CN101467347B - 失真补偿装置、放大装置、发射机和失真补偿方法 - Google Patents

失真补偿装置、放大装置、发射机和失真补偿方法 Download PDF

Info

Publication number
CN101467347B
CN101467347B CN2007800211320A CN200780021132A CN101467347B CN 101467347 B CN101467347 B CN 101467347B CN 2007800211320 A CN2007800211320 A CN 2007800211320A CN 200780021132 A CN200780021132 A CN 200780021132A CN 101467347 B CN101467347 B CN 101467347B
Authority
CN
China
Prior art keywords
parameter
amplifier
signal
pilot signal
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007800211320A
Other languages
English (en)
Other versions
CN101467347A (zh
Inventor
山冈敦志
山口惠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN101467347A publication Critical patent/CN101467347A/zh
Application granted granted Critical
Publication of CN101467347B publication Critical patent/CN101467347B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3282Acting on the phase and the amplitude of the input signal
    • H03F1/3288Acting on the phase and the amplitude of the input signal to compensate phase shift as a function of the amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3294Acting on the real and imaginary components of the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/336A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

该失真补偿装置是用于补偿放大器的非线性的失真补偿装置,并包括:存储器,存储用于校正放大器的输入信号的补偿参数;补偿器,基于该补偿参数来校正放大器的输入信号;和更新控制器,根据放大器的工作状态来更新该补偿参数。

