CN101489923B - 氮化碳的制备方法 - Google Patents

氮化碳的制备方法 Download PDF

Info

Publication number
CN101489923B
CN101489923B CN200780026619.8A CN200780026619A CN101489923B CN 101489923 B CN101489923 B CN 101489923B CN 200780026619 A CN200780026619 A CN 200780026619A CN 101489923 B CN101489923 B CN 101489923B
Authority
CN
China
Prior art keywords
carbon nitride
nitride material
carbon
pyrolysis
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780026619.8A
Other languages
English (en)
Other versions
CN101489923A (zh
Inventor
M·A·H·马马克赫尔
S·N·菲利波夫
R·拉帕莱宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carbodeon Ltd Oy
Original Assignee
Carbodeon Ltd Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carbodeon Ltd Oy filed Critical Carbodeon Ltd Oy
Publication of CN101489923A publication Critical patent/CN101489923A/zh
Application granted granted Critical
Publication of CN101489923B publication Critical patent/CN101489923B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0828Carbonitrides or oxycarbonitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/20Thiocyanic acid; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Sustainable Energy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Electrochemistry (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Saccharide Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及制备氮化碳材料的方法,其中以有效、经济和环境友好的方式将有机硫氰化物简单热解以产生氮化碳材料。本发明实现了碳和氮摩尔比为约3∶4的石墨状氮化碳材料的制备。使用的起始材料便宜,并能够容易地除去和/或清洗掉。

