该情况下,供给到从动带轮42的液压致动器423的液压增大,带夹压力增大。
另一方面,当由对从动带轮42的液压致动器423供给预定的液压的状态开始,线性电磁元件(SLS)202输出的控制液压下降时,带夹压力控制阀门303的滑柱331向图3的下侧移动。在该情况下,供给到从动带轮42的液压泵体(cylinder)的液压下降,带夹压力下降。
这样,将线性电磁元件(SLS)202输出的控制液压作为辅助压,对线压PL进行调压控制,并且供给至从动带轮42的液压致动器423,由此带夹压力进行增减。
并且,该例子通过如下动作来进行:根据例如如图5所示那样将与传递转矩对应的加速器开度Acc以及变速比γ(γ=Nin/Nout)作为参数,以不发生带打滑的方式预先设定的必要液压(相当于带夹压力)的映射,对线性电磁元件(SLS)202输出的控制液压进行控制,由此通过对带式无级变速器4的带夹压力、即从动带轮42的液压致动器423的液压进行调压控制。图5的映射相当于夹压力控制条件,其被存储在ECU8的ROM82(参考图6)内。
-ECU-
ECU8如图6所示那样,具备CPU81、ROM82、RAM83以及备份RAM84等。
在ROM82中存储有各种控制程序、以及在执行这些各种程序时所参考的映射等。CPU81基于存储在ROM82中的各种控制程序和映射来执行运算处理。另外,RAM83是临时存储CPU81中的运算结果、从各传感器输入的数据等的存储器,备份RAM84是在发动机1的停止时对其应该保存的数据等进行存储的非易失性存储器。
这些CPU81、ROM82、RAM83以及备份RAM84经由总线87相互连接,并且与输入接口85和输出接口86连接。
在ECU8的输入接口85上连接有发动机转速传感器101、节气门开度传感器102、水温传感器103、涡轮转速传感器104、主动带轮转速传感器105、从动带轮转速传感器106、加速器开度传感器107、CVT油温传感器108、制动踏板传感器109以及检测变速杆9的变速杆位置(操作位置)的变速杆位置传感器110等。并且,这些各个传感器的输出信号、即表示发动机1的转速(发动机转速)Ne、节气门12的节气门开度θth、发动机1的冷却水温Tw、涡轮旋转轴27的转速(涡轮转速)Nt、主动带轮转速(输入轴转速)Nin、从动带轮转速(输出轴转速)Nout、加速踏板的操作量(加速器开度)Acc、液压控制回路20的油温(CVT油温Thc)、作为常用制动器的脚刹的操作的有无(制动器ON/OFF)以及变速杆9的变速杆位置(操作位置)等的信号,被提供给ECU8。
在输出接口86上连接有节气门电机13、燃料喷射装置14、点火装置15以及液压控制回路20(锁止控制回路200)等。
在此,在提供给ECU8的信号中,涡轮转速Nt在前进后退切换装置3的前进用离合器C1接合的前进行驶时,与主动带轮转速(输入轴转速)Nin一致,从动带轮转速(输出轴转速)Nout与车速对应。另外,加速器操作量Acc表示驾驶者的输出要求量。
另外,变速杆9能被选择性操作到用于停车的停车档位“P”、用于后退行驶的倒车档位“R”、切换动力传递的空档位“N”、用于前进行驶的驱动档位“D”、能够在前进行驶时由手动操作来增减带式无级变速器4的变速比γ的手动档位“M”等的各档位。
手动档位“M”具有用于增减变速比γ的降档位和升档位、或者能够选择变速范围的上限(变速比γ较小的一侧)不同的多个变速范围(range)的多个范围档位等。
变速杆位置传感器110,例如具备对变速杆9被向停车档位“P”、倒车档位“R”、空档位“N”、驱动档位“D”、手动档位“M”、升档位、降档位、或者范围档位进行操作的情况进行检测的多个ON/OFF开关等。为了通过手动操作来变更变速比γ,除了变速杆9,也可以在方向盘等上面设置降档开关和升档开关、或者变速杆等。
并且,ECU8基于上述各种传感器的输出信号等,来执行发动机1的输出控制、上述带式无级变速器4的变速速度控制、带夹压力控制以及锁止离合器24的接合/分离控制等。并且,ECU8执行后述的电磁元件异常/正常判断处理。
需说明的是,发动机1的输出控制,通过节气门电机13、燃料喷射装置14、点火装置15以及ECU8等来执行。
-电磁元件异常/正常判断处理-