Description

失真补偿装置、放大装置、发射机和失真补偿方法
技术领域
本发明涉及失真补偿装置(例如用于补偿放大器的非线性(nonlinearity))、其非线性得以补偿的放大装置和发射机、以及失真补偿方法。
背景技术
随着无线通信的速度和数据量增加,对放大器特别地是功率放大器的精确线性要求越来越高,但在功率放大器中,输入功率与线性和效率是平衡的关系。也就是说,当输入信号较小,线性和效率较高,而当输入信号较大,线性和效率较低。因此,已提出各种技术用以补偿功率放大器的非线性以便即使在输入信号较大时也能获得较高线性和效率。
对于补偿功率放大器的非线性的技术而言,已知的技术有例如负反馈方法、前馈方法、模拟预失真方法(其中非线性在模拟信号阶段(stage)被补偿)。近年来,数字预失真方法已引起注意,该方法通过使用数字信号处理来估计功率放大器的特性并预先对数字信号进行逆失真(例如,参考JP-A2001-36353(KOKAI))。
在JP-A2001-36353(KOKAI)中所公开的一种预失真方法组合了幅度特性补偿和相位特性补偿。更具体地,关于幅度特性补偿,滚降滤波器(roll-offfilter)的输出基带信号I、Q的幅度Vi、Vq首先被输入到多项式运算单元,该单元然后执行多项式运算以补偿幅幅特性(下文中,它被称为“幅度特性”,并且类似地“幅相特性”被称为“相位特性”)。然后,关于相位特性补偿,功率计算器通过使用作为幅度特性补偿的结果而得到的信号g(Vi)、g(Vq)来计算功率(平方和),并且基于计算结果,从用于存储功率放大器的相位特性的逆特性的表中读出补偿值,并且将该补偿值与作为幅度特性补偿的结果而得到的信号作乘法。采用小容量表存储器和小型算术逻辑,该过程被执行,因此实现功率放大器的非线性补偿。
功率放大器的工作状态通常取决于周围环境和要放大信号的特性而变化,因此根据这样的变化,用于补偿幅度特性和相位特性的补偿值或补偿系数需要更新以确保功率放大器的线性。然而,由于补偿值或补偿系数的更新需要消耗功率,因此这里需要一种既实现功率放大器的线性又实现降低的功率消耗的技术。
专利引用1:专利2001-036353
发明内容
技术问题
如上所述,传统的失真补偿装置、放大装置、发射机和失真补偿方法具有难以实现既确保线性又减少功率消耗的问题。本发明可以解决这样的问题,并且本发明的目的是提供一种失真补偿装置、放大装置、发射机和失真补偿方法,其既能确保放大器的线性又能减少功率消耗。
技术方案
为了实现上述目的,本发明第一方面的失真补偿装置是用于补偿放大器的非线性的失真补偿装置,并且包括:存储器,用于存储用来补偿放大器的输入信号的补偿参数;补偿器,用于基于补偿参数来校正放大器的输入信号;以及更新控制器,用于根据放大器的工作状态来更新补偿参数。
本发明第二方面的放大装置包括:放大器;存储器,用于存储用来校正放大器的输入信号以补偿放大器的非线性的补偿参数;补偿器,用于基于补偿参数来校正放大器的输入信号;以及更新控制器,用于根据放大器的工作状态来更新补偿参数。
本发明第三方面的发射机包括:本发明第二方面的放大装置;以及调制器,用于调制补偿器校正后的输入信号以将所调制的输入信号输入到放大器。
本发明第四方面的失真补偿方法是一种用于补偿放大器的非线性的失真补偿方法,并且包括:在存储器中存储用于校正放大器的输入信号的补偿参数;基于补偿参数来校正放大器的输入信号;以及根据放大器的工作状态来更新补偿参数。
有益效果
根据本发明,既能确保放大器的线性又能减少功率消耗。
附图说明
图1是示出根据本发明的一个实施例的发射机的构造的框图。
图2是示出该实施例的失真补偿器的概要的框图。
图3是更具体地示出该实施例的失真补偿器的构造的框图。
图4是示出该实施例的失真补偿器的操作的流程图。
图5是示出该实施例的更新控制器的操作的流程图。
图6是示出该实施例的更新控制器的操作的流程图。
图7是示出该实施例的更新控制器的操作的流程图。
图8是示出该实施例的更新控制器的另外一个示例的框图。
图9是示出该实施例的监控信号发生器的具体示例的框图。
图10是示出该实施例的监控信号发生器的具体示例的框图。
图11是示出该实施例的监控信号发生器的具体示例的框图。
图12是示出该实施例的监控信号发生器的具体示例的框图。
图13是示出该实施例的监控信号发生器的具体示例的框图。
图14是示出该实施例的监控信号发生器的具体示例的框图。
图15是示出该实施例的监控信号发生器的具体示例的框图。
参考标记注解
1    发射机
10   数据发生器
20   失真补偿器
21   幅度特性补偿器
22   相位特性补偿器
23   幅度特性计算器
24   相位特性计算器
25   更新控制器
30   D/A转换器
40   低通滤波器
50   正交调制器
60   功率放大器
70   天线
80-87   监控信号发生器
具体实施方式
在根据本发明实施例的失真补偿装置、放大装置、发射机和失真补偿方法中,通过采用放大器的非线性特性的变化来更新幅度特性补偿数据和相位特性补偿数据,该变化是随放大器的变化和其周围环境而出现的。
下文中,将参考附图详细说明本发明的实施例。图1是示出根据本发明实施例的发射机的框图,该发射机包括用于补偿功率放大器的非线性的失真补偿器。如图1所示,该实施例的发射机1包括数据发生器10、失真补偿器20、D/A转换器(DAC)30、低通滤波器(LPF)40、正交调制器50、功率放大器60、天线70和监控信号发生器80。
数据发生器10产生要由发射机1发送的传输信号。取决于所传输的信息的类型,各种类型的装置可以用作数据发生器10。例如,如果所传输的信息是声音,则数据发生器10由麦克风、A/D转换器等组成。如果所传输的信息是数字数据,则数据发生器10由计算机终端等组成。可替代地,从发射机1的外部发送的信息可以作为数字数据输入。在该实施例中,数据发生器10输出作为传输信号的两个信号,也就是,数字基带信号I和Q。
失真补偿器20是用于补偿在功率放大器60中出现的非线性失真的信号处理器,并且是所谓的预失真发生器(pre-distorter)。失真补偿器20具有以预定的方式补偿所输入的传输信号的幅度特性和相位特性的功能。而且,基于经监控信号发生器80从功率放大器60所获得的监控信号,失真补偿器20能更新幅度特性的补偿数据(下文中,有时也被称为“补偿值”或“补偿系数”)和相位特性的补偿数据。失真补偿器20处理从数据发生器10接收的传输信号以使传输信号具有功率放大器60非线性区域的逆特性,并且将结果得到的信号发送到D/A转换器30。
D/A转换器30将从失真补偿器20输出的数字信号转换成模拟信号。D/A转换器30将经模拟转换的传输信号发送到低通滤波器40。低通滤波器40旨在消除由D/A转换器30中的转换处理所产生的噪声和折叠噪声(folding noise),其对所接收的传输信号进行滤波以发送结果得到的信号到正交调制器50。
正交调制器50对所输入的基带信号I”和Q”进行正交调制,以向功率放大器60输出结果得到的信号作为传输信号。功率放大器60将作为正交调制结果而得到的传输信号放大到预定的输出功率。天线70发射作为无线电波的由功率放大器60放大的传输信号。
监控信号发生器80是用于监控功率放大器60的状态的放大器监控器。根据功率放大器60的状态,监控信号发生器80产生用于控制补偿数据(其被失真补偿器20用来进行失真补偿处理)的更新的监控信号。作为监控信号,可用的是与功率放大器中的特性函数上的变化相关的参数,例如,从功率放大器60输出的传输信号的功率、功率放大器60的邻近信道泄露比、在诸如D/A转换器30和正交调制器50这样的模拟信号处理系统中出现的增益、在模拟信号处理系统中出现的相位差、功率放大器60的特性系数、功率放大器60的温度、传输信号的频率等。由监控信号发生器80产生的监控信号被传送到失真补偿器20。
在该发射机1中,由数据发生器10产生的数字基带信号I、Q被输入到失真补偿器20,并且失真补偿器20对基带信号I、Q应用失真补偿处理。D/A转换器30将经失真补偿的基带信号转换成模拟基带信号,将其输入到低通滤波器40。低通滤波器40从所输入的信号中截除高频带分量(噪声分量),将结果得到的信号发送到正交调制器50。正交调制器50对所接收的信号进行正交调制,将结果得到的信号发送到功率放大器60。此时,传输信号被转换成预定的频率。功率放大器60将传输信号放大到预定的功率,将所放大的传输信号传送到天线70。
这里,监控信号发生器80监控功率放大器60的状态,以产生指示功率放大器60的状态的监控信号,并将所产生的监控信号发送到失真补偿器20。根据该监控信号,失真补偿器20更新在失真补偿器20中使用的补偿数据。
根据该实施例的发射机,由于产生了指示功率放大器的工作状态的监控信号并且基于该监控信号来更新失真补偿器的补偿数据,因此可以既确保功率放大器的线性又减少功率消耗。
接下来,参考图2和3说明了该实施例失真补偿器20的构造。如图2所示,该实施例的失真补偿器20包括幅度特性补偿器21、相位特性补偿器22、幅度特性计算器23、相位特性计算器24和更新控制器25。
幅度特性补偿器21是用于补偿从数据发生器10输入的基带信号I、Q的幅度特性的信号处理器。幅度特性补偿器21利用功率放大器60的非线性特性中幅度特性的逆特性来校正所输入的基带信号,以确保功率放大器60的线性。进一步,相位特性补偿器22是用于补偿基带信号I’、Q’(作为幅度特性补偿器21的校正结果而得到的)的相位特性的信号处理器。相位特性补偿器22利用功率放大器60的非线性特性中相位特性的逆特性来校正基带信号I’、Q’,以确保功率放大器60的线性。