Description

氮化碳的制备方法
发明领域
本发明涉及以简单和经济可行的方式通过热解非金属硫氰化物(rodanide)制备碳与氮摩尔比约3∶4的石墨状氮化碳材料的方法。制备的氮化碳材料具有突出的性能,并能够用于例如耐磨损和耐腐蚀的涂层、电子设备、光学涂层及各种复合材料的应用中。
背景技术
自从Cohen和同事提出β-C3N4(类似于β-Si3N4的氮化碳材料)应该具有与金刚石相当的硬度后,氮化碳材料已经成为大量实验和理论关注的焦点。随后的计算显示其它结晶C3N4应该具有与β-C3N4相当或更大的稳定性,而且许多这些结构本质上应当硬度大。C3N4结构包括α、β、立方、准立方(pseudocubic)和石墨状氮化碳。此外,尽管C2N2具有不同的化学结构,然而仍将其称为氮化碳。
将超硬和致密的C3N4结构与低密度、较软材料区别开来的局部结构性能是碳的配位:硬材料在C3N4网络中需要四面体或sp3键合的碳,而sp2键合的碳会导致软得多的材料。硬氮化碳中具有sp3键合碳的这种要求完全类似于无定形类金刚石碳(DLC)中的要求,Hu et al,Physical Rewiev B,Vol 57,1997,第6期,第3185-3188页,Nitrogen-driven sp3 to sp2 transformation in carbon nitride materials。
如同各种金刚石涂层,氮化碳涂层也具有优异的无磨损和无划痕性能。此外,氮化碳材料是耐腐蚀的,并能作为电绝缘体、光学涂层,尤其是它们具有比相应的DLC涂层显著更优的热阻。
尽管使用无定形CNx结构已经能够在各种涂层/薄膜应用中获得良好结果,然而,一旦在薄膜/涂层结构中实现氮化碳中的氮含量以及因此实现氮化碳中的结晶度,则会极度提高性能。
通常,目前工业制备的氮化碳涂层/薄膜是无定形的,具有小于50%的氮含量,即不是C3N4结构。
由于更易获得,无定形CNx材料已被广泛应用。例如作为硬盘保护性外涂层中最为广泛使用的材料,Widlow等,Brazilian Journal ofPhysics,2000,vol 30,n:o 3,Recent Progress in the synthesis andcharacterization of amorphous and crystalline carbon nitridecoatings。通常通过各种膜沉积方法在纯氮气中烧蚀石墨制备这样的膜,获得的膜包含无定形氮化碳,其耐磨性能比现有涂层高出几倍。
还进行了制备氮化碳涂层/薄膜的其它尝试:激光烧蚀、感应耦合等离子体化学气相沉积、溶剂热法以及从有机液体进行电沉积。其中多数报道发生无定形CNx薄固体膜的成核和生长。通常,这些研究中制备的材料是无定形的,具有小于50%的氮含量,即不是C3N4结构。
为了通过上述薄膜沉积技术提高氮化碳膜中的氮含量和结晶度,已经进行大量努力以制备粉末形式的富含氮的氮化碳材料。优选地,这样的前体材料将自然地具有3∶4的碳∶氮比例,且碳-氮键通常类似于C3N4氮化碳材料中的碳-氮键。
目前,对通过化学物质或混合物的热化学分解(热解)制备氮化碳的方法存在着实际兴趣。
存在一种已知的C3N4制备方法,包括向反应器中加入三聚氰胺(C3N3)(NH2)3和氰尿酰氯(C3N3)Cl3,并进一步加热和产生最终产物C3N4
(上述方法的)缺点是该方法不允许防止作为副产品的H2和HCN的形成。这导致该过程提高的爆炸性和毒性;[Montigaud H.,TanguyB.,Demazeau G.,Alves I.,Courjault S.C3N4:dream or reality?Solvothermal synthesis as macroscopic samples of C3N4 graphiticform//J.of Materials Science.2000.V.35.第2547-2552页]。
还存在一种合成氮化碳C3N4的已知方法[美国专利6428762]。将氰尿酰氯(C3N3)Cl3粉末与氮化锂Li3N粉末混合,之后将混合物置于反应器中并密封。将氮气流通入反应器;将内含物加热到300-400℃,并保温(incubate)一段时间。为了除去任何副产品,将已经制备的氮化碳冷却并清洗。
上述方法的缺点是:多步过程、高成本且最终产物C3N4的产率低。
还存在一种制备C3N4的已知方法,本文将其作为原型。[Dale R.Miller,Jianjun Wang,Edward G.Rapid facile synthesis ofnitrogen-rich carbon nitride powders//J.Mater.Chem.2002.V.12.P.2463-2469]。该方法包括将三氯三聚氰胺(C3N3)(NHCl)3加入反应腔室中,之后通过N2或Ar的连续流确保惰性条件,并在这种气体流动环境中加热到T=500℃。发生分解:(C3N3)(NHCl)3→C3N4+X+3HCl+(2-x)/2N2,生成C3N4+X,其中0.5≤x≤0.8。在(反应)腔室中使用惰性气体流除去气态副产品HCl和N2。之后,将腔室冷却10分钟,最终产物用丙酮清洗,并然后在T=130℃干燥。该方法并不允许获得具有化学计量比组成的C3N4;此外,不能完全从氮化碳中除去痕量的氢、氯和氧。