首先,在图2和图3所示的液压控制回路中,当线性电磁元件(SLT)201发生了导通(ON)故障时,第一调节阀203被设定到关闭一侧,线压PL被固定为所需最小限度的液压(电磁元件故障时最低压)PLmin。另外,当电磁元件(SLS)202发生了ON故障时,带夹压力控制阀门303被设定到关闭一侧,被固定为用于确保最低限度的带夹压力的液压(电磁元件故障时最低压)PBmin。其中,从线压PL在带夹压力控制以外也能被利用等理由出发,当线性电磁元件(SLT)201发生了ON故障时所固定的液压PLmin被设定成大于当线性电磁元件(SLS)202发生了ON故障时所固定的液压PBmin(PLmin>PBmin)。
在此,在以往的正常判断处理中,如上所述那样,在电磁元件故障时最低压(例如线性电磁元件(SLT)201的故障时最低压)能够容许的输入转矩值上加上电磁元件的硬件偏差以及防止误判断容限量等来设定正常判断阈值,因此正常判断阈值变成较高的值。因此,在故障(异常)判断后的通常行驶时,存在带式无级变速器4的当前的输入转矩(实际输入转矩)不超过正常判断阈值的情况,并且存在无法执行正常判断处理的情况。
考虑这样的情况,在本例子中特征在于:在故障(异常)判断后,并不是将在电磁元件故障时最低压下能够容许的输入转矩用于正常判断时的条件,而是将实际的带打滑时(故障判断时)的带式无级变速器4的输入转矩用于正常判断时的条件,从而可以可靠地进行电磁元件故障后的正常判断。
参考图7的流程图对其具体的例子进行说明。图7同时示出异常判断处理(电磁元件故障判断处理)和正常判断处理。这些正常判断程序和异常判断程序在ECU8中被执行。
首先,在异常判断程序中,在步骤ST201中,根据主动带轮转速Nin和从动带轮转速Nout求出实际变速比(实际变速比=Nin/Nout),判断该实际变速比是否大于预定的判断值A。步骤ST201的判断结果为否定判断的情况下(实际变速比≤A),判断为正常并返回。
步骤ST201的判断结果为肯定判断的情况下(实际变速比>A),判断为发生带打滑,并进入到步骤ST202。在步骤ST202中,提取当前的输入转矩,并且对其输入转矩值α进行保存。另外,在步骤ST201的判断结果为肯定判断的情况下,判断为发生了某些异常(例如线性电磁元件(SLT)201或者线性电磁元件(SLS)202的故障、或者变速控制阀门301、302的阀门卡住等),并且对“异常”进行确定(步骤ST203)。
需说明的是,在以上的异常判断程序中,对实际变速比的判断值A是判断有无带打滑的判断值,其被设定成比图4示出的映射的变速比γmax更靠低一侧的值。
另外,可以基于发动机转矩Te、变矩器2的转矩比t以及输入惯性转矩来算出输入转矩。在此,发动机转矩Te可以根据例如节气门开度θth以及发动机转速Ne来算出。转矩比t是“主动带轮转速(输入轴转速)Nih/发动机转速Ne”的函数,输入惯性转矩可以根据主动带轮转速(输入轴转速)Nin的时间变化量来算出。
另一方面,图7的正常判断程序是在电磁元件异常(故障)确定后所执行的程序,在步骤ST101中,提取通过上述异常判断处理的步骤ST202所保存的输入转矩值α。
接着,在步骤ST102中,计算带式无级变速器4的当前的输入转矩(实际输入转矩),并且判断该实际输入转矩是否大于通过步骤ST101所提取的输入转矩值α。步骤ST102的判断结果为否定判断的情况下(实际输入转矩≤α)返回(持续异常判断)。步骤ST102的判断结果为肯定判断的情况下(输入转矩>α),进入到步骤ST103。
在步骤ST103中,根据主动带轮转速Nih以及从动带轮转速Nout来求出实际变速比(实际变速比=Nin/Nout),判断该实际变速比是否小于上述的判断值A。在步骤ST103的判断结果为否定判断的情况下(实际变速比≥A),判断为发生带打滑并返回(持续异常判断)。
在步骤ST103的判断结果为肯定判断的情况下(实际变速比<A),即在未发生带打滑的情况下,判断为例如阀门卡住等的异常已消除,对“正常”进行确定(恢复正常判断:步骤ST104)。这样,当进行恢复正常判断时,“异常判断”被清除。
如上述那样,根据本例子的判断控制,将实际发生了带打滑时、即故障判断时的输入转矩作为正常判断时的条件,因此与以往的正常判断处理相比较,可以将用于恢复正常判断的正常判断阈值(输入转矩值α)取为较小的值。由此,即使在通常行驶时,带式无级变速器4的实际输入转矩也能超过正常判断阈值,从而可以精度较好地执行正常判断。由此能够可靠地进行故障判断后的异常判断清除。
需说明的是,用于正常判断的正常判断阈值,可以如上述那样取为带打滑时的实际输入转矩值α,也可以取为在其输入转矩值α上加上了防止误判断容限量的值。
[实施方式2]
接着,根据附图对本发明的其他实施方式进行说明。
图8是表示适用本发明的有级式自动变速器(包括变矩器)的一个例子的概略结构图。该例子的自动变速器700被安装在FF(前置发动机、前轮驱动)型车辆上。