幅度特性计算器23是用于进行预定算术处理以更新在幅度特性补偿器21中使用的补偿数据的算术处理器。此外,相位特性计算器24是用于进行预定算术处理以更新相位特性补偿器22中使用的补偿数据的算术处理器。基于从监控信号发生器80传送的监控信号,更新控制器25控制对内容的更新,以确定对于更新在幅度特性补偿器21和相位特性补偿器22中分别使用的各补偿数据的定时。更新控制器25具有确定那些补偿数据适合作为要更新的内容的功能。例如,更新控制器25确定是否应该仅更新幅度特性的补偿数据、应该仅更新相位特性的补偿数据、应该更新幅度特性和相位特性二者的补偿数据等。更新控制器25还具有向幅度特性计算器23和/或相位特性计算器24指示应在何时更新每个补偿数据的功能。
当从监控信号发生器80接收到监控信号时,基于该监控信号,更新控制器25确定是否应该更新幅度特性和/或相位特性的补偿数据、以及更新的定时是何时,并且如果更新是必要的,则更新控制器25指示幅度特性计算器23和相位特性计算器24来计算补偿数据。接收到该指示的幅度特性计算器23和相位特性计算器24更新在幅度特性补偿器21和相位特性补偿器22中使用的补偿数据。
幅度特性补偿器21补偿传输信号的幅度特性,将结果得到的传输信号发送到相位特性补偿器22;相位特性补偿器22补偿传输信号(其幅度特性已被补偿)的相位特性。在更新了在幅度特性补偿器21和相位特性补偿器22中使用的补偿数据之后,基于所更新的补偿数据,幅度特性补偿器21和相位特性补偿器22对传输信号进行补偿。
以上述方式,根据该实施例的失真补偿装置,由于基于监控信号在预定的定时上补偿了幅度特性和/或相位特性,因此能够在独立的定时上补偿每个特性,这能实现有效的失真补偿处理和降低的功率消耗。
接下来,将详细说明根据该实施例的幅度特性补偿器21、相位特性补偿器22、幅度特性计算器23、相位特性计算器24和更新控制器25的构造。如图3所示,幅度特性补偿器21包括实数乘法211、幅度计算器212和幅度逆特性表213。相位特性补偿器22包括复数乘法器221、幅度计算器222和相位逆特性表223。更新控制器25包括减法器251、存储器252、模式表253、确定单元254和序列器(sequencer)255。幅度特性计算器23作为用于计算幅度特性的补偿数据的幅度特性计算器231而起作用,并且相位特性计算器24作为用于计算相位特性的补偿数据的相位特性计算器241而起作用。
实数乘法器211是用于对作为传输信号的数字基带信号的实数部分进行乘法处理的算术处理器。幅度计算器212是用于计算上述基带信号的幅度值的算术处理器。幅度逆特性表213是一个定义存储器,其用于将基带信号的幅度值与相应的幅度特性的补偿系数彼此相对应地进行存储。
复数乘法器221是用于对作为实数乘法器211的乘法处理结果而得到的基带信号的复数部分进行乘法处理的算术处理器。幅度计算器222与幅度计算器212相对应,是用于计算作为实数乘法器211的乘法处理结果而得到的基带信号的幅度值的算术处理器。相位逆特性表241是一个定义存储器,其用于将作为实数乘法器211的乘法处理结果而得到的基带信号的幅度值与相应的相位特性的补偿系数彼此相对应地进行存储。
减法器251是用于计算从监控信号发生器80传送的监控信号和在上一次更新处理时所接收的监控信号之间差异的算术处理器。也就是说,减法器251用于计算前一个监控信号和后一个监控信号(它们在时间序列上是连续的)之间的差值,由此计算所述监控信号的变化宽度。存储器252是用于存储上一次更新处理时接收的监控信号作为参考信号的存储器。模式表253是用于存储内容(更新模式)的存储器,针对该内容,失真补偿器20的补偿系数被更新。确定单元254将减法器251计算的差值与未示出的临界值做比较,并且当差值超过临界值时,从存储在模式表253中的更新模式中选择合适的模式。基于确定单元254所选择的更新模式,序列器255指示幅度特性计算器231和相位特性计算器241应该更新幅度特性和相位特性的补偿系数、以及应该在哪个定时进行该更新。
当从数据发生器10接收到作为传输信号的基带信号I、Q时,幅度计算器212计算基带信号I、Q的幅度值,将结果发送到实数乘法器211。接下来,通过使用所接收的幅度值,实数乘法器211从幅度逆特性表213中读出幅度特性的补偿系数。实数乘法器211对基带信号I、Q和所读出的补偿系数进行乘法处理,以补偿幅度特性。
在幅度特性被补偿之后,幅度计算器222计算作为幅度特性补偿结果而得到的信号I’、Q’的幅度值,将结果发送到复数乘法器221。接下来,通过使用所接收的幅度值,复数乘法器221从相位逆特性表223中读出相位特性的补偿系数。复数乘法器221然后对作为幅度特性校正结果而得到的基带信号I’、Q’和所读出的补偿系数进行复数乘法处理,由此补偿相位特性。作为幅度特性和相位特性的补偿结果而得到的传输信号(基带信号I”、Q”)被传送到D/A转换器30。
这里,将参考图4详细说明更新控制器25的更新确定操作。当从监控信号发生器80接收到监控信号时,减法器251计算所接收的监控信号和在存储器252中存储的在上一次更新时所接收的监控信号之间的差值“D”(称为“Δ”)(步骤301,这样的步骤在下文中被写为“S301”等)。在计算差值“D”之后,减法器251传送差值结果到确定单元254。
确定单元254将所接收的差值“D”和确定单元254所保留的临界值“s”(称为“σ”)做比较(S302处)。
当差值“D”等于或小于临界值“s”(在S302处“否”)时,确定单元254并不给出用于更新补偿数据的任何指示。减法器251持续进行监控信号的减法处理。
当差值“D”超过临界值“s”(在步S302处“是”)时,确定单元254从模式表253读出与临界值相对应的合适更新模式,发送所读出的更新模式到序列器255。根据所接收的更新模式,序列器255指示幅度特性计算器231和/或相位特性计算器241计算幅度特性和/或相位特性的补偿数据(S303)。例如,当接收到其中幅度特性和相位特性均被补偿的更新模式时,序列器255指示幅度特性计算器231和相位特性计算器241二者在预定的定时来计算各自的补偿数据。
接下来,将参考图5详细说明更新控制器25的补偿数据计算指示操作。当从确定单元254接收到更新模式(S310)时,序列器255确定该更新模式是哪个模式(S311)。
当更新模式是AM模式(也就是说,其中仅更新幅度特性的补偿数据的模式)时(在S311处“是”),序列器255指示幅度特性计算器231计算幅度特性的补偿数据。当接收到要求计算幅度特性的补偿数据的指示时,幅度特性计算器231计算预定的幅度特性补偿数据(S312)。
在计算出补偿数据之后,幅度特性计算器231将补偿数据保存到幅度逆特性表213中(S313)。
当更新模式是PM模式(也就是说,其中仅更新相位特性的补偿数据的模式)时(在S314处“是”),序列器255指示相位特性计算器241计算相位特性的补偿数据。当接收到要求计算相位特性的补偿数据的指示时,相位特性计算器241计算预定的相位特性补偿数据(S315)。
在计算出补偿数据之后,相位特性计算器241将补偿数据保存到相位逆特性表223中(S316)。
当更新模式是AM+PM模式(也就是说,其中幅度特性和相位特性的补偿数据均被更新的模式)时(在S314处“否”),序列器255指示幅度特性计算器231计算幅度特性的补偿数据并且还指示相位特性计算器241计算相位特性的补偿数据。
当接收到要求计算幅度特性的补偿数据的指示时,幅度特性计算器231计算预定的幅度特性补偿数据(S317)。此外,当接收到要求计算相位特性的补偿数据的指示时,相位特性计算器241计算预定的相位特性补偿数据(S318)。
在计算出补偿数据之后,幅度特性计算器231保存补偿数据到幅度逆特性表213中并且相位特性计算器241保存补偿数据到相位逆特性表223中(S319)。
如上述,在该实施例的失真补偿装置、放大装置、发射机和失真补偿方法中,由于基于指示功率放大器的工作状态的监控信号来更新用于失真补偿的补偿数据,因此可以既确保功率放大器的线性和又减少功率消耗。此外,在该实施例的失真补偿装置、放大装置、发射机和失真补偿方法中,由于能够根据监控信号来详细设置用于失真补偿的补偿数据的更新,因此可以对失真补偿进行详细设置。也就是说,根据功率放大器的状态,可以仅更新幅度特性的补偿数据、仅更新相位特性的补偿数据、或一起更新幅度特性和相位特性的补偿数据。
这里,指示功率放大器的工作状态的监控信号能够指示功率放大器的输出功率、模拟阶段增益、模拟阶段相位差、功率放大器的温度、使用的频率、功率放大器的特性系数和邻近信道泄露比。此外,可以通过使用定时器而不是使用监控信号来每隔预定的时间来更新补偿数据。
接下来,将参考图6详细说明更新控制器25的更新确定操作的另外一个示例。在图6的操作示例中,在更新幅度特性的补偿数据后立即再次获得监控信号,并且如果差值仍超过临界值,则更新相位特性的补偿数据。
确定单元254预先设置更新模式为AM模式,在该模式下幅度特性的补偿数据将被更新(S320)。
当从监控信号发生器80接收到监控信号时,减法器251计算所接收的监控信号和在存储器253中存储的上一次更新时所接收的监控信号之间的差值“D”(S321)。在计算出差值“D”之后,减法器251传送差值结果到确定单元254。
确定单元254将所接收的差值“D”和确定单元254保留的临界值“s”做比较(S322)。
当差值“D”等于或小于临界值“s”时(在S322处“否”),确定单元254不给出用于更新补偿数据的任何指令,并且当应该继续所述处理时,确定单元254设置更新模式为初始值,也就是说AM模式(在S330处“否”),并且减法器251继续进行监控信号的减法处理。
当差值“D”超过临界值“s”(在S322处“是”),确定单元254传送当前更新模式到序列器255。序列器255确定所接收的更新模式是哪个模式(S323)。
由于更新模式的初始值是AM模式(在S323处“是”),序列器255指示幅度特性计算器231计算幅度特性的补偿数据。接收到该指示的幅度特性计算器231计算预定的幅度特性补偿数据(S324)。
在计算出补偿数据之后,幅度特性计算器231将补偿数据保存到幅度逆特性表213中(S325)。
在传送更新模式到序列器255之后,确定单元254设置更新模式为PM模式,在该模式下相位特性的补偿数据将被更新(S326)。