已通过如下方式将紫外光辅助的合成用于制备氮化碳靶:使作为氮源的碱金属氨化物(例如氨基钠)与作为碳源的烷基氯(例如氯仿)反应;Tien-Rong Lu,Cheng-Tzu Kuo,Teng-Ming Chen,Thin SolidFilms 308-309(1997),126-129。该反应包括通过一系列泵吸和过滤过程分解未反应的起始材料的步骤,以及除去碱金属氯化物副产品的冗长过程。然后将粉末材料在800℃烧结以制备含有C、N和H的靶材料,氮与碳比率仍仅为0.23。
Lappalainen等人的RU2005104194和PCT/FI2006/000040描述了以受控方式通过热解碱金属硫氰化物制备氮化碳(C3N4)材料的可行方法。然而,该方法仅局限于源自碱金属的起始材料,从而排除了非金属硫氰化物例如硫氰化铵。
发明概述
已知制备方法的主要缺点是其成本高、过程危险,经常包括仅具有中等最终产物产率的若干反应程序(sequence),而碳:氮比例远离期望的3∶4。此外,副产品难以除去,并且清洗过程低效且耗时。例如当在制备氮化碳材料中使用碱金属硫氰化物时,形成容易保留在氮化碳产物本身中的各种碱金属盐。这样的杂质通常在产物应用中具有负面作用。
目前适合的起始材料的范围非常有限。
现在本发明解决了上述问题。
本发明涉及以简单且经济可行的方式通过热解非金属硫氰化物提供碳和氮摩尔比约3∶4的氮化碳材料来制备氮化碳材料的方法。该方法制备的石墨状氮化碳材料进而能够用于制备不同化学和结构形式的氮化碳材料,包括但并不限于α、β、立方、准立方、石墨状和无定形形式的C3N4
氮化碳材料具有突出的性能,并能够用于例如耐磨损和耐腐蚀的涂层、电子设备、光学涂层及各种复合材料的应用中以改善例如源自金属、玻璃和聚合物的产物的性能。氮化碳材料能够用作添加剂,例如作为金属、金属合金、不同类型聚合物产物以及玻璃产物中的复合物。能够将其用于制造电子设备和半导体、制造家用机械和医疗器械、钻孔、研磨和抛光产品、制备蓝色发光体(luminophore)、喷涂计算机硬盘、制造用于金属加工的重型工具、用作太阳能电池材料等。此外,石墨状氮化碳能够用作燃料电池材料及苛刻条件下的润滑剂。由于氮化碳是热学和化学上很稳定的材料,因此如果能以大批量获得,则其能够用于许多新的应用,例如涂覆化学处理装置、蠕变增强以及改善用于不同目的的不同金属等级的磨损和/或硬度性能等。一个代表性的问题是例如当以数百万年的期限保存核废料时铜材料的蠕变。
意想不到的是,我们发现也能够有效使用非金属硫氰化物例如硫氰化铵,并通过简单热解所述硫氰化物以经济有效的方式制备氮化碳。甚至在与碱金属硫氰化物热解比较时,产率增加,且制备成本进一步降低。因为在反应中不形成痕量的碱金属或金属,现在无需用以除去所述副产物的冗长清洗程序即可获得产物。如果存在的话,这样的副产物在产物应用中将具有严重的负面作用。
与多数已知制备方法比较,通过使用相对便宜的原料并提高制成的最终产物的产率,制备成本能降低到1/10至1/20。提供了大量制备颗粒形式氮化碳材料的实际制造方法。
如同使用碱金属硫氰化物,根据方程式4MeCNS→2Me2S+C3N4+CS2使用有机金属硫氰化物导致生成具有化学计量比组成的氮化碳C3N4以及不含有毒HCN的杂质,而温度梯度确保炉内装料的完全分解和CS2的冷凝。在反应过程中共同生成的有机硫化物易溶于水,这确保了制备纯的石墨状氮化碳材料。据发现,通过改变炉内装料的升温速率和均热或退火时间,能够获得各种组成的石墨状氮化碳材料。由于C3N4聚合结构的总尺寸增加,氢含量降低,且C∶N比例接近3∶4。
在由至少两个连接并密封的容器构成的反应器腔室中有利地进行热解。这样的特征允许在封闭容积中进行反应过程,这使得整个过程环境友好,确保高纯度和快速除去任何副产品并降低C3N4制备成本。该方法容易扩大规模(up-scaleable),并因为相对无害的化学制剂从而能够在制造装置时使用几种不同的反应器材料。这进而降低了总的制备成本。
附图简述
附图表示制备氮化碳材料的几种可能的反应器容器配置。
图1a表示制备氮化碳材料的反应器容器配置的一个可能实施方案。
图1b表示制备氮化碳材料的反应器容器配置的一个可能实施方案。
发明详细描述
本发明针对于制备氮化碳材料的方法,其中将有机硫氰化物热解以产生氮化碳材料。热解在此意指由加热引起的化合物的分解或转变。硫氰化物在此意指硫氰酸盐/异硫氰酸盐(SCN;CNS)化合物。此处氮化碳材料意指不同的CNx、C2N2,并特别是C3N4材料。此处有机意指所有非金属化合物,以及分子骨架中不含碳的化合物。此处金属意指所有种类的金属,包括碱金属。
根据本发明的方法能够在制备氮化碳材料中使用所有种类的非金属硫氰化物。特别优选的非金属硫氰化物是硫氰化铵,NH4SCN。能够单独或作为混合物使用硫氰化物。为了提高生产率和/或精细调整产物结构组成,可使用适合的催化剂催化反应。非限制性的例子是源自锌的催化剂,例如氯化锌。