首先,变矩器600具备输入轴一侧的泵轮601、输出轴一侧的涡轮602、呈现转矩放大功能的定子603以及单向离合器604,在泵轮601和涡轮602之间经由流体来进行动力传递。
在变矩器600上设置有使输入侧和输出侧成为直接连结状态的锁止离合器605。通过使该锁止离合器605完全接合,从而使泵轮601和涡轮602一体旋转。另外,通过使锁止离合器605以预定的打滑状态接合,从而在驱动时使涡轮602以预定的打滑量跟随泵轮601进行旋转。
自动变速器700是如下那样的行星齿轮式多级变速器,即该行星齿轮式多级变速器在同轴线上具有将单小齿轮(single pinion)型的第一行星齿轮装置701作为主体而构成的第一变速部700A、和将单小齿轮型的第二行星齿轮装置702和双小齿轮型的第三行星齿轮装置703作为主体而构成第二变速部700B,对输入轴711的旋转进行变速并传递至输出轴712,从输出齿轮713进行输出。输出齿轮713与安装在车辆上的差动齿轮装置直接或者经由副轴连结。需说明的是,自动变速器700以及变矩器600相对中心线大致对称地构成,因此在图8中省略中心线的下半部分。
构成第一变速部700A的第一行星齿轮装置701,具备太阳轮S1、齿轮架CA1以及齿圈R1的这三个旋转元件,太阳轮S1与输入轴711连结。而且,齿圈R1经由第三制动器B3固定到机壳710(housing case),由此太阳轮S1以齿轮架CA1作为中间输出部件而相对于输入轴711进行减速旋转。
在构成第二变速部700B的第二行星齿轮装置702和第三行星齿轮装置703中,一部分相互连结,由此构成有4个旋转元件RM1~RM4。
具体而言,由第三行星齿轮装置703的太阳轮S3构成第一旋转元件RM1,第二行星齿轮装置702的齿圈R2以及第三行星齿轮装置703的齿圈R3相互连结而构成第二旋转元件RM2。另外,第二行星齿轮装置702的齿轮架CA2以及第三行星齿轮装置703的齿轮架CA3相互连结而构成第三旋转元件RM3。另外,由第二行星齿轮装置702的太阳轮S2构成第四旋转元件RM4。
第二行星齿轮装置702和第三行星齿轮装置703中,齿轮架CA2和CA3由公共的材料所构成,并且齿圈R2和R3也由公共的材料所构成。另外,采用第二行星齿轮装置702的小齿轮兼作第三行星齿轮装置703的第二小齿轮的拉维娜(Ravigneaux)式行星齿轮组。
第一旋转元件RM1(太阳轮S3)与作为中间输出部件的第一行星齿轮装置701的齿轮架CA1一体连结,通过第一制动器B1与机壳710选择性连结而停止旋转。第二旋转元件RM2(齿圈R2和R3)经由第二离合器C2与输入轴711选择性连结,另一方面经由单向离合器F1和第二制动器B2与机壳710选择性连结而停止旋转。
第三旋转元件RM3(齿轮架CA2和CA3)与输出轴712一体连结。第四旋转元件RM4(太阳轮S2)经由第一离合器C1与输入轴711选择性连结。
在以上的自动变速器2中,作为摩擦接合元件的第一离合器C1、第二离合器C2、第一制动器B1、第二制动器B2、第三制动器B3以及单向离合器F1等在预定的状态下接合或者分离,由此设定变速档。
图9是说明用于建立自动变速器700的各变速档的离合器以及制动器的接合工作的接合表。“○”表示接合,“×”表示分离。
如该图9所示,当使自动变速器700的离合器C1接合时,建立前进档的1档(1st),在该1档下单向离合器F1接合。当使第一离合器C1和制动器B1接合时,建立前进档的2档(2nd)。当使第一离合器C1和第三制动器B3接合时,建立前进档的3档(3rd)。
另外,当使第一离合器C1和第二离合器C2接合时,建立前进档的4档(4th)。当使第二离合器C2和第三制动器B3接合时,建立前进档的5档(5th)。当使第二离合器C2和第一制动器B1接合时,建立前进档的6档(6th)。另一方面,当使第二制动器B2和第三制动器B3接合时,建立后退档(Rev)。
以上的自动变速器700的输入轴711的转速通过输入轴转速传感器924来进行检测。另外,自动变速器700的输出轴712的转速通过输出轴转速传感器925来进行检测。根据从这些输入轴转速传感器924和输出轴转速传感器925的输出信号得到的转速比(输出转速/输入转速),可以对自动变速器700的当前档位进行判断。
接着,参考图10对自动变速器700的液压控制回路800的一部分进行说明。