当从监控信号发生器80接收到监控信号时,减法器251继续计算所接收的监控信号和在储器253中存储的在上一次更新时所接收的监控信号之间的差值“D”(S321)。在计算出差值“D”之后,减法器251传送差值结果到确定单元254。
确定单元254将所接收的差值“D”和确定单元254保留的临界值“s”做比较(S322)。
当差值“D”等于或小于临界值“s”时(在S322处“否”),确定单元不给出用于更新补偿数据的任何指令,并且当应该继续所述处理时,确定单元254设置更新模式为初始值,也就是说,AM模式(在S330处“否”),并且减法器251继续进行监控信号的减法处理。
当差值“D”仍超过临界值“s”时(在S322处“是”),确定单元传送当前更新模式到序列器255。序列器255确定所接收的更新模式是哪个模式(S323)。
由于在步骤326处更新模式被设置为PM模式(在S323处否),序列器255指示相位特性计算器241计算相位特性的补偿数据。接收到该指示的相位特性计算器241计算预定的相位特性补偿数据(S327)。
在计算出补偿数据之后,相位特性计算器241将补偿数据保存到相位逆特性表223中(S328)。
在发送更新模式到序列器255之后,确定单元254设置更新模式为AM模式,在该模式下幅度特性的补偿数据将被更新(S329)。
如上述,根据该操作示例的更新控制器25,由于是交替地更新幅度特性的补偿数据和相位特性的补偿数据,因此可以实现对补偿数据的较好平衡的更新。
接下来,将参考图7详细说明更新控制器25的更新确定操作的另外一个示例。图7示出了在一种情况下的操作示例,其中在该情况下,同一监控信号用于更新幅度特性的补偿数据和用于更新相位特性的补偿数据,并且与各个特性更新相对应的临界值是不同的。
当从监控发生器80接收到监控信号时,减法器251计算所接收的监控信号和在存储器253中存储的在上一次更新时所接收的监控信号的差值“D1”(S331)。在计算出差值之后,减法器251发送差值结果到确定单元254。
确定单元254将所接收的差值“D1”和确定单元254保留的第一临界值“s1”做比较(S332)。
当差值“D1”超过临界值“s1”时(在S332处“是”),确定单元254向序列器255传送作为更新模式的PM模式,并且序列器255指示相位特性计算器241计算相位特性的补偿数据,作为从模式表253中所选出的PM模式下要更新的补偿数据(S333)。
在计算出补偿数据之后,相位特性计算器241保存补偿数据到相位逆特性表223中(S334)。
当差值“D1”等于或小于临界值“s1”时(在S332处“否”),确定单元254进一步将差值“D1”和确定单元254保留的第二临界值“s2”做比较。
当差值“D1”超过临界值“s2”时(在S336处“是”),确定单元254向序列器255发送作为更新模式的AM模式,并且序列器255指示幅度特性计算器231计算幅度特性的补偿数据,作为从模式表253中所选出的AM模式下要更新的补偿数据(S337)。
在计算出补偿数据之后,幅度特性计算器231保存补偿数据到幅度逆特性表213中(S338)。
当差值“D1”等于或小于临界值“s2”时(在S336处“否”),确定单元254不给出用于更新补偿数据的任何指令,并且减法器251继续进行监控信号的减法处理。
当更新处理完成时(在S335处“是“),处理结束。
在如图7所示的操作示例中,临界值“s1”设置成高于临界值“s2”,并且确定单元254这样工作:采用比执行相位特性的补偿数据的更新(S334)更高的优先级来执行幅度特性的补偿数据的更新(S338)(即使差值“D”很小也是如此)。这是因为,在功率放大器中,幅度特性与相位特性相比对特性劣化具有更强的影响,并且与同时更新幅度特性的补偿数据和相位特性的补偿数据相比,将幅度特性的补偿数据的更新频率设置成高于相位特性的补偿数据的更新频率能够更多地减少功率消耗同时阻止特性劣化。附带地,在图7所示的示例中,较小的临界值“s2”用于幅度特性的补偿数据的更新而较大的临界值“s1”用于相位特性的补偿数据的更新,但这并不是限制性的。例如,较大的临界值“s1”可以与幅度特性和相位特性的补偿数据的更新相对应。也就是说,当差值“D”超过较小的临界值时,只更新幅度特性的补偿数据;而当差值“D”超过较大的临界值时,进一步除了幅度特性的补偿数据之外还更新相位特性的补偿数据。因此,当差值“D”较小时,能够只更新幅度特性的补偿数据,而当差值“D”较大时(当偏离正常状态较大时),能够更新幅度特性和相位特性的所有补偿数据。
这里,参考图8说明了更新控制器25的经修改的示例。除了如图3所示的更新控制器25的结构之外,如图8所示的更新控制器250进一步包括减法器256。共有的元件由相同的参考数字和符号表示,并且忽略了对其的重复说明。
在如图8所示的更新控制器250中,从监控信号发生器80接收到两类监控信号,并且减法器251和256计算各自从监控信号发生器80所接收的监控信号和在上一次更新所接收的监控信号之间的差值“D1”、“D2”,传送差值“D1”、“D2”到确定单元254。然后,基于两个差值结果,确定单元254从模式表253中选择和读出合适的更新模式。也就是说,根据如图8所示的更新控制器250,基于两类监控信号来更新幅度特性和相位特性中的每个的补偿数据,因此针对补偿数据的更新能够作出详细的设置,这进一步减少功率消耗。
附带地,在如图8所示的示例中,基于两类监控信号来更新幅度特性和相位特性中的每个的补偿数据,但这不是限制性的。另外一个可能的结构是,第一监控信号定义为用于幅度特性的补偿数据的更新的监控信号,而第二监控信号定义为用于相位特性的补偿数据的更新的监控信号,并且确定单元254基于各个监控信号的差值结果来独立更新幅度特性的补偿数据和相位特性的补偿数据。
例如,对于幅度特性,确定单元254将所述监控信号1间的差值“D1”和相应的临界值“s1”做比较,并且当“D1”较大时,其确定应该更新幅度特性的补偿数据;而对于相位特性,确定单元254将所述监控信号2间的差值“D2”和临界值“s2”做比较,并且当“D2”较大时,其确定应该更新相位特性的补偿数据。这在监控信号的特性与幅度特性和相位特性中的一个高度相关的情况下是非常有效的。
接下来,参考图9-15详细说明用于产生提供给该实施例的失真补偿器20的监控信号的监控信号发生器的构造。在该实施例的失真补偿器20中,根据功率放大器60的工作状态来更新供用于失真补偿的补偿数据。因此,需要产生影响功率放大器60的非线性失真的参数作为监控信号。如图9-15所示的监控信号发生器80-87各自产生具有数字值的监控信号,所述数字值表示功率放大器的输出功率的增加/减少(与额定输出功率的差)、邻近信道泄露比(与额定值的差)、在模拟阶段相位差的出现、在模拟阶段增益的出现、功率放大器的特性系数的变化、功率放大器的温度增加、所使用频率的变化。
如图9所示的监控信号发生器81包括:正交解调器101,用于获得功率放大器60的部分输出信号,以对所获得的输出信号应用正交解调处理;低通滤波器102,用于截除作为解调结果而得到的基带信号的高频范围;A/D转换器103,用于对被截除高频范围的基带信号进行模数转换;FFT104,用于对经数字转换的基带信号应用快速傅立叶变换,以将时间轴信号转换为频率轴信号;信号带内(intra-signal-band)平均单元105,用于对转变到频率轴上的期望信号频带中的功率进行平均;以及合成器106,用于累加信号频带内的信号的功率。
正交解调器101、低通滤波器102和A/D转换器103各自与正交调制器50、低通滤波器40和D/A转换器30相对应。也就是说,从功率放大器60获得的部分输出信号经过正交解调器101、低通滤波器102和A/D转换器103后被恢复为失真补偿器20的输出信号。所恢复的信号被通过FFT104转变到频率轴上,通过信号带内平均单元105来平均期望信号频带内的功率,并且通过合成器106来综合各个信号的功率分量。采用这样的结构,可以基于功率放大器60的部分输出信号来获得期望信号频带内功率放大器60的输出功率。
在由监控信号发生器81产生监控信号的情况下,更新控制器25的临界值“s1”、“s2”被设置为例如±2(正或负2)[dB]和±1(正或负1)[dB],并且在模式表253中,例如,当±1(正或负1)[dB]被超过时,更新模式被设置为AM模式,并且当±2(正或负2)[dB]被超过时,更新模式被设置为AM+PM模式。通过这样的设置,当输出功率的变化宽度超过±1(正或负1)[dB]时,失真补偿器20更新幅度特性的补偿数据,并且当变化宽度超过±2(正或负2)[dB]时,除了幅度特性的补偿数据之外,失真补偿器20还更新相位特性的补偿数据。也就是说,由于取决于功率放大器60的工作状态是小还是大来更改更新内容和更新频率,因此可以减小失真补偿器20的功率消耗。
除了如图9所示的监控信号发生器81的结构之外,如图10所示的监控信号发生器82还包括:全频带平均单元108,用于获得由FFT 104转变为频率轴信号的部分信号,并对功率放大器60的工作频率的全频带上的功率进行平均;特定频带提取单元109,用于根据在全频带上平均的信号,提取在邻近期望频带的频带中的信号;合成器110,用于累加该频带中所提取的信号的功率;和除法器107,用于用合成器106的输出来对合成器110的输出进行除法处理。
从正交解调器101到合成器106的元件的结构和操作都与监控信号发生器81中的那些相同。也就是说,从功率放大器60获得的部分输出信号经过正交解调器101、低通滤波器102和A/D转换器103被恢复为失真补偿器20的输出信号。所恢复的信号被FFT 104转变到频率轴上,功率放大器60的工作频率的全频带上的功率被全频带平均单元108平均,邻近期望频带的频带中的信号被特定带提取单元109提取,并且该频带中所提取的信号的功率分量被合成器110所综合。采用这样的结构,可以基于功率放大器器60的部分输出信号来获得邻近目标频带的频带中功率放大器60的输出功率。
