CN101459204A - 反项变质多结太阳能电池中的指数掺杂层 - Google Patents

反项变质多结太阳能电池中的指数掺杂层 Download PDF

Info

Publication number
CN101459204A
CN101459204A CNA2008101495330A CN200810149533A CN101459204A CN 101459204 A CN101459204 A CN 101459204A CN A2008101495330 A CNA2008101495330 A CN A2008101495330A CN 200810149533 A CN200810149533 A CN 200810149533A CN 101459204 A CN101459204 A CN 101459204A
Authority
CN
China
Prior art keywords
solar cell
layer
battery
solar
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101495330A
Other languages
English (en)
Inventor
马克·A·斯坦
阿瑟·科恩费尔德
万斯·利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oncogen LP
Original Assignee
Oncogen LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncogen LP filed Critical Oncogen LP
Publication of CN101459204A publication Critical patent/CN101459204A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种形成包括上部子电池、中间子电池及下部子电池的多结太阳能电池的方法,其包括:提供用于半导体材料的外延生长的第一衬底;在所述衬底上形成具有第一带隙的第一太阳能子电池;在所述第一太阳能子电池上方形成具有小于所述第一带隙的第二带隙的第二太阳能子电池;在所述第二子电池上方形成分级夹层,所述分级夹层具有大于所述第二带隙的第三带隙;及在所述分级夹层上方形成具有小于所述第二带隙的第四带隙的第三太阳能子电池,以使得所述第三子电池相对于所述第二子电池晶格失配,其中太阳能子电池的基极中的至少一者具有指数掺杂分布。