该例子的液压控制回路800具备用于控制第一离合器C1的接合/分离的线性电磁元件(SL1)801、用于控制第二离合器C2的接合/分离的线性电磁元件(SL2)802、用于控制第一制动器B1的接合/分离的线性电磁元件(SL3)803以及用于控制第三制动器B3的接合/分离的线性电磁元件(SL4)804。
线性电磁元件(SL1)801,将由未作图示的手动阀输出的D范围(range)压PD作为源压,产生用于控制第一离合器C1的接合状态的第一液压PC1,并且将该第一液压PC1输出到与第一离合器C1的液压伺服器连接的第一油路811。线性电磁元件(SL2)802,将D范围压PD作为源压,产生用于控制第二离合器C2的接合状态的第二液压PC2,并且将该第二液压PC2输出到与第二离合器C2的液压伺服器连接的第二油路812。
线性电磁元件(SL3)803,将D范围压PD作为源压来产生用于控制第一制动器B1的接合状态的第三液压PB1,并且将该第三液压PB1输出到与第一制动器B1的液压伺服器连接的第三油路813。线性电磁元件(SL4)804,将线压PL作为源压来产生用于控制第三制动器B3的接合状态的第四液压PB3,并且将该第四液压PB3输出到与第三制动器B3的液压伺服器连接的第四油路814。
以上的线性电磁元件(SL1)801、线性电磁元件(SL2)802、线性电磁元件(SL3)803以及线性电磁元件(SL4)804等由ECU1000控制。
-ECU-
ECU1000与图6所示的ECU8同样地,具备CPU、ROM、RAM、备份RAM以及输入/输出接口等。
在ECU1000上,如图11所示那样连接有发动机转速传感器921、节气门开度传感器922、水温传感器923、输入轴转速(涡轮转速)传感器924、输出轴转速传感器925、加速器开度传感器926以及检测变速杆的变速位置(操作位置)的变速杆位置传感器927等,该各传感器的输出信号被输入到ECU1000中。另外,在ECU1000上连接有发动机的节气门电机911、燃料喷射装置912、点火装置913以及液压控制回路800等。
ECU1000向液压控制回路800输出电磁元件控制信号。基于该电磁元件控制信号,对液压控制回路800的线性电磁元件801~804等进行控制,为了构成预定的变速档位(1档~6档),自动变速器700的第一离合器C1、第二离合器C2、第一制动器B1、第二制动器B2、第三制动器B3以及单向离合器F1等在预定的状态下接合或者分离。另外,ECU1000执行下述的“变速控制”。
-变速控制-
首先,参考图12对用于该例子的变速控制的变速映射进行说明。
图12所示的变速映射,是将车速和加速器开度作为参数,根据这些车速及加速器开度来设定用于求出恰当的档位的多个区域的映射,并被存储在ECU1000的ROM内。变速映射的各区域由多个变速线(档位的切换线)来进行划分。在图12所示的变速映射中,仅示出升档变速线。
接着,对变速控制的基本动作进行说明。
ECU1000根据输出轴转速传感器925的输出信号算出车速,并且根据加速器开度传感器926的输出信号算出加速器开度,基于这些车速和加速器开度,参考图12的变速映射来算出目标档位。另外,求出由输入轴转速传感器924和输出轴转速传感器925的输出信号得到的转速的比(输出转速/输入转速),对当前档位进行判断,对该当前档位和目标档位进行比较,判断是否需要变速操作。
根据该判断结果,在不需要变速的情况(当前档位和目标档位相同,档位被设定为合适的情况)下,将维持当前档位的电磁元件控制信号(液压指令信号)输出到自动变速器700的液压控制回路800。
另一方面,在当前档位和目标档位不同的情况下进行变速控制。例如,从自动变速器700的档位为“4档”的状态下进行行驶的状况开始,车辆的行驶状态发生变化,例如在从图12所示的点PA变化为点PB的情况下,由于成为跨过(越过)升档变速线(4→5)的变化,因此根据变速映射算出的目标档位变成“5档”,将设定该5档的档位的电磁元件控制信号(液压指定信号)输出到自动变速器700的液压控制回路800,进行从4档的档位向5档的档位的变速(4→5升档变速)
-关于正常判断处理-
在该例子的自动变速器700的控制装置中,也能够通过将实际发生离合器打滑(摩擦接合元件打滑)时、即故障判断时的输入转矩作为正常判断时的条件,从而将用于正常判断的正常判断阈值取为较小的值。
具体而言,例如,基于输入轴转速传感器924和输出轴转速传感器925的输出信号,算出特定的变速档(例如1档)中的实际传动比(传动比=输入轴转速/输出轴转速)。接着,对该算出的实际传动比是否大于预定的判断值B进行判断,在实际传动比大于判断值B的情况下,判断为发生离合器打滑(第一离合器C1的打滑),提取自动变速器700的输入转矩,将该输入转矩值用于正常判断时的条件,由此可以将正常判断阈值取为较小的值。并且,在该例子中,也在比正常判断阈值(输入转矩值)大的转矩被输入到自动变速器700时,在没有离合器打滑的情况下,判断为电磁元件正常(例如电磁元件(LS1)801正常)。
上述判断值B在特定变速档(例如1档)中通过实验、计算等求出发生离合器打滑(例如第一离合器C1的打滑)时的传动比来进行设定。另外,关于输入转矩,和上述“实施方式1”同样地,根据发动机转矩、变转矩600的转矩比以及输入惯性转矩来进行算出。
-其他实施方式-
在以上的例子中,示出将本发明应用到安装有汽油发动机的车辆的自动变速器的控制装置中的例子,但本发明并不限定于此,在安装有柴油发动机等其他的发动机的车辆的自动变速器的控制装置中也可以进行应用。另外,关于车辆的动力源,除了发动机(内燃机)之外,也可以是电动电机、或者具备发动机和电动电机两者的混合式动力源。
需说明的时,本发明能够不脱离其主旨或者主要特征地以其他各种形式进行实施。因此,上述的实施方式,在所有方面都只是例示而并非限制性的内容。本发明的范围由权利要求书表示,并不限制于说明书的记载。而且,属于权利要求书的均等范围的变形和变更,都在本发明的范围内。
另外,本申请要求2007年12月13日在日本提出的日本专利申请No.2007-321966的优先权。由此,其全部内容引入本申请。
工业上的实用性
本发明并不限于FF(前置发动机、前轮驱动)型车辆,也可以应用于FR(前置发动机、后轮驱动)型车辆、4轮驱动车。

Claims (7)

1.一种自动变速器的控制装置,所述自动变速器具有控制变速部的液压的电磁阀,该控制装置的特征在于:
具备对所述变速部的驱动力传递元件的打滑进行判断的打滑判断单元、运算所述自动变速器的输入转矩的输入转矩运算单元、以及对所述电磁阀的正常进行判断的正常判断单元,将所述驱动力传递元件的打滑时的输入转矩用于所述正常判断时的条件。
2.根据权利要求1所述的自动变速器的控制装置,其特征在于:
所述自动变速器为带式无级变速器,所述带式无级变速器具有主动带轮和从动带轮、卷绕在所述主动带轮和从动带轮上的带、使所述主动带轮的槽宽变化的液压致动器、使所述从动带轮的槽宽变化的液压致动器、以及对提供给所述从动带轮的液压致动器的液压进行控制的电磁阀,
所述自动变速器的控制装置,具备对所述带式无级变速器有无带打滑进行判断的打滑判断单元、运算所述带式无级变速器的输入转矩的输入转矩运算单元、以及对所述电磁阀的正常进行判断的正常判断单元,将所述带打滑时的输入转矩用于所述正常判断时的条件。
3.根据权利要求2所述的自动变速器的控制装置,其特征在于:
所述正常判断单元,在比所述带打滑时的输入转矩大的转矩被输入到所述带式无级变速器时,所述带没有打滑的情况下,判断为所述电磁阀正常。
4.根据权利要求2或者3所述的自动变速器的控制装置,其特征在于:
所述打滑判断单元,运算所述主动带轮和从动带轮之间的变速比,基于该运算变速比来判断有无带打滑。
5.根据权利要求1所述的自动变速器的控制装置,其特征在于:
所述自动变速器为有级式自动变速器,所述有级式自动变速器具有通过使多个摩擦接合元件选择性接合来建立变速比不同的多个变速档的变速部、和对所述摩擦接合元件的接合压进行控制的电磁阀,
所述自动变速器的控制装置,具备对所述有级式自动变速器的摩擦接合元件有无打滑进行判断的打滑判断单元、运算所述有级式自动变速器的输入转矩的输入转矩运算单元、以及对所述电磁阀的正常进行判断的正常判断单元,将所述摩擦接合元件打滑时的输入转矩用于所述正常判断时的条件。
6.根据权利要求5所述的自动变速器的控制装置,其特征在于:
所述正常判断单元,在比所述摩擦接合元件打滑时的输入转矩大的转矩被输入到所述有级式自动变速器时,所述摩擦接合元件没有打滑的情况下,判断为所述电磁阀正常。
7.根据权利要求5或者6所述的自动变速器的控制装置,其特征在于:
所述打滑判断单元,基于所述有级式自动变速器的输入轴转速和输出轴转速来运算传动比,基于该运算传动比来判断所述摩擦接合元件有无打滑。
CN2008800067061A 2007-12-13 2008-12-10 自动变速器的控制装置 Expired - Fee Related CN101622478B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP321966/2007 2007-12-13