除法器107然后用从合成器106输出的目标频带中的功率来除从合成器110输出的邻近频带中的功率,由此可以获得邻近信道泄露比。
在由监控信号发生器82产生监控信号的情况下,更新控制器25的临界值“s1”、“s2”被设置为例如-50[dB]和-60[dB],并且在模式表253中,例如,当-60[dB]被超过时,更新模式被设置为AM模式,并且当-50[dB]被超过时,更新模式被设置为AM+PM模式。通过这样的设置,当邻近信道泄露比超过-60[dB]时,失真补偿器20更新幅度特性的补偿数据,并且当邻近信道泄露比超过-50[dB]时,除了幅度特性的补偿数据之外,还更新相位特性的补偿数据。
邻近信道泄露比表示系统的特性并且其劣化不能被容许。因此,当邻近信道泄露比超过-60[dB]时,首先更新对非线性有较强影响的幅度特性的补偿数据。然后,当系统特性进一步劣化并且邻信道泄露比超过-50[dB]时,除了幅度特性的补偿数据之外,还更新相位特性的补偿数据。根据监控信号发生器82,由于基于被规定为通信状况的邻近信道泄露比来更新失真补偿器20所使用的补偿数据,因此可以减小功率消耗同时更能确保补偿非线性失真。
如图11所示的监控信号发生器83包括:正交解调器101,用于获得功率放大器60的部分输出信号,以对所获得的信号应用正交解调处理;低通滤波器102,用于截除作为解调结果而得到的基带信号的高频范围;A/D转换器103,用于对被截除高频范围的基带信号进行模数转换;相位比较器111,用于将数字化的基带信号的相位与失真补偿器20的输出信号的相位做比较。正交解调器101、低通滤波器102和A/D转换器103与监控信号发生器81中的那些相同,因此忽略对其的重复说明。
作为从正交解调器101到A/D转换器103的处理结果而恢复的信号被输入到相位比较器111。同时,失真补偿器20的输出信号也被输入到相位比较器111。相位比较器111然后比较这两个输入信号,将其相位差转换为数字值,并将数字值作为监控信号输出到失真补偿器20。也就是说,监控信号发生器83能检测功率放大器60的相位变化。
在由监控信号发生器83产生监控信号的情况下,临界值“s”被设置为0,并且在模式表253中,例如,当相位差出现时,更新模式被设置为PM模式。通过这样的设置,当相位失真出现时,失真比较器20更新相位特性的补偿数据。由于功率放大器60的相位变化是由延迟时间引起的变化,因此不需要更新非线性参数。因此,不对补偿数据进行不必要的更新,这可以减小功率消耗。
如图12所示的监控信号发生器4包括:电平检测器112,用于检测输入到功率放大器60的输入信号(正交调制器50的输出信号)的信号电平;RMS单元113,用于对失真补偿器20的输出信号进行均方根(RMS)运算;和比较器114,用于将电平检测器112所检测的信号电平与RMS单元113所获得的运算结果做比较。
从正交调制器50输出的传输信号被输入到电平检测器112,并且电平检测器112检测传输信号的信号电平。同时,从失真补偿器20输出的基带信号I”、Q”被输入到RMS单元113,并且RMS单元113对基带信号I”、Q”进行均方根运算。比较器14然后将信号电平的检测结果和均方根运算的结果做比较,并将其差转换为数字值,以将该数字值作为监控信号输出到失真补偿器20。也就是说,监控信号发生器84能检测从D/A转换器30到正交调制器50的模拟阶段中出现的增益。
在由监控信号发生器84产生监控信号的情况下,更新控制器25的临界值“s1”、“s2”被设置为例如±0.6(正或负0.6)[dB]和±0.3(正或负0.3)[dB],并且在模式表253中,例如,当±0.3(正或负0.3)[dB]被超过时,更新模式被设置为AM模式,并且当±0.6(正或负0.6)[dB]被超过时,更新模式被设置为AM+PM模式。通过这样的设置,当上述模拟阶段的增益超过±0.3(正或负0.3)[dB]时,失真补偿器20更新幅度特性的补偿数据,并且当增益超过±0.6(正或负0.6)[dB]时,除了幅度特性的补偿数据之外,还更新相位特性的补偿数据。
在模拟信号处理阶段出现的增益增加/减小信号电平。在失真补偿器20中,实数乘法器211和复数乘法器221从幅度逆特性表213和相位逆特性表223(其中与由幅度计算器212和222计算的作为地址的幅度值相对应地存储补偿数据)中读出补偿数据,因此,信号电平的增加/减少直接影响失真校正的精确度。因此,优选地,采用较高的优先级首先由AM模式进行幅度特性的补偿数据的更新,并且当状态进一步劣化时,还更新相位特性的补偿数据。因此,可以仅充分进行补偿数据的必要更新,这可以减少功率消耗。
如图13所示的监控信号发生器85包括:正交解调器101,用于获得功率放大器60的部分输出信号,以对所获得的信号应用正交解调处理;低通滤波器102,用于截除由解调产生的基带信号的高频范围;A/D转换器103,用于对被截除高频范围的基带信号进行模数转换;复数除法器115,用于对数字化的基带信号进行复数除法运算;幅度分量提取单元116,用于从作为复数除法处理结果而得到的基带信号中提取幅度分量;相位分量提取单元117,用于从同一基带信号中提取相位分量;幅度分量提取单元120,用于从失真补偿器20的输出基带信号中提取幅度分量;和系数估计单元118和119,用于基于由幅度分量提取单元116/相位分量提取单元117提取的幅度分量/相位分量以及由幅度分量提取单元120提取的幅度分量来估计功率放大器60的特性系数。正交解调器101、低通滤波器102和A/D转换器与监控信号发生器81中的那些相同,因此忽略对其的重复说明。
作为从正交解调器101到A/D转换器103的处理的结果而恢复的信号被输入到复数除法器115。同时,失真补偿器20的输出信号也被输入到复数除法器。复数除法器115用来自失真补偿器20的信号对从A/D转换器103传送的信号进行复数除法运算。
幅度分量提取单元116和相位分量提取单元117从作为复数除法运算结果而得到的信号中提取幅度分量和相位分量,并将其分别发送到系数估计单元118和119。同时,由幅度分量提取单元120从失真补偿器20的输出信号中提取的幅度分量被发送到系数估计单元118和119。系数估计单元118和119基于来自幅度分量提取单元116/相位分量提取单元117的信号和来自幅度分量提取单元120的信号来计算功率放大器60的特性系数,发送特性系数到失真补偿器20。以该方式,监控信号发生器85能产生功率放大器60的特性系数。
在由监控信号发生器85产生监控信号的情况下,在模式表253中,例如,当功率放大器60的特性系数变化时,更新模式被设置为AM+PM模式。通过这样的设置,当特性系数变化时,失真补偿器20更新幅度特性和相位特性的补偿数据。当功率放大器60的特性系数发生极大变化时,显著的非线性失真出现,因此幅度特性和相位特性的补偿数据均被AM+PM模式更新。然而,当特性系数没有变化出现时,不更新补偿数据。通过这样的设置,不对补偿数据进行不必要的更新,这能减少功率消耗。
如图14所示的监控信号发生器86包括:温度检测器121,放置在功率放大器60的放大元件附近以检测功率放大器60的温度;转换表122,基于所检测的温度向失真补偿器20提供相应的补偿数据。温度检测器121不断地监控功率放大器60的温度,并且向转换表122输入与该温度相对应的温度信号。基于所输入的温度信号,转换表122向失真补偿器20输入相应的监控信号。
在由监控信号发生器86产生监控信号的情况下,更新控制器25的临界值“s1”、“s2”被设置为例如±50(正或负50)摄氏度和±20(正或负20)摄氏度,并且在模式表253中,例如,当±20(正或负20)摄氏度被超过时,更新模式被设置为AM模式,并且当±50(正或负50)摄氏度被超过时,更新模式被设置为AM+PM模式。通过这样的设置,当功率放大器60的温度变化超过±20(正或负20)摄氏度时,失真补偿器20更新幅度特性的补偿数据,并且当温度变化超过±50(正或负50)摄氏度时,除了幅度特性的补偿数据之外,还更新相位特性的补偿数据。
通常,对功率放大器进行处理以便释放热量,因此其温度变化较慢,并且如果温度变化并不急剧,功率放大器的特性极少出现急剧变化。因此,当温度变化较慢时,仅更新幅度特性的补偿数据,而当急剧的温度变化出现时,幅度特性和相位特性的补偿数据均被更新。因此,仅充分更新补偿数据的必要更新,这能减少功率消耗。
如图15所示的监控信号发生器87包括:转换表123,传输频率(带)的频率信息f被从数据发生器10输入到该转换表。转换表123从数据发生器10获得频率信息f,并且基于该频率信息f,转换表123向失真补偿器20输入相应的监控信号。
在由监控信号发生器87产生监控信号的情况下,在模式表253中,例如,当频率信息f变化时,更新模式被设置为AM+PM模式。一般地,当由功率放大器60放大的信号的频带发生变化时,模拟信号处理阶段和功率放大器60的非线性特性也发生变化,因此,幅度特性和相位特性的补偿数据均被更新。通过这样的设置,不对补偿数据进行不必要的更新,这能减少功率消耗。
应该注意,该实施例的监控信号发生器的结构并不限于上述监控信号发生器81-87的结构。例如,通过在失真补偿器中提供定时器,可以以固定的时间间隔更新幅度特性和相位特性的补偿数据。这样的结构使得对补偿数据进行最小的必要更新而不产生特定的监控信号,这能减少功率消耗。
在上述实施例的说明中,失真补偿器包括作为用于存储幅度数据的存储器的幅度逆特性表和相位逆特性表,但这不是限制性的。也就是说,可以提供用于通过多项式运算进行补偿的算术处理器、而不是提供用于存储补偿数据的表,由此可更新补偿系数。
应该注意,本发明并不确切地受限于上述实施例,而是,当实现本发明时,可能通过在不偏离本发明精神的范围内修改组成元件来实现本发明。此外,可以通过适当组合上述实施例中所公开的多个组成元件来形成各种发明。例如,可以从实施例中所示的所有组成元件中删除一些组成元件。此外,可以适当组合不同实施例中的组成元件。