优选在基本上无氧和/或氢的条件下进行热解。最优选地,在完全无氧和/或氢的条件下进行热解。氧的存在显著降低产物产率,而氢增加了爆炸的风险。
在本发明一个优选实施方案中,能够通过在抽真空的条件下进行热解实现这样的条件。当在抽真空条件下进行热解时,压力可以为10-1-10-9mmHg,优选10-3-10-7mmHg,且最优选10-4-10-6mmHg,能够使用惰性气体流除去气态杂质。
在本发明的另一优选实施方案中,在高纯度惰性气体气氛中进行一种或多种有机硫氰化物的热解。优选地,这样的惰性气氛包括氮气、氦气或氩气。
在本发明的一个优选实施方案中,以T最高≤850℃、T最低≤环境温度的梯度进行热解。在本发明的第二优选优选实施方案中,以T最高≤650℃、T最低≤环境温度的梯度进行热解。在本发明的另一优选实施方案中,使用T最高≤500℃、T最低≤环境温度的梯度进行热解。在一些情形中,升高温度超过500℃是不适合的,因为可能导致C3N4部分分解,从而降低产物产率。不同起始材料的作用不同,且不同温度能够典型地生成不同结构的氮化碳材料。通过使用不同温度调节产物化合物的聚合物尺寸,以及由此的准确氢含量和C∶N比例。因此,本发明的范围不局限于所述温度梯度。
在本发明的一个优选实施方案中,基本上在整个腔室中产生温度梯度。腔室在此意指在其中进行热解的反应器。在本发明优选的实施方案中,形成的CS2和挥发性杂质在反应器中基本没有氮化碳材料的部分冷凝。优选地,使用水能够从最终产物C3N4洗去形成的有机硫化物化合物例如硫化铵(当使用硫氰化铵时)。并不限制反应器的形状或材料,且反应器可以是不同金属等级、玻璃、陶瓷等。在图1a和图1b中描述了两种可能的实验室规模的石英管反应器。
本发明以所需分子比例实现了包含石墨状结构的氮化碳材料的制备。优选地,这样的氮化碳材料具有约3∶4的碳和氮的原子比。
以颗粒形式制备氮化碳材料,但也能够制成粉末、薄片、膜、纤维、泡沫、箔、微箔、细粒、绝缘线、蜂巢体、分散体、叠层、团块、网状物、金属化膜、无纺织物、单纤丝、棒、薄板、单晶、球体、管、丝线及例如溅射/脉冲等离子弧-放电/激光烧蚀靶。在制备中能够使用常规的粉末处理方法例如混合、压片和烧结技术。
实施例
下面描述本发明的用于制备氮化碳材料的方法,但不将本发明限制为此处给出的实施例。使用X射线粉末衍射、红外吸收和在载气(氦气)流中进行还原熔融并随后色谱分离来鉴别合成的氮化碳材料。使用Perkin Elmer Series II CHNS/O分析仪2400进行元素分析。
实施例1
为了获得氮化碳C3N4,将10.00g硫氰化铵加入由石英玻璃制成且形状为两个连接容器的反应腔室中。将腔室抽真空到10-4-10-5mmHg的压力并密封。将腔室置于烘箱(Carbolite)中,并加热到T=600℃,贯穿容器保持温度梯度T最高=600℃、T最低=环境温度。进行以下反应12小时:
4NH4CNS→2(NH4)2S+C3N4+CS2
由于温度梯度的存在,形成的CS2和挥发性杂质在容器之一中冷凝。移除该容器。硫化铵(NH4)2S在水中易于溶解,从而容易通过简单的清洗除去。结果,获得了淡褐色粉末形式的石墨状氮化碳C3N4,其产率为20%。根据X射线分析,该氮化碳材料具有氮化碳键,且结构类似于现有技术报道的结构。元素分析揭示了如下产物组成:C3N4.5H0.9。不存在痕量硫或任何其它元素。
实施例2
为了获得氮化碳C3N4,将10.00g硫氰化铵加入由石英玻璃制成并且形状为两个连接容器的反应腔室中。将腔室抽真空到10-3-10-4mmHg的压力并密封。将腔室置于烘箱(Carbolite)中,并加热到T=650℃,贯穿容器保持温度梯度T最高=650℃、T最低=环境温度。进行以下反应12小时:
4NH4CNS→2(NH4)2S+C3N4+CS2
由于存在温度梯度,形成的CS2和挥发性杂质在容器之一中冷凝。移除该容器。硫化铵(NH4)2S在水中易于溶解,从而容易通过简单的清洗除去。结果,获得了淡褐色粉末形式的石墨状氮化碳C3N4,其产率为17%。根据X射线分析,该氮化碳材料具有氮化碳键,且结构类似于现有技术报道的结构。元素分析揭示了如下产物组成:C3N4.33H0.87。不存在痕量硫或任何其它元素。
实施例3
为了获得氮化碳C3N4,将10.00g硫氰化铵加入由石英玻璃制成且形状为两个连接容器的反应腔室中。将腔室抽真空到10-4-10-5mmHg的压力并密封。将腔室置于烘箱(Carbolite)中,并加热到T=500℃,贯穿容器保持温度梯度T最高=500℃、T最低=环境温度。进行以下反应12小时:
4NH4CNS→2(NH4)2S+C3N4+CS2
由于存在温度梯度,形成的CS2和挥发性杂质在容器之一中冷凝。移除该容器。硫化铵(NH4)2S在水中易于溶解,从而容易通过简单的清洗除去。结果,获得了淡褐色粉末形式的石墨状氮化碳C3N4,其产率为14%。根据X射线分析,氮化碳材料具有氮化碳键,且结构类似于现有技术报道的结构。元素分析揭示了如下产物组成:C3N4.45H0.9。不存在痕量硫或任何其它元素。

Claims (11)

1.制备氮化碳材料的方法,其特征在于热解硫氰化铵以产生氮化碳材料,其中在压力为10-1-10-9mmHg的真空中进行热解,并且其中以T最高≤850℃、T最低≤环境温度的梯度进行热解。
2.根据权利要求1的方法,其特征在于真空压力为10-3-10-7mmHg的压力。
3.根据权利要求1的方法,其特征在于真空压力为10-4-10-6mmHg的压力。
4.根据权利要求1的方法,其特征在于在惰性气体气氛中进行热解。
5.根据权利要求4的方法,其特征在于惰性气体气氛包含氮气。
6.根据权利要求4的方法,其特征在于惰性气体气氛包含氩气。
7.根据权利要求1的方法,其特征在于以T最高≤650℃、T最低≤环境温度的梯度进行热解。
8.根据权利要求1的方法,其特征在于以T最高≤500℃、T最低≤环境温度的梯度进行热解。
9.根据权利要求1的方法,其特征在于氮化碳材料包含石墨状结构。
10.根据权利要求1的方法,其特征在于以这样的方式制备氮化碳材料:其中产生的氮化碳材料不含有任何痕量的硫。
11.根据权利要求1的方法,其特征在于以这样的方式制备氮化碳材料:其中产生的氮化碳材料除碳、氮和氢外不含有任何其它元素。
CN200780026619.8A 2006-07-13 2007-07-13 氮化碳的制备方法 Expired - Fee Related CN101489923B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20060682 2006-07-13
FI20060682A FI121924B (fi) 2006-07-13 2006-07-13 Menetelmä karbonitridin valmistamiseksi
PCT/FI2007/000192 WO2008006935A2 (en) 2006-07-13 2007-07-13 Carbon nitride preparation method

Publications (2)

Publication Number Publication Date
CN101489923A CN101489923A (zh) 2009-07-22
CN101489923B true CN101489923B (zh) 2014-07-16

Family

ID=36758289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780026619.8A Expired - Fee Related CN101489923B (zh) 2006-07-13 2007-07-13 氮化碳的制备方法

Country Status (10)

Country Link
US (1) US7807124B2 (zh)
EP (1) EP2049438B1 (zh)
JP (1) JP5027224B2 (zh)
KR (1) KR101381952B1 (zh)
CN (1) CN101489923B (zh)
CA (1) CA2657482C (zh)
FI (1) FI121924B (zh)
IL (1) IL196153A (zh)
RU (1) RU2425799C2 (zh)
WO (1) WO2008006935A2 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1993774A2 (en) * 2006-02-23 2008-11-26 Picodeon Ltd OY Coating on a medical substrate and a coated medical product
FI121924B (fi) 2006-07-13 2011-06-15 Carbodeon Ltd Oy Menetelmä karbonitridin valmistamiseksi
US9095837B2 (en) 2008-06-18 2015-08-04 Broad of Trustees of the University of Arkansas Renewable resource-based metal oxide-containing materials and applications of the same
US8753603B2 (en) * 2008-06-18 2014-06-17 Board Of Trustees Of The University Of Arkansas Microwave-assisted synthesis of carbon nanotubes from tannin, lignin, and derivatives
US8574337B2 (en) 2008-06-18 2013-11-05 Board Of Trustees Of The University Of Arkansas Renewable resource-based metal-containing materials and applications of the same
US9643165B2 (en) 2008-06-18 2017-05-09 Board Of Trustees Of The University Of Arkansas Doped-carbon composites, synthesizing methods and applications of the same
DE102009005095A1 (de) * 2009-01-19 2010-07-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur Herstellung von Carbonitriden über Polykondensations- bzw. Sol-Gel-Verfahren unter Verwendung Wasserstoff-freier Isocyanate
CN102479950B (zh) * 2010-11-23 2015-06-24 中国科学院物理研究所 铌酸钛复合材料、其制备方法及含该复合材料的负极和电池
US20120190216A1 (en) * 2011-01-20 2012-07-26 International Business Machines Corporation Annealing techniques for high performance complementary metal oxide semiconductor (cmos) device fabrication
CN102350833B (zh) * 2011-07-19 2014-04-16 上海耀华皮尔金顿玻璃股份有限公司 一种节能可钢化三银低辐射镀膜玻璃
CN102268655A (zh) * 2011-07-28 2011-12-07 河南大学 一种纳米晶碳氮薄膜的制备方法及装置
CN103272639B (zh) * 2013-06-09 2015-02-04 福州大学 一种共聚合改性的石墨相氮化碳纳米片可见光催化剂
US20170240422A1 (en) * 2014-08-21 2017-08-24 The University Of Liverpool Two-dimensional carbon nitride material and method of preparation
CN105536844B (zh) * 2015-12-15 2018-07-17 南京工业大学 一种无定型碳复合氮化碳光催化材料及其制备方法
CN105925954B (zh) * 2016-05-27 2020-04-14 清华大学 一种半导体氮化碳薄膜的制备方法
RU2663165C1 (ru) * 2017-06-16 2018-08-01 федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" Способ получения углеродных материалов с высоким содержанием азота
CN107352517B (zh) * 2017-07-21 2020-02-18 桂林理工大学 一种具有非晶态表面的石墨相氮化碳纳米花束的制备方法
RU2690810C1 (ru) * 2018-10-05 2019-06-05 Федеральное государственное бюджетное учреждение науки Научно-технологический центр уникального приборостроения Российской академии наук (НТЦ УП РАН) Способ получения нитрида углерода, обладающего аномально высоким уровнем флуоресценции под действием лазерного излучения видимого диапазона
CN109534307B (zh) * 2019-01-16 2022-03-29 济南大学 一种g-C3N4晶相/非晶相同质结及其制备方法和应用
CN110183773B (zh) * 2019-07-03 2021-06-25 西北师范大学 壳聚糖季铵盐有机插层蒙脱土复合材料的制备方法
RU2725796C1 (ru) * 2020-01-30 2020-07-06 Федеральное государственное бюджетное учреждение науки Научно-технологический центр уникального приборостроения Российской академии наук (НТЦ УП РАН) Способ получения композитного материала, обладающего высоким уровнем флуоресценции под действием электромагнитного излучения видимого диапазона
CN113976157A (zh) * 2021-10-19 2022-01-28 新乡医学院 一种三维多孔原位碳掺杂g-C3N4催化剂的制备方法
CN118684201A (zh) * 2024-08-23 2024-09-24 齐鲁理工学院 一种氮化碳纳米微球、其制备方法、应用及复合材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832930A (en) * 1988-05-02 1989-05-23 Tekatch William M Decomposition of ammonium thiocyanate
US5981094A (en) * 1996-01-04 1999-11-09 The Carnegie Institution Of Washington Low compressibility carbon nitrides
US6428762B1 (en) * 1999-07-27 2002-08-06 William Marsh Rice University Powder synthesis and characterization of amorphous carbon nitride, a-C3N4