JP2007321966A JP4325718B2 (ja) 2007-12-13 2007-12-13 自動変速機の制御装置
PCT/JP2008/072390 WO2009075283A1 (ja) 2007-12-13 2008-12-10 自動変速機の制御装置

Publications (2)

Publication Number Publication Date
CN101622478A true CN101622478A (zh) 2010-01-06
CN101622478B CN101622478B (zh) 2013-01-09

Family

ID=40755525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800067061A Expired - Fee Related CN101622478B (zh) 2007-12-13 2008-12-10 自动变速器的控制装置

Country Status (5)

Country Link
US (1) US8489296B2 (zh)
JP (1) JP4325718B2 (zh)
CN (1) CN101622478B (zh)
DE (1) DE112008000211B4 (zh)
WO (1) WO2009075283A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052832A (zh) * 2010-08-05 2013-04-17 丰田自动车株式会社 车辆用无级变速器的控制装置
CN106795960A (zh) * 2014-10-15 2017-05-31 本田技研工业株式会社 无级变速器的异常判定装置
CN107152527A (zh) * 2016-03-03 2017-09-12 丰田自动车株式会社 车辆用无级变速器的控制装置
CN111197653A (zh) * 2018-11-16 2020-05-26 本田技研工业株式会社 车辆控制装置、车辆和车辆控制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939915B2 (ja) * 2006-12-21 2012-05-30 富士重工業株式会社 無段変速機の制御装置
JP4799647B2 (ja) * 2009-07-17 2011-10-26 日産自動車株式会社 車両用無段変速機の制御装置
JP5256253B2 (ja) * 2009-07-17 2013-08-07 日産自動車株式会社 自動変速機
JP4991798B2 (ja) * 2009-07-17 2012-08-01 日産自動車株式会社 無段変速機
JP4790834B2 (ja) * 2009-07-17 2011-10-12 日産自動車株式会社 車両用無段変速機の制御装置
JP5205412B2 (ja) * 2009-07-17 2013-06-05 ジヤトコ株式会社 無段変速機及びその制御方法
JP4875732B2 (ja) * 2009-07-17 2012-02-15 日産自動車株式会社 無段変速機
JP4852130B2 (ja) * 2009-07-17 2012-01-11 日産自動車株式会社 車両用無段変速機の制御装置
JP5480227B2 (ja) * 2011-11-29 2014-04-23 本田技研工業株式会社 動力伝達装置
JP6236850B2 (ja) * 2013-04-19 2017-11-29 トヨタ自動車株式会社 ベルト式無段変速機の油圧制御装置
JP6248548B2 (ja) * 2013-10-31 2017-12-20 株式会社デンソー 車両制御装置
CN108757925B (zh) * 2018-06-05 2020-07-31 湖南大学 自抗扰控制的无级变速器滑移率控制方法及系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3922409C1 (zh) * 1989-07-07 1990-04-26 Hella Kg Hueck & Co, 4780 Lippstadt, De
DE19504935A1 (de) 1994-02-23 1995-08-24 Luk Getriebe Systeme Gmbh Verfahren zum Steuern eines Drehmomenten-Übertragungssystems