Description

反相变质多结太阳能电池中的指数掺杂层
技术领域
本发明涉及太阳能电池半导体装置领域,且特定来说涉及包括变质层的多结太阳能电池。所述装置还包括称作反相变质太阳能电池的太阳能电池。
背景技术
还称作太阳能电池的光生伏打电池是过去几年中已变得实用的最重要的新能源之一。人们已对太阳能电池的开发作出了大量努力。因此,太阳能电池当前正用于许多商业及面向消费者的应用中。虽然在此领域中已取得了显著进步,但对太阳能电池满足更复杂应用需要的要求还跟不上需求的步伐。例如在数据通信中使用的卫星等应用已大大提高了对具有经改善的功率及能量转换特性的太阳能电池的需求。
在卫星及与空间相关的其它应用中,卫星功率系统的大小、质量及成本依赖于所使用太阳能电池的功率及能量转换效率。换句话说,有效负载的大小及机载服务的可用性与所提供的功率量成比例。因此,随着有效负载变得越来越复杂,充当机载功率系统的功率转换装置的太阳能电池变得越来越重要。
太阳能电池常常制作成垂直的多结结构,并设置于水平阵列中,其中将单个太阳能电池串联连接在一起。阵列的形状及结构以及其包含的电池数量部分地取决于所需要的输出电压及电流。
在例如M.W.Wanless(万勒斯)等人所著的“用于高性能、III-V光生伏打能量转换器的晶格失配方法(Lattice Mismatched Approaches for High Performance,III-VPhotovoltaic Energy Converters)”(2005年1月3-7日举行的第31届IEEE光生伏打专家会议的会刊,IEEE出版社,2005年)中所说明的反相变质太阳能电池结构为未来商业高效率太阳能电池的开发提供了重要起点。说明于所述现有技术中的结构提供与材料及制作步骤的适当选择相关的多个实际困难。
在本发明之前,在现有技术中所揭示的材料及制作步骤尚不足以产生一种使用反相变质电池结构的商业上可行且能量高效的太阳能电池。
发明内容
本发明提供一种形成多结太阳能电池的方法,所述多结太阳能电池包含上部子电池、中间子电池及下部子电池,所述方法包含:提供用于半导体材料的外延生长的第一衬底;在所述衬底上形成具有基极及射极的第一太阳能子电池,所述第一太阳能子电池具有第一带隙;在所述第一太阳能子电池上方形成具有基极及射极的第二太阳能子电池,所述第二太阳能子电池具有小于所述第一带隙的第二带隙;在所述第二子电池上方形成分级夹层,所述分级夹层具有大于所述第二带隙的第三带隙;及在所述分级夹层上方形成具有基极及射极的第三太阳能子电池,所述第三太阳能子电池具有小于所述第二带隙的第四带隙,以使得所述第三子电池相对于所述第二子电池晶格失配,其中所述基极中的至少一者具有指数掺杂分布。
另一方面,本发明提供一种通过以下步骤制造太阳能电池的方法:提供第一衬底、在所述第一衬底上沉积形成太阳能电池的一半导体材料层序列,所述半导体材料层序列包括具有指数掺杂的至少一个基极层;将替代衬底安装在所述层序列的顶部上;及移除所述第一衬底。
另一方面,本发明提供一种通过以下步骤制造太阳能电池的方法:提供第一衬底;在所述第一衬底上沉积形成太阳能电池的一半导体材料层序列,所述半导体材料层序列包括具有指数掺杂的至少一个基极层;将替代衬底安装在所述层序列的顶部上;及移除所述第一衬底。另一方面,本发明提供一种用于形成太阳能电池的方法,所述方面包含:形成包括由InGaP半导体材料构成的基极及射极层的顶部电池;形成InGaP半导体材料的中间电池射极层及GaAs半导体材料的基极层;及形成包括InGaAs半导体材料的射极及基极层的底部电池,其中所述基极中的至少一者具有指数掺杂分布。
附图说明
结合附图研究参照以下详细说明将更好且更全面地理解本发明,附图中:
图1是根据本发明构造的太阳能电池的放大剖面图;
图2是图1的太阳能电池在下一工艺步骤之后的剖面图;
图3是图2的太阳能电池在下一工艺步骤之后的剖面图;
图4是图3的太阳能电池在下一工艺步骤之后的剖面图;
图5A是图4的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中移除原始衬底;
图5B是图5A的替代衬底在图式的底部的太阳能电池的另一剖面图;
图6A是在其中制作所述太阳能电池的晶片的俯视平面图;
图6B是在其中制作所述太阳能电池的晶片的仰视平面图;
图7是图6A的晶片在下一工艺步骤之后的俯视平面图;
图8是图5B的太阳能电池在下一工艺步骤之后的剖面图;
图9是图8的太阳能电池在下一工艺步骤之后的剖面图;
图10是图9的太阳能电池在下一工艺步骤之后的剖面图;
图11是图10的太阳能电池在下一工艺步骤之后的剖面图;
图12是图11的太阳能电池在下一工艺步骤之后的剖面图;
图13是图12的太阳能电池在下一工艺步骤之后的剖面图;
图14是图13的太阳能电池在下一工艺步骤之后的剖面图;
图15是图14的太阳能电池在下一工艺步骤之后的剖面图;及
图16是根据本发明的反相变质太阳能电池的子电池中的射极与基极层之间的掺杂分布的曲线图。
具体实施方式
现在将说明本发明的细节,包括其实例性方面及实施例。参照附图及以下说明,相同的参考编号用于识别相同或功能上相似的元件,且旨在以高度简化的图示方式图解说明实例性实施例的主要特征。此外,所述图式既非旨在描绘实际实施例的每一特征也并非旨在描绘所描绘元件的相对尺寸,且所述图式并非按比例绘制。
图1描绘在衬底上形成三个子电池A、B及C之后的根据本发明的多结太阳能电池。更特定来说,图中显示衬底101,其可为砷化镓(GaAs)、锗(Ge)或其它适合的材料。在为Ge衬底的情况下,在所述衬底上沉积成核层102。在所述衬底上,或在成核层102上方,进一步沉积缓冲层103及蚀刻终止层104。然后在层104上沉积接触层105,并在所述接触层上沉积窗口层106。然后,在窗口层106上沉积由n+射极层107及p型基极层108组成的子电池A。
应注意,多结太阳能电池结构可由周期表中所列的III族至V族元素的服从晶格常数及带隙要求的任何适当组合形成,其中III族包括硼(B)、铝(Al)、镓(Ga)、铟(In)及铊(T)。IV族包括碳(C)、硅(Si)、锗(Ge)及锡(Sn)。V族包括氮(N)、磷(P)、砷(As)、锑(Sb)及铋(Bi)。
在优选实施例中,射极层107由InGa(Al)P构成且基极层108由InGa(Al)P构成。前述式中的括号内的铝或Al项意指Al是可选成分,且在此示例中可以从0%到30%的量使用。将结合图16来论述根据本发明的射极及基极层107及108的掺杂分布。
在基极层108的顶部上沉积用于降低复合损失的背面场(“BSF”)层109。
BSF层109从基极/BSF界面附近的区域驱动少数载流子,以使复合损失效应最小化。换句话说,BSF层109减少太阳能子电池A背侧处的复合损失且从而减少基极中的复合。
在BSF层109的顶部上沉积一重掺杂的p型及n型层110序列,其形成作为将子电池A连接到子电池B的电路元件的隧道二极管。
在隧道二极管层110的顶部上沉积窗口层111。子电池B中所使用的窗口层111也操作以减少复合损失。窗口层111还改善下伏结的电池表面的钝化。所属技术领域的技术人员应明了,可在不背离本发明的范围的情况下在所述电池结构中添加或删除额外层。
在窗口层111的顶部上沉积子电池B的层:射极层112及p型基极层113。这些层优选地分别由InGaP及In0.015GaAs构成,但也可使用符合晶格常数及带隙要求的任何其它适合的材料。将结合图16论述根据本发明的层112及113的掺杂分布。
在电池B的顶部上沉积BSF层114,其执行与BSF层109相同的功能。在BSF层114上方沉积类似于层110的p++/n++隧道二极管115,从而再次形成将子电池B连接到子电池C的电路元件。
在隧道二极管115上方将优选由InGa(Al)P构成的阻挡层116a沉积到约1.0微米的厚度。所述阻挡层旨在防止螺旋位错相对于向中间及顶部子电池B及C中生长的方向传播或沿向底部子电池A中生长的方向传播,且其更特定说明于2007年9月24日提出申请的第11/860,183号美国共同待决专利申请案中。
在阻挡层116a上方沉积变质层(分级夹层)116。层116优选地是一系列在组分上呈台阶分级的InGaAlAs层,其单调改变的晶格常数旨在实现晶格常数从子电池B到子电池C的转变。层116的带隙优选地为符合稍大于中间子电池B的带隙的值的1.5ev。