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU282303A1 (ru) * 1969-03-18 1985-09-07 Со Ан Ссср Института Неорганической Химии Со Ан Ссср Способ получени полуторных сульфидов и оксисульфидов редкоземельных элементов
SU339143A1 (ru) * 1970-02-18 1991-10-30 Институт Неорганической Химии Со Ан Ссср Способ получени оксисульфидов редкоземельных элементов и иттри
JPS5133123B2 (zh) * 1971-12-30 1976-09-17
US3956460A (en) * 1973-11-05 1976-05-11 Ralph M. Parsons Company Process for the treatment of gas streams containing hydrogen cyanide
US4205103A (en) * 1975-05-14 1980-05-27 The Goodyear Tire & Rubber Company Process using same stable foam latex with built-in self gel mechanism and coating
SU783263A1 (ru) * 1979-02-20 1980-11-30 Ленинградский научно-исследовательский институт протезирования Состав материала форм дл изготовлени моделей
JPS5722116A (en) * 1980-07-16 1982-02-05 Sumikin Coke Co Ltd Preparation of purified ammonium sulfate
JPS59169914A (ja) * 1983-03-11 1984-09-26 Sumikin Coke Co Ltd スルフアミン酸アンモニウムの製造方法
US5215728A (en) * 1990-12-20 1993-06-01 Ari Technologies Inc. Method and apparatus for removal of h2s from a process gas, including thiosulfate and/or cyanide salt decomposition
US5606056A (en) 1994-05-24 1997-02-25 Arizona Board Of Regents Carbon nitride and its synthesis
EP1276516B1 (en) * 2000-04-26 2006-02-08 Dow Global Technologies Inc. Durable, absorbent latex foam composition having high vertical wicking
US6824599B2 (en) 2001-10-03 2004-11-30 The University Of Alabama Dissolution and processing of cellulose using ionic liquids
JP2004284910A (ja) * 2003-03-25 2004-10-14 Hidetoshi Saito 窒化炭素物の製造方法
JP2004323316A (ja) * 2003-04-25 2004-11-18 Hidetoshi Saito 窒化炭素物及び該窒化炭素物を用いた水素吸蔵材
RU2298005C2 (ru) * 2003-06-04 2007-04-27 Асахи Касеи Кемикалз Корпорейшн Способ получения алкиленкарбоната
JP4941953B2 (ja) * 2004-10-29 2012-05-30 独立行政法人物質・材料研究機構 窒化炭素多孔体およびその製造方法
RU2288170C2 (ru) * 2005-02-16 2006-11-27 Карбодеон Лтд Ой Способ получения нитрида углерода
FI121924B (fi) 2006-07-13 2011-06-15 Carbodeon Ltd Oy Menetelmä karbonitridin valmistamiseksi

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832930A (en) * 1988-05-02 1989-05-23 Tekatch William M Decomposition of ammonium thiocyanate
US5981094A (en) * 1996-01-04 1999-11-09 The Carnegie Institution Of Washington Low compressibility carbon nitrides
US6428762B1 (en) * 1999-07-27 2002-08-06 William Marsh Rice University Powder synthesis and characterization of amorphous carbon nitride, a-C3N4

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. Z. Zhuk et al..Shock-wave loading of amorphous carbon nitride in recovery ampoules.《High Temperature》.2001,第39卷(第1期),摘要. *

Also Published As

Publication number Publication date
IL196153A0 (en) 2009-09-22
US7807124B2 (en) 2010-10-05
FI20060682A0 (fi) 2006-07-13
JP5027224B2 (ja) 2012-09-19
WO2008006935A3 (en) 2008-04-17
FI121924B (fi) 2011-06-15
US20100015030A1 (en) 2010-01-21
JP2009542574A (ja) 2009-12-03
KR101381952B1 (ko) 2014-04-07
CA2657482C (en) 2014-04-08
RU2009104020A (ru) 2010-08-20
WO2008006935A2 (en) 2008-01-17
CN101489923A (zh) 2009-07-22
FI20060682A (fi) 2008-01-14
RU2425799C2 (ru) 2011-08-10
CA2657482A1 (en) 2008-01-17
EP2049438B1 (en) 2014-09-17
KR20090038867A (ko) 2009-04-21
IL196153A (en) 2012-12-31
EP2049438A2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
CN101489923B (zh) 氮化碳的制备方法
Kouvetakis et al. Novel synthetic routes to carbon-nitrogen thin films
Qiu et al. Chemical synthesis of turbostratic carbon nitride, containing C–N crystallites, at atmospheric pressure
CN108128761B (zh) 一种黑磷的连续化制备方法
CN101289181A (zh) 掺杂石墨烯及其制备方法
CN112573505A (zh) 一种制备MXene/碳纳米管复合材料的方法
US5606056A (en) Carbon nitride and its synthesis
CN107352517B (zh) 一种具有非晶态表面的石墨相氮化碳纳米花束的制备方法
CN107161960A (zh) 一种高压气相制备氮化硼球形粉体的方法与装置
CN1193929C (zh) 氮化硅和碳化硅一维纳米结构及其制备方法
CN107746057B (zh) 一种超细碳化钼的制备方法
CN107640750B (zh) 氮化硼纳米片粉体及其低成本批量制备方法
CN1113990C (zh) 高弹性螺旋状碳纤维及其制备方法
KR101051400B1 (ko) 고결정성과 높은 수소 저장능을 가지는 질화탄소, 그 제조 방법 및 이를 이용한 수소 저장재
Pan et al. Solubility and crystallization of BaHPO4 crystals
Khabashesku et al. Carbonitride nanomaterials, thin films, and solids
CN109911916B (zh) 一种化合物[Cr7S8(SCN)4(NH3)14](SH)及其制备方法
CN110484998B (zh) 一种超长氧化硅包覆氮化硅纳米线的制备方法
CN110976850B (zh) 采用羰基气相沉积制备镍包覆粉末的方法
Arif et al. Preparation of powdered carbon nitride C 3 N 4
CN115448266A (zh) 一种三氧化二铁结合的α和β复合相氮化碳材料的制备方法
CN107338508B (zh) 一种自催化化学气相沉积合成超长实心碳纤维的方法
CN118062881A (zh) 一种流态化制备Ti2CCl2 MXene的系统及方法
CN1397487A (zh) 等离子体化学气相法批量生产氮化硅粉体转相工艺及系统
JPH06219730A (ja) ホウ素、炭素、窒素を主成分とする固体材料の製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140716

Termination date: 20160713