US5630773A (en) * 1996-02-02 1997-05-20 Eaton Corporation Method and apparatus for slip mode control of automatic clutch
CA2352991C (en) * 2000-07-24 2009-01-06 Honda Giken Kogyo Kabushiki Kaisha Shift control system for belt-type continuously variable transmission
JP3622689B2 (ja) * 2001-04-24 2005-02-23 トヨタ自動車株式会社 動力伝達装置用作動油温の制御装置
JP4599773B2 (ja) * 2001-07-24 2010-12-15 トヨタ自動車株式会社 無段変速機を備えた車両の制御装置
JP3597808B2 (ja) 2001-09-28 2004-12-08 トヨタ自動車株式会社 無段変速機の滑り検出装置
US7356399B2 (en) * 2003-01-29 2008-04-08 Honda Motor Co., Ltd. Failure determination system for stepless speed changer and failure determination device for start clutch
JP4474832B2 (ja) 2003-02-19 2010-06-09 トヨタ自動車株式会社 無段変速機の制御装置
JP2004293652A (ja) * 2003-03-26 2004-10-21 Toyota Motor Corp 無段変速機を含む駆動機構の制御装置
JP4411858B2 (ja) * 2003-04-18 2010-02-10 トヨタ自動車株式会社 無段変速機の制御装置
JP4333211B2 (ja) * 2003-05-09 2009-09-16 トヨタ自動車株式会社 車両の動力源と変速機との協調制御装置
JP3885766B2 (ja) * 2003-05-19 2007-02-28 トヨタ自動車株式会社 車両の動力源と無段変速機との協調制御装置
JP4114548B2 (ja) * 2003-06-02 2008-07-09 トヨタ自動車株式会社 動力源と無段変速機との協調制御装置および制御方法
JP2006200549A (ja) * 2005-01-18 2006-08-03 Fujitsu Ten Ltd 無段変速機の制御方法及び制御装置
JP2006300144A (ja) * 2005-04-18 2006-11-02 Toyota Motor Corp 自動変速機の制御装置
JP4799129B2 (ja) * 2005-10-31 2011-10-26 ジヤトコ株式会社 自動車用無段変速機の制御装置
JP4849870B2 (ja) * 2005-10-31 2012-01-11 ジヤトコ株式会社 自動車用無段変速機の制御装置
JP4453649B2 (ja) * 2005-11-21 2010-04-21 トヨタ自動車株式会社 無段変速機の制御装置
DE102005058511A1 (de) 2005-12-08 2007-06-14 Daimlerchrysler Ag Verfahren und Einrichtung zur Erkennung eines Fehlers in einem Steuerungssystem einer Drehmomentübertragungseinrichtung
JP2007177833A (ja) 2005-12-27 2007-07-12 Toyota Motor Corp 車両用無段変速機の変速制御装置
JP5058516B2 (ja) 2006-06-05 2012-10-24 Ntn株式会社 流体軸受装置
JP4690255B2 (ja) * 2006-06-15 2011-06-01 トヨタ自動車株式会社 ベルト式無段変速機の制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052832A (zh) * 2010-08-05 2013-04-17 丰田自动车株式会社 车辆用无级变速器的控制装置