Claims (9)

1.一种用于补偿放大器的非线性的失真补偿装置,包括:
存储器,用于存储第一参数和第二参数,所述第一参数用来校正所述放大器的输入信号的幅度分量,所述第二参数用来校正所述输入信号的相位分量;
补偿器,用于基于所述第一参数来校正所述输入信号的幅度分量,并基于所述第二参数来校正所述输入信号的相位分量;以及
更新控制器,用于根据所述放大器的工作状态和多个更新模式来更新所述第一参数和所述第二参数中的至少之一,
其中,所述多个更新模式包括:
第一模式,用来仅更新所述第一参数,
第二模式,用来仅更新所述第二参数,以及
第三模式,用来更新所述第一参数和所述第二参数。
2.如权利要求1所述的失真补偿装置,其中,所述补偿器包括:
第一幅度计算器,用于计算所述输入信号的幅度值;
实数乘法器,用于基于所述第一幅度计算器所计算的幅度值,来对所述存储器中存储的第一参数和所述输入信号进行实数乘法处理;
第二幅度计算器,用于计算作为所述实数乘法处理结果而得到的信号的幅度值;以及
复数乘法器,用于基于所述第二幅度计算器所计算的幅度值,来对所述存储器中存储的第二参数和作为所述实数乘法处理结果而得到的信号进行复数乘法处理。
3.如权利要求1所述的失真补偿装置,进一步包括:
监控信号发生器,用于通过监控所述放大器的工作状态来产生指示所述放大器的特性的监控信号,
其中,所述更新控制器基于所述监控信号来更新所述第一参数和所述第二参数中的至少之一。
4.如权利要求3所述的失真补偿装置,其中,所述监控信号发生器产生的信号指示以下中的至少一个以作为所述监控信号:所述放大器的输出功率、所述放大器的邻近信道泄漏比、在所述放大器的前级出现的增益、在所述放大器的前级出现的相位差、所述放大器的温度以及所述输入信号的频率。
5.如权利要求1所述的失真补偿装置,进一步包括:
定时器,用于输出定时信号,该定时信号指示用于更新所述第一参数和所述第二参数的定时,并且
其中,所述更新控制器基于所述定时器输出的定时信号来更新所述第一参数和所述第二参数中的至少之一。
6.一种放大装置,包括:
放大器;
存储器,用于存储第一参数和第二参数,所述第一参数用来校正所述放大器的输入信号的幅度分量,所述第二参数用来校正所述输入信号的相位分量,以便补偿所述放大器的非线性;
补偿器,用于基于所述第一参数来校正所述输入信号的幅度分量,并基于所述第二参数来校正所述输入信号的相位分量;以及
更新控制器,用于根据所述放大器的工作状态和多个更新模式来更新所述第一参数和所述第二参数中的至少之一,
其中,所述多个更新模式包括:
第一模式,用来仅更新所述第一参数,
第二模式,用来仅更新所述第二参数,以及
第三模式,用来更新所述第一参数和所述第二参数。
7.如权利要求6所述的放大装置,进一步包括:
监控信号发生器,用于通过监控所述放大器的工作状态来产生指示所述放大器的特性的监控信号,
其中,所述更新控制器基于所述监控信号来更新所述第一参数和所述第二参数中的至少之一。
8.一种发射机,包括:
如权利要求7所述的放大装置;以及
调制器,用于对所述补偿器校正的所述输入信号进行调制,以向所述放大器输入经调制的输入信号。
9.一种用于补偿放大器的非线性的失真补偿方法,包括:
在存储器中存储第一参数和第二参数,所述第一参数用于校正所述放大器的输入信号的幅度分量,所述第二参数用于校正所述输入信号的相位分量;
基于所述第一参数来校正所述输入信号的幅度分量,并基于所述第二参数来校正所述输入信号的相位分量;以及
根据所述放大器的工作状态和多个更新模式来更新所述第一参数和所述第二参数中的至少之一,
其中,所述多个更新模式包括:
第一模式,用来仅更新所述第一参数,
第二模式,用来仅更新所述第二参数,以及
第三模式,用来更新所述第一参数和所述第二参数。
CN2007800211320A 2006-06-08 2007-05-29 失真补偿装置、放大装置、发射机和失真补偿方法 Active CN101467347B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP160274/2006 2006-06-08
JP2006160274A JP5242024B2 (ja) 2006-06-08 2006-06-08 歪補償装置、増幅装置、送信装置、歪補償方法
PCT/JP2007/000576 WO2007141908A1 (en) 2006-06-08 2007-05-29 Distortion compensator apparatus, amplifier appratus, transmitter, and method of compensating distortion