在一个实施例中,如万勒斯等人的论文中所建议,所述台阶分级包含九个组分分级的InGaP台阶,其中每一台阶层具有0.25微米的厚度。在优选实施例中,层116由InGaAlAs构成,其中单调改变的晶格常数。
在本发明的另一实施例中,可在InGaAlAs变质层116上方沉积可选第二阻挡层116b。所述第二阻挡层116b通常将具有与阻挡层116a的组分稍微不同的组分。
在阻挡层116b上方沉积窗口层117,此窗口层操作以减少子电池“C”中的复合损失。所属技术领域的技术人员应明了,可在不背离本发明的范围的情况下在所述电池结构中添加或删除额外层。
在窗口层117的顶部上沉积子电池C的层:n+射极层118及p型基极层119。这些层优选地分别由InGaAs构成,但也可使用符合晶格常数及带隙要求的其它适合材料。将结合图16论述层118及119的掺杂分布。
在电池C的顶部上沉积BSF层120,所述BSF层执行与BSF层109及114相同的功能。
最后,在BSF层120上沉积p+接触层121。
所属技术领域的技术人员应明了,可在不背离本发明的范围的情况下在所述电池结构中添加或删除额外层。
图2是图1的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中在p+半导体接触层121上方沉积金属接触层122。所述金属优选地为Ti/Au/Ag/Au。
图3是图2的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中在金属层122上方沉积粘合剂层123。所述粘合剂优选地为晶片接合(Wafer Bond)(由密苏里州罗拉的布鲁尔科技公司(Brewer Science,Inc.of Rolla,MO.)制造)。
图4是图3的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中附装优选地为蓝宝石的替代衬底124。所述替代衬底厚度约为40密耳,且穿制有直径约为1mm、间隔4mm的孔以有助于所述粘合剂及所述衬底的后续移除。
图5A是图4的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中通过一搭接及/或蚀刻步骤序列(其中移除衬底101、缓冲层103及蚀刻终止层104)来移除原始衬底。特定蚀刻剂的选择取决于生长衬底。
图5B是图5A的具有替代衬底124在图式的底部的定向的太阳能电池的剖面图。此应用中的后续图式将采取所述定向。
图6A是在其中实施太阳能电池的晶片的俯视平面图。对四个电池的描绘仅出于例示的目的,且本发明并不限于每一晶片的任何特定电池数量。
在每一电池中,存在栅格线501(更特定地显示于图10的剖面中)、互连总线502及接触衬垫503。所述几何图形及栅格及总线数量为例示性且本发明并不限于所图解说明的实施例。
图6B是图6A中所示的具有四个太阳能电池的晶片的仰视平面图。
图7是图6A的晶片在下一工艺步骤之后的仰视平面图,在所述下一工艺步骤中使用磷化物及砷化物蚀刻剂在每一电池周边周围蚀刻台面510。
图8是图5B的太阳能电池的简化剖面图,其仅描绘替代衬底124上方的几个顶部层及下部层。
图9是图8的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中蚀刻终止层104由HCI/H2O溶液移除。
图10是图9的太阳能电池在下一工艺步骤序列之后的剖面图,在所述下一工艺步骤序列中在接触层105上方放置光之抗蚀剂掩膜(未显示)以形成栅格线501。栅格线501通过蒸发沉积且光刻图案化并沉积在接触层105上方。去除掩膜以形成金属栅格线501。
图11是图10的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中将所述栅格线用作掩膜以使用柠檬酸/过氧化物蚀刻混合物将所述表面向下蚀刻到窗口层106。
图12是图11的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中在晶片的具有栅格线501的“底”侧的整个表面上方施加减反射(ARC)电介质涂层130。
图13是图12的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中使用磷化物及砷化物蚀刻剂将台面510向下蚀刻到金属层122。所述图式中的剖面描绘成从图7中所示的A-A平面观看。然后,将一个或一个以上银电极焊接到所述接触衬垫。
图14是图13的太阳能电池在通过EKC 922移除替代衬底124及粘合剂123之后的下一工艺步骤之后的剖面图。在所述替代衬底中提供的优选穿孔具有0.033英寸的直径,且由0.152英寸隔开。
图15是一个实施例中图14的太阳能电池在下一工艺步骤之后的剖面图,在所述下一工艺步骤中在ARC层130上方施加粘合剂且将刚性防护玻璃附装在其上。
在不同的实施例中,起初可将图13的太阳能电池安装在支撑物上,且随后移除替代衬底124及粘合剂123。所述支撑物可以是通过粘合剂安装的刚性防护玻璃,如图15中所描绘。
图16是根据第一实施例中的本发明的变质太阳能电池的子电池中的射极与基极层之间的掺杂分布的曲线图。
如上所述,图16中所描绘的射极与基极层的掺杂分布可实施于本发明的三结太阳能电池的任何一个或一个以上子电池中。
根据本发明的特定掺杂分布图解说明于图式中:射极掺杂从紧邻邻接层(例如,层106、111或117)的区域中的每立方厘米约5 x 1018降低到毗邻图16中的点线所示的p-n结的区域中的每立方厘米5 x 1017。基极掺杂从毗邻所述p-n结的每立方厘米1 x 1016指数提高到毗邻所述邻接层(例如,层109、114或120)的每立方厘米1 x 1018
指数掺杂梯度exp[-x/λ]所产生的收集场的绝对值由量值的恒定电场E=(kT/q(I/λ))(exp[-xb/λ]),给出,其中k是波尔兹曼常数,T是以开氏度为单位的绝对温度,q是电子电荷的绝对值,且λ是掺杂衰减的参数特性。
本发明的功效已在根据本发明的在底部子电池的3μm厚的基极层中并入有指数掺杂分布的测试太阳能电池中展示。在测量所述测试电池的电参数之后,在电流收集中观测到6.7%的提高。所述测量指示等于至少3.014V的开路电压(Voc)、至少16.55mA/cm的短路电流(Jsc)及AMO下的至少0.86的填充因数(FF)。
本发明所教示的指数掺杂分布在经掺杂区域中产生恒定场。在本发明的特定三结太阳能电池材料及结构中,底部电池在所有子电池中具有最小的短路电流。在三结太阳能电池中,单个子电池被堆叠且形成串联电路。因此,整个电池中的总电流受到所述子电池中的任一者中所产生的最小电流的限制。因此,通过将所述底部电池中的短路电流提高6.7%,所述电流更接近地近似较高子电池的电流,且所述三结太阳能电池的总效率也提高6.7%。在具有约30%的效率的太阳能三结电池中,本发明的实施方案将使效率提高1.067倍,即达到32.01%。总效率的所述提高在太阳能电池技术领域中是相当大的。除效率提高以外,所述指数掺杂分布所产生的收集场将增强所述太阳能电池的辐射硬度,此对于太空船应用是重要的。
虽然指数掺杂分布是已经实施并经检验的掺杂设计,但其它掺杂分布可产生仍可提供其它优点的线性变化收集场。举例来说,的掺杂分布在经掺杂区域中产生对于少数载流子收集及对于所述太阳能电池报废时的辐射硬度两者为有利的线性场。一个或一个以上基极层中的所述其它掺杂分布归属于本发明的范围内。
本文中所描绘的掺杂分布仅为例示性,且如所属技术领域中的技术人员所明了,可在不背离本发明的范围的情况下使用其它更复杂的分布。
应了解,上文所说明的元件中的每一者或两个或更多个元件一起,也可有用地应用于不同于上文所说明的类型的不同于所述构造类型的其它类型的构造中。
虽然已将本发明图解说明及说明为体现为反相变质多结太阳能电池,但本发明并非旨在限定于所示细节,因为也可在以任何方式都不背离本发明的精神的情况下做出各种修改及结构改变。
无需进一步分析,上文将全面披露本发明的要旨,以使其它人可应用现有知识在不忽略合理构成本发明的一般或具体方面的基本特性的特征(从现有技术的立场)的前提下容易地将本发明修改为适用于各种应用,且因此,所述修改应该且既定包含在以下权利要求书的等效物的意义及范围内。

Claims (11)

1、一种形成多结太阳能电池的方法,所述电池包含上部子电池、中间子电池及下部或底部子电池,所述方法包含:
提供用于半导体材料的外延生长的第一衬底;
在所述衬底上形成具有基极及射极的第一太阳能子电池,所述第一太阳能子电池具有第一带隙;
在所述第一太阳能子电池上方形成具有基极及射极的第二太阳能子电池,所述第二太阳能子电池具有小于所述第一带隙的第二带隙;
在所述第二太阳能子电池上方形成分级夹层,所述分级夹层具有大于所述第二带隙的第三带隙;及
在所述分级夹层上方形成具有基极及射极的第三太阳能子电池,所述第三太阳能子电池具有小于所述第二带隙的第四带隙,以使得所述第三子电池相对于所述第二子电池晶格失配,
其中所述基极中的至少一者具有指数掺杂分布。
2、如权利要求1所述的方法,其中所述第一太阳能电池中的所述基极具有从毗邻基极-射极结的每立方厘米1 x 1016到毗邻邻接层的每立方厘米1 x 1018的指数掺杂分级。
3、如权利要求1所述的方法,其中所述第二太阳能电池中的所述基极具有从毗邻所述基极-射极结的每立方厘米1 x 1016到毗邻所述邻接层的每立方厘米1 x 1018的指数掺杂分级。
4、如权利要求1所述的方法,其中所述第三太阳能电池中的所述基极具有从毗邻所述基极-射极结的每立方厘米1 x 1016到毗邻所述邻接层的每立方厘米1 x 1018的指数掺杂分级。
5、如权利要求1所述的方法,其中所述太阳能电池中的至少一者中的所述射极层具有从毗邻所述基极-射极结的每立方厘米5 x 1017到毗邻所述邻接层的每立方厘米5 x 1018的增加的掺杂分级。
6、如权利要求4所述的方法,其中所述第三太阳能电池是所述底部子电池且所述指数掺杂分级导致短路电流增加到约等于较高子电池中的所述短路电流的水平。
7、如权利要求1所述的方法,其中所述第一衬底由GaAs构成。
8、如权利要求1所述的方法,其中所述第一太阳能子电池由InGa(Al)P射极区域及InGa(Al)P基极区域构成。
9、如权利要求1所述的方法,其中所述第二太阳能子电池由InGaP射极区域及GaAs基极区域构成。
10、如权利要求1所述的方法,其中所述分级夹层由InGaAlAs构成。
11、一种制造太阳能电池的方法,其包含:
提供第一衬底;
在第一衬底上沉积形成太阳能电池的一半导体材料层序列,所述半导体材料层序列包括具有指数掺杂的至少一个基极层;
将替代衬底安装到所述层序列的顶部上;及
移除所述第一衬底。
CNA2008101495330A 2007-12-13 2008-09-10 反项变质多结太阳能电池中的指数掺杂层 Pending CN101459204A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/956,069 2007-12-13
US11/956,069 US20090155952A1 (en) 2007-12-13 2007-12-13 Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells

Publications (1)

Publication Number Publication Date
CN101459204A true CN101459204A (zh) 2009-06-17

Family

ID=40622227

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101495330A Pending CN101459204A (zh) 2007-12-13 2008-09-10 反项变质多结太阳能电池中的指数掺杂层

Country Status (5)

Country Link
US (2) US20090155952A1 (zh)
EP (1) EP2073276B8 (zh)
JP (2) JP5318522B2 (zh)
CN (1) CN101459204A (zh)
TW (1) TWI355091B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102144304A (zh) * 2009-07-21 2011-08-03 试验电工中心意大利风信子接收股份公司 具有高转换效率的光伏电池
CN102651417A (zh) * 2012-05-18 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 三结级联太阳能电池及其制备方法
CN102779890A (zh) * 2012-08-14 2012-11-14 厦门乾照光电股份有限公司 一种倒置三结太阳能电池及其制造方法
WO2012174952A1 (zh) * 2011-06-22 2012-12-27 厦门市三安光电科技有限公司 一种高倍聚光多结太阳能电池及其制备方法
WO2017084492A1 (zh) * 2015-11-20 2017-05-26 北京汉能创昱科技有限公司 双结薄膜太阳能电池组件及其制作方法
CN106784127A (zh) * 2015-11-20 2017-05-31 北京汉能创昱科技有限公司 一种双结薄膜太阳能电池组件及其制作方法
CN114335208A (zh) * 2022-03-16 2022-04-12 南昌凯迅光电股份有限公司 一种新型砷化镓太阳电池及制作方法

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122724A1 (en) 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US9634172B1 (en) 2007-09-24 2017-04-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US20090078309A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US10170656B2 (en) 2009-03-10 2019-01-01 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with a single metamorphic layer
US9117966B2 (en) 2007-09-24 2015-08-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell
US10381501B2 (en) 2006-06-02 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US20100093127A1 (en) * 2006-12-27 2010-04-15 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
US10381505B2 (en) 2007-09-24 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells including metamorphic layers
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US20100012175A1 (en) 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US9287438B1 (en) * 2008-07-16 2016-03-15 Solaero Technologies Corp. Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation
US8263853B2 (en) * 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US7741146B2 (en) 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
KR101216541B1 (ko) * 2008-09-19 2012-12-31 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 에피텍셜층 과성장에 의한 장치의 형성
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US10541349B1 (en) 2008-12-17 2020-01-21 Solaero Technologies Corp. Methods of forming inverted multijunction solar cells with distributed Bragg reflector
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US7960201B2 (en) * 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US8778199B2 (en) 2009-02-09 2014-07-15 Emoore Solar Power, Inc. Epitaxial lift off in inverted metamorphic multijunction solar cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US9018519B1 (en) 2009-03-10 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US20100282305A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100319764A1 (en) * 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
US8263856B2 (en) * 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts
US8961687B2 (en) * 2009-08-31 2015-02-24 Alliance For Sustainable Energy, Llc Lattice matched crystalline substrates for cubic nitride semiconductor growth
US8575471B2 (en) * 2009-08-31 2013-11-05 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
DE102009049397B4 (de) 2009-10-14 2018-09-06 Solaero Technologies Corp. Herstellungsverfahren mit Surrogatsubstrat für invertierte metamorphische Multijunction-Solarzellen
US9337360B1 (en) 2009-11-16 2016-05-10 Solar Junction Corporation Non-alloyed contacts for III-V based solar cells
US20110114163A1 (en) * 2009-11-18 2011-05-19 Solar Junction Corporation Multijunction solar cells formed on n-doped substrates
DE102009057020B4 (de) * 2009-12-03 2021-04-29 Solaero Technologies Corp. Wachstumssubstrate für invertierte metamorphe Multijunction-Solarzellen
US8507365B2 (en) * 2009-12-21 2013-08-13 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
US20110232730A1 (en) 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
US9214586B2 (en) 2010-04-30 2015-12-15 Solar Junction Corporation Semiconductor solar cell package
US8187907B1 (en) 2010-05-07 2012-05-29 Emcore Solar Power, Inc. Solder structures for fabrication of inverted metamorphic multijunction solar cells
TWI414073B (zh) * 2010-07-20 2013-11-01 Cesi Ct Elettrotecnico Sperimentale Italiano Giacinto Motta S P A 高轉換效率光伏電池
KR20120034965A (ko) 2010-10-04 2012-04-13 삼성전자주식회사 태양 전지
US20170338357A1 (en) 2016-05-23 2017-11-23 Solar Junction Corporation Exponential doping in lattice-matched dilute nitride photovoltaic cells
TWI427807B (zh) * 2010-10-28 2014-02-21 Atomic Energy Council 能增加光電流收集效率的太陽能電池結構
US9214580B2 (en) * 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US9425249B2 (en) 2010-12-01 2016-08-23 Alliance For Sustainable Energy, Llc Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
WO2012074523A1 (en) 2010-12-01 2012-06-07 Alliance For Sustainable Energy, Llc Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates
US8962988B2 (en) 2011-02-03 2015-02-24 Solar Junction Corporation Integrated semiconductor solar cell package
US8859892B2 (en) 2011-02-03 2014-10-14 Solar Junction Corporation Integrated semiconductor solar cell package
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
JP5758257B2 (ja) * 2011-09-30 2015-08-05 シャープ株式会社 化合物半導体太陽電池製造用積層体、化合物半導体太陽電池およびその製造方法
WO2013074530A2 (en) 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
US9263611B2 (en) 2011-11-17 2016-02-16 Solar Junction Corporation Method for etching multi-layer epitaxial material
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
US9142615B2 (en) 2012-10-10 2015-09-22 Solar Junction Corporation Methods and apparatus for identifying and reducing semiconductor failures
US10153388B1 (en) 2013-03-15 2018-12-11 Solaero Technologies Corp. Emissivity coating for space solar cell arrays
US20170062642A1 (en) * 2013-04-29 2017-03-02 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell
US9853180B2 (en) 2013-06-19 2017-12-26 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with surface passivation
ITMI20131297A1 (it) * 2013-08-01 2015-02-02 Cesi Ct Elettrotecnico Sperim Entale Italian Cella fotovoltaica con banda proibita variabile
US9214594B2 (en) 2013-08-07 2015-12-15 Solaero Technologies Corp. Fabrication of solar cells with electrically conductive polyimide adhesive
US9768326B1 (en) 2013-08-07 2017-09-19 Solaero Technologies Corp. Fabrication of solar cells with electrically conductive polyimide adhesive
ES2831831T3 (es) 2014-02-05 2021-06-09 Array Photonics Inc Convertidor de energía monolítico con múltiples uniones
US9758261B1 (en) 2015-01-15 2017-09-12 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with lightweight laminate substrate
US10270000B2 (en) * 2015-10-19 2019-04-23 Solaero Technologies Corp. Multijunction metamorphic solar cell assembly for space applications
US9985161B2 (en) 2016-08-26 2018-05-29 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US9935209B2 (en) 2016-01-28 2018-04-03 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10361330B2 (en) 2015-10-19 2019-07-23 Solaero Technologies Corp. Multijunction solar cell assemblies for space applications
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
US10256359B2 (en) 2015-10-19 2019-04-09 Solaero Technologies Corp. Lattice matched multijunction solar cell assemblies for space applications
US10403778B2 (en) * 2015-10-19 2019-09-03 Solaero Technologies Corp. Multijunction solar cell assembly for space applications
CN105304764B (zh) * 2015-11-11 2017-12-05 厦门乾照光电股份有限公司 一种倒置结构太阳能电池制作方法
US9929300B2 (en) 2015-11-13 2018-03-27 Solaero Technologies Corp. Multijunction solar cells with electrically conductive polyimide adhesive
US10090420B2 (en) 2016-01-22 2018-10-02 Solar Junction Corporation Via etch method for back contact multijunction solar cells
US11316053B2 (en) * 2016-08-26 2022-04-26 Sol Aero Technologies Corp. Multijunction solar cell assembly
US10263134B1 (en) 2016-05-25 2019-04-16 Solaero Technologies Corp. Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell
US9680035B1 (en) 2016-05-27 2017-06-13 Solar Junction Corporation Surface mount solar cell with integrated coverglass
US10700230B1 (en) * 2016-10-14 2020-06-30 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10636926B1 (en) 2016-12-12 2020-04-28 Solaero Technologies Corp. Distributed BRAGG reflector structures in multijunction solar cells
KR101931712B1 (ko) * 2016-12-28 2018-12-24 엘지전자 주식회사 화합물 반도체 태양전지
WO2019010037A1 (en) 2017-07-06 2019-01-10 Solar Junction Corporation HYBRID MOCVD / MBE EPITAXIAL GROWTH OF MULTI-JUNCTION SOLAR CELLS ADAPTED TO THE HIGH-PERFORMANCE NETWORK
WO2019067553A1 (en) 2017-09-27 2019-04-04 Solar Junction Corporation SHORT-LENGTH WAVELENGTH INFRARED OPTOELECTRONIC DEVICES HAVING DILUTED NITRIDE LAYER
US20190181289A1 (en) 2017-12-11 2019-06-13 Solaero Technologies Corp. Multijunction solar cells
US11011660B1 (en) 2018-07-17 2021-05-18 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell
EP3939085A1 (en) 2019-03-11 2022-01-19 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
WO2020247691A1 (en) * 2019-06-04 2020-12-10 Solar Junction Corporation Dilute nitride optical absorption layers having graded doping
US20230079215A1 (en) * 2021-09-01 2023-03-16 Solaria Corporation Solar Device Fabrication Limiting Power Conversion Losses

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488834A (en) * 1965-10-20 1970-01-13 Texas Instruments Inc Microelectronic circuit formed in an insulating substrate and method of making same
US3964155A (en) * 1972-02-23 1976-06-22 The United States Of America As Represented By The Secretary Of The Navy Method of planar mounting of silicon solar cells
US4001864A (en) * 1976-01-30 1977-01-04 Gibbons James F Semiconductor p-n junction solar cell and method of manufacture
US4255211A (en) * 1979-12-31 1981-03-10 Chevron Research Company Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface
DE3036260A1 (de) * 1980-09-26 1982-04-29 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur herstellung von elektrischen kontakten an einer silizium-solarzelle
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
JPH065765B2 (ja) * 1982-12-23 1994-01-19 株式会社半導体エネルギ−研究所 光電変換装置
US4881979A (en) * 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
US4612408A (en) * 1984-10-22 1986-09-16 Sera Solar Corporation Electrically isolated semiconductor integrated photodiode circuits and method
JPS63244887A (ja) * 1987-03-31 1988-10-12 Sharp Corp アモルフアス太陽電池
US5217539A (en) * 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5021360A (en) * 1989-09-25 1991-06-04 Gte Laboratories Incorporated Method of farbicating highly lattice mismatched quantum well structures
US5322572A (en) * 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
JPH0472773A (ja) * 1990-07-13 1992-03-06 Hitachi Cable Ltd 多層接合型太陽電池
US5342453A (en) * 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
DE69435205D1 (de) 1993-12-14 2009-05-28 Spectrolab Inc Dünne Halbleitervorrichtung und Herstellungsverfahren
JP3169497B2 (ja) * 1993-12-24 2001-05-28 三菱電機株式会社 太陽電池の製造方法
US5479032A (en) * 1994-07-21 1995-12-26 Trustees Of Princeton University Multiwavelength infrared focal plane array detector
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6166318A (en) * 1998-03-03 2000-12-26 Interface Studies, Inc. Single absorber layer radiated energy conversion device
US6239354B1 (en) * 1998-10-09 2001-05-29 Midwest Research Institute Electrical isolation of component cells in monolithically interconnected modules
US6300557B1 (en) * 1998-10-09 2001-10-09 Midwest Research Institute Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
US6165873A (en) * 1998-11-27 2000-12-26 Nec Corporation Process for manufacturing a semiconductor integrated circuit device
JP3657143B2 (ja) * 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US6815736B2 (en) * 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
US20030070707A1 (en) * 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6690041B2 (en) * 2002-05-14 2004-02-10 Global Solar Energy, Inc. Monolithically integrated diodes in thin-film photovoltaic devices
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US6794631B2 (en) * 2002-06-07 2004-09-21 Corning Lasertron, Inc. Three-terminal avalanche photodiode
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
US6951819B2 (en) * 2002-12-05 2005-10-04 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
WO2005015638A1 (en) 2003-07-22 2005-02-17 Akzo Nobel N.V. Process for manufacturing a solar cell foil using a temporary substrate
US20050211291A1 (en) * 2004-03-23 2005-09-29 The Boeing Company Solar cell assembly
US8227689B2 (en) * 2004-06-15 2012-07-24 The Boeing Company Solar cells having a transparent composition-graded buffer layer
WO2006015185A2 (en) * 2004-07-30 2006-02-09 Aonex Technologies, Inc. GaInP/GaAs/Si TRIPLE JUNCTION SOLAR CELL ENABLED BY WAFER BONDING AND LAYER TRANSFER
US7846759B2 (en) * 2004-10-21 2010-12-07 Aonex Technologies, Inc. Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
FR2878076B1 (fr) 2004-11-17 2007-02-23 St Microelectronics Sa Amincissement d'une plaquette semiconductrice
US7166520B1 (en) * 2005-08-08 2007-01-23 Silicon Genesis Corporation Thin handle substrate method and structure for fabricating devices using one or more films provided by a layer transfer process
US8637759B2 (en) * 2005-12-16 2014-01-28 The Boeing Company Notch filter for triple junction solar cells
US7294869B2 (en) * 2006-04-04 2007-11-13 International Business Machines Corporation Silicon germanium emitter
US20090078308A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US20100186804A1 (en) * 2009-01-29 2010-07-29 Emcore Solar Power, Inc. String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers
US20100122724A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
US20090078309A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US8536445B2 (en) * 2006-06-02 2013-09-17 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US20080029151A1 (en) * 2006-08-07 2008-02-07 Mcglynn Daniel Terrestrial solar power system using III-V semiconductor solar cells
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US20080149173A1 (en) * 2006-12-21 2008-06-26 Sharps Paul R Inverted metamorphic solar cell with bypass diode
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
US20080245409A1 (en) * 2006-12-27 2008-10-09 Emcore Corporation Inverted Metamorphic Solar Cell Mounted on Flexible Film
US20080185038A1 (en) * 2007-02-02 2008-08-07 Emcore Corporation Inverted metamorphic solar cell with via for backside contacts
US20090038679A1 (en) * 2007-08-09 2009-02-12 Emcore Corporation Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US20090078311A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20090223554A1 (en) * 2008-03-05 2009-09-10 Emcore Corporation Dual Sided Photovoltaic Package
US20090229658A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Non-Isoelectronic Surfactant Assisted Growth In Inverted Metamorphic Multijunction Solar Cells
US20090229662A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20100012175A1 (en) * 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) * 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US8263853B2 (en) * 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US7741146B2 (en) * 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US20100147366A1 (en) * 2008-12-17 2010-06-17 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector
US7960201B2 (en) * 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US8263856B2 (en) * 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102144304A (zh) * 2009-07-21 2011-08-03 试验电工中心意大利风信子接收股份公司 具有高转换效率的光伏电池
US9240514B2 (en) 2009-07-21 2016-01-19 Cesi—Centro Elettrotecnico Sperimentale Italiano Giacinto Motta S.P.A. Photovoltaic cell having a high conversion efficiency
CN102144304B (zh) * 2009-07-21 2016-01-06 试验电工中心意大利风信子接收股份公司 具有高转换效率的光伏电池
WO2012174952A1 (zh) * 2011-06-22 2012-12-27 厦门市三安光电科技有限公司 一种高倍聚光多结太阳能电池及其制备方法
CN102651417B (zh) * 2012-05-18 2014-09-03 中国科学院苏州纳米技术与纳米仿生研究所 三结级联太阳能电池及其制备方法
CN102651417A (zh) * 2012-05-18 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 三结级联太阳能电池及其制备方法
CN102779890A (zh) * 2012-08-14 2012-11-14 厦门乾照光电股份有限公司 一种倒置三结太阳能电池及其制造方法
WO2017084492A1 (zh) * 2015-11-20 2017-05-26 北京汉能创昱科技有限公司 双结薄膜太阳能电池组件及其制作方法
CN106784127A (zh) * 2015-11-20 2017-05-31 北京汉能创昱科技有限公司 一种双结薄膜太阳能电池组件及其制作方法
CN106784108A (zh) * 2015-11-20 2017-05-31 北京汉能创昱科技有限公司 一种双结薄膜太阳能电池组件及其制作方法
CN106784127B (zh) * 2015-11-20 2019-02-01 北京创昱科技有限公司 一种双结薄膜太阳能电池组件及其制作方法
CN106784108B (zh) * 2015-11-20 2019-05-31 北京创昱科技有限公司 一种双结薄膜太阳能电池组件及其制作方法
CN114335208A (zh) * 2022-03-16 2022-04-12 南昌凯迅光电股份有限公司 一种新型砷化镓太阳电池及制作方法
CN114335208B (zh) * 2022-03-16 2022-06-10 南昌凯迅光电股份有限公司 一种新型砷化镓太阳电池及制作方法

Also Published As

Publication number Publication date
JP5456923B2 (ja) 2014-04-02
US20090155951A1 (en) 2009-06-18
EP2073276A3 (en) 2012-09-19
EP2073276B8 (en) 2019-03-06
EP2073276B1 (en) 2018-11-21
JP5318522B2 (ja) 2013-10-16
US7727795B2 (en) 2010-06-01
JP2009147309A (ja) 2009-07-02
EP2073276A2 (en) 2009-06-24
JP2013165299A (ja) 2013-08-22
TWI355091B (en) 2011-12-21
TW200926426A (en) 2009-06-16
US20090155952A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
CN101459204A (zh) 反项变质多结太阳能电池中的指数掺杂层
CN101740647B (zh) 具有两个变质层的四结倒置变质多结太阳能电池
CN101083290B (zh) 多结太阳能电池及其形成方法
US10374112B2 (en) Inverted metamorphic multijunction solar cell including a metamorphic layer
CN101499495B (zh) 倒置变形多结太阳能电池中的异质结子电池
US20100282306A1 (en) Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20120211071A1 (en) Four junction inverted metamorphic multijunction solar cell with a single metamorphic layer
CN101740663A (zh) 制造太阳能电池的方法
US20120186641A1 (en) Inverted multijunction solar cells with group iv alloys
US9691928B2 (en) Inverted metamorphic multijunction solar cells with doped alpha layer
CN101882645A (zh) 具有iv/iii-v族混合合金的反向多结太阳能电池
US20100282307A1 (en) Multijunction Solar Cells with Group IV/III-V Hybrid Alloys for Terrestrial Applications
US9853180B2 (en) Inverted metamorphic multijunction solar cell with surface passivation
US9040342B2 (en) Photovoltaic cell and manufacturing method thereof
US10381501B2 (en) Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20150040972A1 (en) Inverted metamorphic multijunction solar cell with surface passivation of the contact layer
US9634172B1 (en) Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20150034151A1 (en) Inverted metamorphic multijunction solar cell with passivation in the window layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090617