CN103052832B (zh) * 2010-08-05 2015-08-05 丰田自动车株式会社 车辆用无级变速器的控制装置
CN106795960A (zh) * 2014-10-15 2017-05-31 本田技研工业株式会社 无级变速器的异常判定装置
CN106795960B (zh) * 2014-10-15 2018-08-03 本田技研工业株式会社 无级变速器的异常判定装置
US10041583B2 (en) 2014-10-15 2018-08-07 Honda Motor Co., Ltd. Abnormality determination device for continuously variable transmission
CN107152527A (zh) * 2016-03-03 2017-09-12 丰田自动车株式会社 车辆用无级变速器的控制装置
CN107152527B (zh) * 2016-03-03 2019-05-03 丰田自动车株式会社 车辆用无级变速器的控制装置
CN111197653A (zh) * 2018-11-16 2020-05-26 本田技研工业株式会社 车辆控制装置、车辆和车辆控制方法
CN111197653B (zh) * 2018-11-16 2021-07-30 本田技研工业株式会社 车辆控制装置、车辆和车辆控制方法

Also Published As

Publication number Publication date
JP4325718B2 (ja) 2009-09-02
US8489296B2 (en) 2013-07-16
DE112008000211B4 (de) 2017-06-29
WO2009075283A1 (ja) 2009-06-18
CN101622478B (zh) 2013-01-09
DE112008000211T5 (de) 2010-02-11
JP2009144802A (ja) 2009-07-02
US20100057316A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
CN101622478B (zh) 自动变速器的控制装置
CN101561044B (zh) 液压控制系统
CN103867704B (zh) 无级变速器的变速控制装置
DE102009002601B4 (de) Hydraulikdrucksteuervorrichtung
CN101749413B (zh) 无级变速器的液压供给单元
US8182397B2 (en) Hydraulic control apparatus for automatic transmission
CN103392085B (zh) 变速器的控制装置以及变速器的制动扭矩产生判断方法
CN103477105A (zh) 车辆用驱动装置的控制装置
CN101688604A (zh) 锁止离合器的控制装置
CN1987162A (zh) 用于自动变速器的控制装置和控制方法
CN107152527A (zh) 车辆用无级变速器的控制装置
KR20040027317A (ko) 엔진 및 벨트식 무단 변속기의 제어 장치
US8522946B2 (en) Hydraulic control device
JPS62143742A (ja) 無段変速機の制御装置
JP5376054B2 (ja) 車両用変速制御装置
JP2759938B2 (ja) 車両用変速機の制御方法
CN100414147C (zh) 自动变速器的液压控制装置
CN100453855C (zh) 自动变速器的液压控制装置
CN106795962A (zh) 车辆控制装置及控制方法
JP2007071272A (ja) 無段変速機の変速制御装置
JPH0712201A (ja) 車両用無段変速機の変速制御装置
JP4671750B2 (ja) 無段変速機の変速制御装置
JPH066982B2 (ja) 車両用無段変速機の制御装置
CN100535483C (zh) 自动变速器的控制装置
US20090248262A1 (en) Control device and control method for continuously variable transmission

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130109

Termination date: 20211210