Publications (2)

Publication Number Publication Date
CN101467347A CN101467347A (zh) 2009-06-24
CN101467347B true CN101467347B (zh) 2011-09-28

Family

ID=38462399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800211320A Active CN101467347B (zh) 2006-06-08 2007-05-29 失真补偿装置、放大装置、发射机和失真补偿方法

Country Status (6)

Country Link
US (1) US8204454B2 (zh)
EP (1) EP2025056A1 (zh)
JP (1) JP5242024B2 (zh)
KR (1) KR20090020659A (zh)
CN (1) CN101467347B (zh)
WO (1) WO2007141908A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004358B2 (en) 2008-01-30 2011-08-23 Fujitsu Limited Distortion compensation device
JP5339433B2 (ja) * 2009-03-02 2013-11-13 株式会社エヌ・ティ・ティ・ドコモ 送信機、受信機、電力増幅方法及び信号復調方法
JP5499878B2 (ja) * 2010-04-23 2014-05-21 富士通株式会社 歪補償装置、無線通信装置及び歪補償方法
CN102480450B (zh) * 2010-11-30 2014-12-10 富士通株式会社 预失真器控制装置和方法、功率控制状态检测方法
JP5556643B2 (ja) * 2010-12-17 2014-07-23 富士通株式会社 増幅装置および歪み補償方法
JP6035919B2 (ja) * 2012-07-09 2016-11-30 富士通株式会社 送信装置、及び送信方法
US9680422B2 (en) 2013-03-27 2017-06-13 Qualcomm Incorporated Power amplifier signal compensation
US20150092825A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Self-test using internal feedback for transmit signal quality estimation
CN105453421B (zh) * 2014-06-30 2018-12-07 华为技术有限公司 一种数字预失真校正装置及方法
CN110326214B (zh) * 2017-03-02 2023-06-23 住友电气工业株式会社 失真补偿装置和失真补偿方法
CN109561299B (zh) * 2018-11-27 2020-05-01 河南亿秒电子科技有限公司 一种用于监控摄像机故障智能分析设备
KR102318967B1 (ko) 2020-04-29 2021-10-27 정용호 변위량 계측 및 변위 데이터 오차 개선용 신호처리 시스템 및 그 구동방법
JP2022112245A (ja) * 2021-01-21 2022-08-02 住友電気工業株式会社 コントローラ、歪補償装置、通信機、及び歪補償のために入力信号を調整する方法
WO2023121138A1 (ko) * 2021-12-24 2023-06-29 삼성전자 주식회사 무선 통신 시스템에서 신호 보상을 위한 장치 및 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699383A (en) * 1995-03-06 1997-12-16 Nec Corporation High-power linear amplification using periodically updated amplitude and phase correction values
GB2337169A (en) * 1998-05-07 1999-11-10 Nokia Mobile Phones Ltd An adaptive predistorter for an amplifier
US6072364A (en) * 1997-06-17 2000-06-06 Amplix Adaptive digital predistortion for power amplifiers with real time modeling of memoryless complex gains
US6489846B2 (en) * 2000-05-25 2002-12-03 Sony Corporation Distortion compensating device and distortion compensating method
US6587514B1 (en) * 1999-07-13 2003-07-01 Pmc-Sierra, Inc. Digital predistortion methods for wideband amplifiers
CN1474516A (zh) * 2002-07-20 2004-02-11 Lg������ʽ���� 用于补偿功率放大器的预失真的设备和方法
GB2394374A (en) * 2002-10-17 2004-04-21 Roke Manor Research An IQ feedback predistortion loop comprising a power amplifier (PA) and a PA model
CN1623275A (zh) * 2002-06-05 2005-06-01 松下电器产业株式会社 失真补偿器
US6947711B1 (en) * 1999-11-24 2005-09-20 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for generating a radio frequency signal
CN1700591A (zh) * 2004-05-19 2005-11-23 株式会社日立国际电气 预失真器

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139395A (ja) 1989-10-25 1991-06-13 Toshiba Corp 二槽式洗濯機
JP3560398B2 (ja) * 1995-08-31 2004-09-02 富士通株式会社 歪補償を有する増幅器
US5870668A (en) 1995-08-18 1999-02-09 Fujitsu Limited Amplifier having distortion compensation and base station for radio communication using the same
JP3139395B2 (ja) * 1996-11-19 2001-02-26 松下電器産業株式会社 送信装置
US5923712A (en) * 1997-05-05 1999-07-13 Glenayre Electronics, Inc. Method and apparatus for linear transmission by direct inverse modeling
US6118335A (en) * 1999-05-06 2000-09-12 Nortel Networks Corporation Method and apparatus for providing adaptive predistortion in power amplifier and base station utilizing same
JP4406960B2 (ja) 1999-07-15 2010-02-03 ソニー株式会社 歪み補償方法、歪み補償装置および無線通信装置
JP4183364B2 (ja) * 1999-12-28 2008-11-19 富士通株式会社 歪補償装置
JP2001203541A (ja) * 2000-01-20 2001-07-27 Sony Corp 歪補償装置及び歪補償方法、増幅装置並びに無線送信装置
JP2002026665A (ja) * 2000-07-07 2002-01-25 Sony Corp 歪補償装置および歪補償方法
JP2002077285A (ja) * 2000-08-31 2002-03-15 Hitachi Kokusai Electric Inc 送信機
JP2002094335A (ja) * 2000-09-19 2002-03-29 Japan Science & Technology Corp 非線形歪み補償電力増幅器
JP2002111397A (ja) * 2000-09-29 2002-04-12 Sony Corp 歪補償装置及び歪補償方法
JP2002135062A (ja) * 2000-10-23 2002-05-10 Sony Corp 歪み補償電力増幅装置
JP3957077B2 (ja) * 2002-05-31 2007-08-08 富士通株式会社 歪補償装置
US6642786B1 (en) * 2002-08-15 2003-11-04 Electronics And Telecommunications Research Institute Piecewise polynomial predistortion method and apparatus for compensating nonlinear distortion of high power amplifier
JP2004120451A (ja) * 2002-09-27 2004-04-15 Hitachi Kokusai Electric Inc 増幅装置
JP3732824B2 (ja) * 2002-11-12 2006-01-11 株式会社日立国際電気 通信装置
JP3917509B2 (ja) * 2002-12-06 2007-05-23 日本電信電話株式会社 非線形歪補償装置
JP4168259B2 (ja) * 2003-02-21 2008-10-22 日本電気株式会社 非線形歪補償回路および非線形歪補償方法ならびに送信回路
JP2004320295A (ja) * 2003-04-15 2004-11-11 Nippon Telegr & Teleph Corp <Ntt> 非線形歪補償装置
EP1636540A1 (en) * 2003-06-11 2006-03-22 Snap-on Incorporated Wheel alignment with surface-oriented runout determination
US7460614B2 (en) * 2003-06-25 2008-12-02 Interdigital Technology Corporation Method and system for adjusting the amplitude and phase characteristics of real and imaginary signal components of complex signals processed by an analog radio transmitter
JP4035095B2 (ja) * 2003-08-21 2008-01-16 日本電信電話株式会社 非線形歪補償装置
JP4394409B2 (ja) * 2003-09-25 2010-01-06 株式会社日立国際電気 プリディストーション方式歪補償機能付き増幅器
JP4284630B2 (ja) * 2004-09-21 2009-06-24 株式会社日立国際電気 歪補償増幅装置
JP4701024B2 (ja) * 2005-07-07 2011-06-15 株式会社日立国際電気 プリディストーション歪補償付き増幅器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699383A (en) * 1995-03-06 1997-12-16 Nec Corporation High-power linear amplification using periodically updated amplitude and phase correction values
US6072364A (en) * 1997-06-17 2000-06-06 Amplix Adaptive digital predistortion for power amplifiers with real time modeling of memoryless complex gains
GB2337169A (en) * 1998-05-07 1999-11-10 Nokia Mobile Phones Ltd An adaptive predistorter for an amplifier
US6587514B1 (en) * 1999-07-13 2003-07-01 Pmc-Sierra, Inc. Digital predistortion methods for wideband amplifiers
US6947711B1 (en) * 1999-11-24 2005-09-20 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for generating a radio frequency signal
US6489846B2 (en) * 2000-05-25 2002-12-03 Sony Corporation Distortion compensating device and distortion compensating method
CN1623275A (zh) * 2002-06-05 2005-06-01 松下电器产业株式会社 失真补偿器
CN1474516A (zh) * 2002-07-20 2004-02-11 Lg������ʽ���� 用于补偿功率放大器的预失真的设备和方法
GB2394374A (en) * 2002-10-17 2004-04-21 Roke Manor Research An IQ feedback predistortion loop comprising a power amplifier (PA) and a PA model
CN1700591A (zh) * 2004-05-19 2005-11-23 株式会社日立国际电气 预失真器

Also Published As

Publication number Publication date
CN101467347A (zh) 2009-06-24
JP2007329766A (ja) 2007-12-20
JP5242024B2 (ja) 2013-07-24
EP2025056A1 (en) 2009-02-18
WO2007141908A1 (en) 2007-12-13
US20090195309A1 (en) 2009-08-06
US8204454B2 (en) 2012-06-19
KR20090020659A (ko) 2009-02-26

Similar Documents

Publication Publication Date Title
CN101467347B (zh) 失真补偿装置、放大装置、发射机和失真补偿方法
CN100511975C (zh) 用于补偿失真的预失真放大器
CN100448165C (zh) 预失真器
CN101800517B (zh) 预失真器及失真补偿方法
CN102055411B (zh) 基于多通道反馈的功率放大器线性化校正电路及方法
CN101621305B (zh) 基带预失真装置和方法
CN101425782B (zh) 前置补偿器
US8558615B2 (en) Apparatus for and method of controlling a predistorter, and method of detecting power control state
CN101022267B (zh) 失真补偿装置和方法
CN101527544B (zh) 非线性系统逆特性辨识装置及方法、功率放大器及其预失真器
CN103715992B (zh) 基于简化Volterra级数的功放预失真装置及方法
CN101635697A (zh) 一种发射机及发射机处理信号的方法
CN102142851A (zh) 失真补偿装置、发送装置和失真补偿方法
CN102231620A (zh) 一种基于基带数字预失真技术的功放线性化方法和装置
CN101022276A (zh) 失真补偿装置和方法
JP6007744B2 (ja) 歪補償装置、送信装置、歪補償方法及び伝達関数算出方法
JP2006229889A (ja) 歪補償装置
CN101520666A (zh) 一种宽带数字预失真功放的温度补偿方法和系统
CN107251420A (zh) 使用矢量变换的数字矢量处理的矢量信号对准
CN101232476A (zh) 接收装置、无线设备以及用于抵消dc偏移分量的方法
JP2001203539A (ja) 非線形歪み補償電力増幅器
CN103098392B (zh) 一种电光调制装置、方法、发射机及电光调制系统
JP5509455B2 (ja) 歪補償装置
CN103997301A (zh) 功率放大器时间延迟不变的预失真方法和装置
JP2007288492A (ja) 歪補償装置及び歪補償方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant