CN101499495B - 倒置变形多结太阳能电池中的异质结子电池 - Google Patents

倒置变形多结太阳能电池中的异质结子电池 Download PDF

Info

Publication number
CN101499495B
CN101499495B CN200810171863.XA CN200810171863A CN101499495B CN 101499495 B CN101499495 B CN 101499495B CN 200810171863 A CN200810171863 A CN 200810171863A CN 101499495 B CN101499495 B CN 101499495B
Authority
CN
China
Prior art keywords
battery
sub
band gap
solar cell
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200810171863.XA
Other languages
English (en)
Other versions
CN101499495A (zh
Inventor
马克·A·斯坦
阿瑟·科恩费尔德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suoaier Technology Co Ltd
Original Assignee
Oncogen LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncogen LP filed Critical Oncogen LP
Publication of CN101499495A publication Critical patent/CN101499495A/zh
Application granted granted Critical
Publication of CN101499495B publication Critical patent/CN101499495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

本发明涉及倒置变形多结太阳能电池中的异质结子电池。一种倒置变形多结太阳能电池及其制作方法,所述太阳能电池包括上部子电池、中部子电池和下部子电池,所述方法包括:提供第一衬底以用于半导体材料的外延生长;在所述衬底上形成上部第一太阳能子电池,其具有第一带隙;在所述第一太阳能子电池上方形成中部第二太阳能子电池,其具有小于所述第一带隙的第二带隙;在所述第二子电池上方形成分级夹层,所述分级夹层具有大于所述第二带隙的第三带隙;以及在所述分级夹层上方形成下部第三太阳能子电池,其具有小于所述第二带隙的第四带隙,使得所述第三子电池相对于所述第二子电池晶格失配,其中所述太阳能子电池中的至少一者具有异质结基极-发射极层。

Description

倒置变形多结太阳能电池中的异质结子电池
技术领域
本发明涉及太阳能电池半导体装置的领域,且明确地说,涉及包括变形层的多结太阳能电池。此类装置还包括称为倒置变形多结太阳能电池的太阳能电池。
背景技术
光伏电池(也称为太阳能电池)是已经在过去几年中变得可用的最重要的新能源之一。已经向太阳能电池开发投入了相当大的努力。因而,太阳能电池当前正用于许多商用和以消费者为导向的应用中。尽管已经在此领域中作出了显著进步,但对太阳能电池满足较复杂应用需要的要求尚未能跟上需求。例如用于数据通信中的集线器地面电力系统和人造卫星等应用已经极大地增加了对电力与能量转换特征得到改进的太阳能电池的需求。
在人造卫星和其它太空相关的应用中,人造卫星电力系统的大小、质量和成本取决于所使用的太阳能电池的电力与能量转换效率。换句话说,有效载荷的大小和机载服务的可用性与所提供的电力量成比例。因此,随着有效载荷变得较为复杂,太阳能电池(其充当机载电力系统的电力转换装置)变得越来越重要。
太阳能电池经常被制作成垂直多结结构,且设置成水平阵列,其中各个太阳能电池串联连接在一起。阵列的形状和结构以及其所含有的电池数目部分由所需的输出电压和电流决定。
例如在M.W.万勒斯(M.W.Wanless)等人的“用于高性能III-V光伏能量转换器的晶格失配方法”(第31届IEEE光伏专家会议的会议记录,2005年1月3日到7日,IEEE出版社2005年出版)中描述的倒置变形太阳能电池结构展现将来商用高效率太阳能电池开发的重要概念出发点。此参考文献中所描述的结构展现许多与材料和制作步骤的恰当选择有关的实际困难。
在本发明之前,现有技术中所揭示的材料和制作步骤尚不足以使用倒置变形多结电池结构生产商业可行且能量高效的太阳能电池。
发明内容
简要且概括地说,本发明提供多结太阳能电池,所述多结太阳能电池包括:底部子电池,其具有在0.8到1.2eV范围内的带隙;中部子电池,其具有基极和发射极、在1.2到1.6eV的范围内的带隙,且设置于底部电池上方并与之晶格失配;以及顶部子电池,其具有基极和发射极,且设置于中部电池上方并与之晶格失配,其中所述中部和底部子电池中的基极-发射极结中的至少一者是异质结。
在另一方面中,本发明提供一种多结太阳能电池,所述多结太阳能电池包括:上部第一太阳能子电池,其具有基极和发射极且具有第一带隙;中部第二太阳能子电池,其邻近于第一太阳能子电池并具有小于第一带隙的第二带隙且具有异质结基极和发射极;分级夹层,其邻近于第二太阳能子电池,所述分级夹层具有大于第二带隙的第三带隙;以及下部太阳能子电池,其邻近于分级夹层,所述下部子电池具有小于第二带隙的第四带隙,使得第三子电池相对于第二子电池晶格失配。
在另一方面中,本发明提供一种光伏太阳能电池,其包括:顶部子电池,其包括具有InGaP半导体材料的基极和发射极层;中部子电池,其包括具有GaAs半导体材料的基极层和具有InGaP半导体材料的发射极层;以及底部子电池,其包括由InGaP构成的发射极层和由InGaAs半导体材料构成的基极层。
在另一方面中,本发明提供一种多结太阳能电池,其包括:第一子电池,其包含具有第一带隙和第一晶格常数的第一半导体材料;第二子电池,其包含具有异质结基极和发射极以及第二带隙和第二晶格常数的第二半导体材料,其中第二带隙小于第一带隙且第二晶格常数大于第一晶格常数;以及晶格常数过渡材料,其安置于第一子电池与第二子电池之间,所述晶格常数过渡材料具有从第一晶格常数逐渐变化到第二晶格常数的晶格常数。
在另一方面中,本发明提供一种形成多结太阳能电池的方法,所述方法包含:形成第一子电池,其包含具有第一带隙和第一晶格常数的第一半导体材料;形成第二子电池,其包含具有第二带隙和第二晶格常数的第二半导体材料,其中第二带隙小于第一带隙且第二晶格常数大于第一晶格常数;以及形成晶格常数过渡材料,其安置于第一子电池与第二子电池之间,所述晶格常数过渡材料具有从第一晶格常数逐渐变化到第二晶格常数的晶格常数,其中所述子电池中的至少一者包括异质结。
在另一方面中,本发明提供一种形成多结太阳能电池的方法,所述方法包括:形成底部子电池,其具有在0.8到1.2eV范围内的带隙;形成中部子电池,其具有基极和发射极、在1.2到1.6eV范围内的带隙,且设置于底部电池上方并与之晶格失配;以及形成顶部子电池,其具有基极和发射极,且设置于中部电池上方并与之晶格失配,其中所述中部和顶部子电池中的基极-发射极结中的至少一者是异质结。
在另一方面中,本发明提供一种形成包含上部子电池、中部子电池和下部子电池的多结太阳能电池的方法,所述方法包括:提供第一衬底以用于半导体材料的外延生长;在所述衬底上形成具有基极和发射极的第一太阳能子电池,其具有第一带隙;在第一太阳能子电池上方形成具有基极和发射极的第二太阳能子电池,其具有小于第一带隙的第二带隙;在第二子电池上方形成分级夹层,所述分级夹层具有大于第二带隙的第三带隙;以及在分级夹层上方形成具有基极和发射极的第三太阳能子电池,其具有小于第二带隙的第四带隙,使得第三子电池相对于第二子电池晶格失配,其中所述子电池中的至少一者具有异质结基极-发射极层。
一种形成光伏太阳能电池的方法,所述方法包括:形成顶部电池,其包括InGaP半导体材料的基极和发射极层;形成中部电池,其包括具有GaAs半导体材料的基极层和具有InGaP半导体材料的发射极层;以及形成底部电池,其包括由InGaP构成的发射极层和由InGaAs半导体材料构成的基极层。
在另一方面中,本发明提供一种通过以下方式来制造太阳能电池的方法:提供第一衬底;在第一衬底上沉积半导体材料的层序列,从而形成太阳能电池,其中包括至少一个异质结子电池;在所述层序列之上安装替代衬底;以及移除第一衬底。
附图说明
通过结合附图参看以下详细描述将更好且更全面地理解本发明,其中:
图1是表示某些二元材料的带隙及其晶格常数的曲线图;
图2是在生长衬底上沉积半导体层之后本发明的太阳能电池的横截面图;
图3是在下一工艺步骤之后图2的太阳能电池的横截面图;
图4是在下一工艺步骤之后图3的太阳能电池的横截面图;
图5A是在下一工艺步骤之后图4的太阳能电池的横截面图,在所述工艺步骤中附接替代衬底;
图5B是在下一工艺步骤之后图5A的太阳能电池的横截面图,在所述工艺步骤中移除原始衬底;
图5C是图5B的太阳能电池的另一横截面图,其中替代衬底位于所述图式的底部;
图6是在下一工艺步骤之后图5C的太阳能电池的简化横截面图;
图7是在下一工艺步骤之后图6的太阳能电池的横截面图;
图8是在下一工艺步骤之后图7的太阳能电池的横截面图;
图9是在下一工艺步骤之后图8的太阳能电池的横截面图;
图10A是其中制作太阳能电池的晶片的顶部平面图;
图10B是其中制作太阳能电池的晶片的底部平面图;
图11是在下一工艺步骤之后图9的太阳能电池的横截面图;
图12是在下一工艺步骤之后图11的太阳能电池的横截面图;
图13是在下一工艺步骤之后图12的晶片的顶部平面图,在所述工艺步骤中在电池周围蚀刻出沟渠;
图14A是本发明第一实施例中在下一工艺步骤之后图12的太阳能电池的横截面图;
图14B是本发明第二实施例中在下一工艺步骤之后图14A的太阳能电池的横截面图;
图15是本发明第三实施例中在下一工艺步骤之后图14B的太阳能电池的横截面图;以及
图16是根据本发明的变形太阳能电池中的基极层中的掺杂分布的曲线图。
具体实施方式
现将描述本发明的细节,其中包括其示范性方面和实施例。参看附图和以下描述,使用相同参考标号来标识相同或功能相似的元件,且希望其以高度简化的图解方式说明示范性实施例的主要特征。此外,并不希望附图描绘实际实施例的每个特征或所描绘元件的相对尺寸,且附图并未按比例绘示。
制作倒置变形多结(IMM)太阳能电池的基本概念是以“颠倒”次序在衬底上生长太阳能电池的子电池。也就是说,在半导体生长衬底(例如,GaAs或Ge)上外延生长高带隙子电池(即,具有在1.8到2.1eV范围内的带隙的子电池),其将通常作为面向太阳能辐射的“顶部”子电池,且因此,此类子电池与此衬底晶格匹配。接着可在高带隙子电池上生长一个或一个以上较低带隙中部子电池(即,具有在1.2到1.6eV范围内的带隙)。
在中部子电池上方形成至少一个下部子电池,使得所述至少一个下部子电池相对于生长衬底大致晶格失配,且使得所述至少一个下部子电池具有第三较低带隙(即,在0.8到1.2eV范围内的带隙)。在“底部”或大致晶格失配的下部子电池上方提供替代衬底或支撑衬底,且随后移除生长半导体衬底。(所述生长衬底随后可接着再次用于第二和后续太阳能电池的生长)。
本申请案大体上针对于一种倒置变形多结太阳能电池及其制作方法,所述太阳能电池并入有一个或一个以上异质结。如转让给本共同受让人的法塔米(Fatemi)等人的第7,071,407号相关美国专利中陈述,使用具有晶格匹配和最佳带隙两者以增强太阳能电池性能的半导体材料是至关重要的。在本发明的一个实施例中,使用较高带隙异质结中部子电池以增加所产生的光电流和太阳能频谱的覆盖范围。
用高带隙异质结中部子电池替换常规的同质结中部子电池除了增加光产生的光电流以外还具有其它好处。如法塔米等人的第7,071,407号相关美国专利中陈述,高带隙异质结减少暗饱和电流,即在零照射下形成的热产生的电荷载流子。
根据以下关系式确定开路电压(Voc):
V oc = nkt q In ( j sc j sat ) + 1 .
其中k是玻尔兹曼常数(Boltzman constant),T是温度,q是电子电荷,Jsc是短路电流密度,n是二极管理想因数,且Jsat是二极管的饱和电流密度。换句话说,使用高带隙异质结中部子电池降低暗饱和电流,且因而提供较大的开路电压(Voc)。
具有高带隙异质结中部子电池的三结太阳能电池结构提供较高的开路电压和较高的短路电流。换句话说,通过利用较高带隙发射极异质结增加日光或光生光电流,因为与基极区中的吸收相比,可吸收在发射极区中的光子量相对较低。因此,使用异质结中部子电池的另一优点是具有高带隙半导体材料的发射极较有效地将子带隙日光传递到基极区。因此,高带隙异质结中部子电池提供较大的短路电流,因为其提供对光生载流子的较高平均收集概率。
作为背景,图1是表示某些二元材料及其晶格常数的带隙的曲线图。三元材料的带隙和晶格常数位于在典型的相关联二元材料之间所绘示的实线上(例如,在曲线图上GaAlAs介于GaAs与AlAs点之间,其中带隙在GaAs的1.42eV与AlAs的2.16eV之间变动)。因此,依据所需的带隙而定,可恰当地选择三元材料的材料成分以用于生长。
半导体结构中的各层的晶格常数和电学性质优选地通过指定恰当的反应物生长温度和时间且通过使用恰当的成分和掺杂剂来控制。使用汽相沉积方法(例如有机金属汽相外延(OMVPE)、金属有机化学汽相沉积(MOCVD)、分子束外延(MBE)或用于颠倒生长的其它汽相沉积方法)可使得形成电池的在单片半导体结构中的层能够生长为具有所需厚度、元素成分、掺杂剂浓度以及分级和导电性类型。
图2描绘在衬底上外延生长三个子电池A、B和C之后根据本发明的倒置变形多结(IMM)太阳能电池结构。上文所述的相关专利申请案中描述的IMM太阳能电池结构的早期实施例并入有同质结子电池,即基极/发射极层由p-InGaP/n-InGaP顶部电池、n-GaAs/p-GaAs中部电池和n-InGaAs/p-InGaAs底部电池组成。对此类太阳能电池所作的内部量子效率和Voc数据测量的分析指示此类子电池可受益于蓝色响应的改进和暗电流的降低。
太阳能电池的蓝色响应的降级与发射极中和窗口/发射极界面处的复合电流相关联。如果位于顶部子电池下方的子电池的发射极带隙(即,中部和底部子电池发射极带隙)大于或等于顶部电池带隙,那么将不存在任何辐射将被吸收在发射极中。撞击于较低带隙子电池上的所有辐射将被吸收在较低掺杂、较佳收集的基极区中,进而使蓝色响应最大化。另外,下部子电池发射极和发射极/窗口区中将不存在光学吸收所产生的复合电流。承认的是,电流收集的改进和增大的Voc值可能较小,但其对优化电池性能具有重要作用。
问题是使来自每一子电池的短路电流密度(Jsc)和开路电压(Voc)最大化。发射极中和窗口/发射极界面处的光学产生的复合电流负面影响Jsc和Voc两者。这个问题常常通过以下方式来解决:(1)生长具有大价带隙偏移的非常低缺陷的窗口/发射极界面,以及(2)在发射极中并入漂移场以将少数载流子驱动到结。本发明从子电池性能中消除窗口/发射极界面和发射极的光学性质,因为大致所有光学产生的少数载流子均是在基极区中形成的。
转向图2中所描绘的太阳能电池结构,其中展示衬底101,其可为砷化镓(GaAs)、锗(Ge)或其它合适的材料。在Ge衬底的情况下,在衬底上直接沉积成核层(未图示)。在衬底上或在成核层上方(在Ge衬底的情况下),进一步沉积缓冲层102和蚀刻终止层103。在GaAs衬底的情况下,缓冲层102优选地为GaAs。在Ge衬底的情况下,缓冲层102优选地为InGaAs。接着在层103上沉积GaAs的接触层104,且在接触层上沉积AlInP的窗口层105。接着在窗口层105上外延沉积子电池A,所述子电池A由n+发射极层106和p型基极层107组成。子电池A大体上与生长衬底101晶格匹配。
应注意,所述多结太阳能电池结构可由周期表中列举的III到V族元素的任何合适的组合(其服从晶格常数和带隙要求)形成,其中III族包括硼(B)、铝(Al)、镓(Ga)、铟(In)和铊(T)。IV族包括碳(C)、硅(Si)、锗(Ge)和锡(Sn)。V族包括氮(N)、磷(P)、砷(As)、锑(Sb)和铋(Bi)。
在优选实施例中,发射极层106由InGa(Al)P组成,且基极层107由InGa(Al)P组成。在前述化学式中位于括号中的铝或A1项意味着A1是可选成分,且在此情况下可按照在0%到30%范围内的量使用。根据本发明的发射极层106和基极层107的掺杂分布将结合图16来论述。
子电池A将在完成根据本发明的工艺步骤之后最终成为倒置变形结构的“顶部”子电池,所述工艺步骤将在下文中描述。
在基极层178之上沉积背面电场(“BSF”)层108,其用于降低复合损耗,优选为p+AlGaInP。
BSF层108从基极/BSF分界面附近的区域驱动少数载流子以使复合损耗效应最小化。换句话说,BSF层18降低太阳能子电池A的背侧处的复合损耗,且进而降低基极中的复合。
在BSF层108之上沉积重度掺杂p型和n型层序列109,所述序列形成隧道二极管,其是用以将子电池A连接到子电池B的电路元件。这些层优选地由p++AlGaAs和n++InGaP组成。
在隧道二极管层109之上沉积窗口层110,其优选为n+InAlP。子电池B中所使用的窗口层110也操作以降低复合损耗。窗口层110还改进下伏结的电池表面的钝化作用。所属领域的技术人员应明白,可在不脱离本发明范围的情况下在电池结构中添加或删除额外层。
在窗口层110之上沉积子电池B的各层:n型发射极层111和p型基极层112。这些层优选地分别由InGaP和In0.015GaAs组成(对于Ge衬底或生长模板),或分别由InGaP和GaAs组成(对于GaAs衬底),但也可使用符合晶格常数和带隙要求的其它任何合适的材料。因此,子电池B可由GaAs、GaInP、GaInAs、GaAsSb或GaInAsN发射极区和GaAs、GaInAs、GaAsSb或GaInAsN基极区组成。根据本发明的层111和112的掺杂分布将结合图16来论述。
在本发明的优选实施例中,中部子电池发射极具有等于顶部子电池发射极的带隙,且底部子电池发射极具有大于中部子电池的基极的带隙的带隙。因此,在制作太阳能电池并进行实施和操作之后,中部子电池B或底部子电池C发射极将均不会暴露于可吸收辐射。大体上,辐射将被吸收在电池B和C的基极中,其具有比发射极窄的带隙。因此,使用异质结子电池的优点是:(1)所述两个子电池的短波长响应将改进,且(2)发射极/窗口界面处和发射极中的复合电流将减少。这些结果将增加Jsc和Voc
在电池B之上沉积BSF层113,其执行与BSF层109相同的功能。在BSF层113上方沉积p++/n++隧道二极管114,其类似于层109,从而再次形成用以将子电池B连接到子电池C的电路元件。这些层114优选为p++AlGaAs和n++InGaP的混合物。
在隧道二极管114上方沉积障壁层115(优选地,由n型InGa(Al)P组成),到达约1.0微米的厚度。此障壁层既定用以防止螺旋位错在与生长方向相反的方向上传播到中部子电池B和顶部子电池C中或在生长方向上传播到底部子电池A中,且在2007年9月24日申请的第11/860,183号共同待决美国专利申请案中更明确地描述。
在障壁层115上方沉积变形层(或分级夹层)116。层116优选为一系列成分阶梯分级的InGaAlAs层,其优选地具有单调变化的晶格常数,以便实现从子电池B到子电池C的半导体结构中的晶格常数的逐步过渡,同时使螺旋位错发生最小化。层116的带隙在其整个厚度中恒定不变,优选地接近1.5eV或者符合略微大于中间子电池B的带隙的值。分级夹层的优选实施例也可表达为由(InxGa1-x)yAl1-yAs组成,其中x和y经选择以使得夹层的带隙保持恒定为近似1.50eV。
在替代实施例中,太阳能电池仅具有两个子电池,且“中部”电池B是最终太阳能电池中的最上部或顶部子电池,其中“顶部”子电池B将通常具有1.8到1.9eV的带隙,那么夹层的带隙将保持恒定为1.9eV。
在上文引用的万勒斯等人论文中所描述的倒置变形结构中,变形层由九个成分分级InGaP阶梯构成,其中每一阶梯层具有0.25微米的厚度。因而,万勒斯的每一层具有不同带隙。在本发明的优选实施例中,层116由多个InGaAlAs层组成,其具有单调变化的晶格常数,每一层具有相同带隙,接近1.5eV。
利用例如InGaAlAs等恒定带隙材料的优点是基于砷化物的半导体材料在标准MOCVD反应器中要容易处理得多,同时少量铝确保变形层的辐射透明度。
虽然本发明的优选实施例出于可制造性和辐射透明度的原因而针对变形层116利用多个InGaAlAs层,但本发明的其它实施例可利用不同材料系统以实现从子电池B到子电池C的晶格常数变化。因此,万勒斯的使用成分分级InGaP的系统是本发明的第二实施例。本发明的其它实施例可利用连续分级(与阶梯分级相反)的材料。更一般地说,分级夹层可由基于As、P、N、Sb的III-V化合物半导体中的任一者组成,所述半导体服从具有大于或等于第二太阳能电池的晶格参数的平面内晶格参数且小于或等于第三太阳能电池的晶格参数并且具有大于第二太阳能电池的带隙能量的带隙能量的限制。
在本发明的另一实施例中,可在InGaAlAs变形层116上方沉积可选的第二障壁层117。第二障壁层117将通常具有与障壁层115的成分不同的成分,且执行本质上相同的功能,即防止螺旋位错传播。在优选实施例中,障壁层117是n+型GaInP。
接着在障壁层117上方(或在没有第二障壁层的情况下,直接在层116上方)沉积窗口层118,其优选地由n+型GaInP组成。此窗口层操作以降低子电池“C”中的复合损耗。所属领域的技术人员应明白,可在不脱离本发明范围的情况下在电池结构中添加或删除额外层。
在窗口层118之上沉积电池C的各层:n发射极层119和p型基极层120。这些层优选地分别由n型InGaAs和p型InGaAs组成,或对于异质结子电池而由n型InGaP和p型InGaAs组成,但也可使用符合晶格常数和带隙要求的另一合适材料。层119和120的掺杂分布将结合图16来论述。
接着在电池C之上沉积BSF层121,其优选地由GaInAsP组成,所述BSF层执行与BSF层108和113相同的功能。
最后,在BSF层121上沉积由GaInAs组成的P++接触层122。
所属领域的技术人员应明白,可在不脱离本发明范围的情况下在电池结构中添加或删除额外层。
图3是在下一工艺步骤之后图2的太阳能电池的横截面图,在所述工艺步骤中在p+半导体接触层122上方沉积金属接触层123。所述金属优选为金属层序列Ti/Au/Ag/Au。
图4是在下一工艺步骤之后图3的太阳能电池的横截面图,在所述工艺步骤中在金属层123上方沉积粘合剂层124。所述粘合剂优选为晶片接合剂(由密苏里州罗拉(Rolla,MO.)的布鲁尔科技有限公司(Brewer Science,Inc.)制造)。
图5A是在下一工艺步骤之后图4的太阳能电池的横截面图,在所述工艺步骤中附接替代衬底125,其优选为蓝宝石。或者,所述替代衬底可为GaAs、Ge或Si,或者其它合适的材料。替代衬底的厚度约为40密耳,且经穿孔有直径约为1mm且间隔开4mm的孔,以辅助随后移除粘合剂和衬底。作为对使用粘合剂层124的替代方案,可将合适的衬底(例如,GaAs)以共熔方式接合到金属层123。
图5B是在下一工艺步骤之后图5A的太阳能电池的横截面图,在所述工艺步骤中通过研磨和/或蚀刻步骤的序列移除原始衬底,其中移除衬底101、缓冲层103和蚀刻终止层103。特定蚀刻剂的选择取决于生长衬底。
图5C是图5B的太阳能电池的横截面图,其具有使替代衬底125位于所述图式的底部的定向。本申请案中的后续图式将采用此定向。
图6是图5B的太阳能电池的简化横截面图,其仅描绘位于替代衬底125上方的几个顶部层和下部层。
图7是在下一工艺步骤之后图6的太阳能电池的横截面图,在所述工艺步骤中通过HCl/H2O溶液移除蚀刻终止层103。
图8是在下一工艺步骤序列之后图7的太阳能电池的横截面图,在所述工艺步骤中在接触层104上方放置光致抗蚀剂掩模(未图示)以形成网格线501。经由蒸发沉积网格线501并以光刻方式对其进行图案化,且使其沉积在接触层104上方。提离所述掩模以形成金属网格线501。
图9是在下一工艺步骤之后图8的太阳能电池的横截面图,在所述工艺步骤中使用所述网格线作为掩模以使用柠檬酸/过氧化物蚀刻混合物向下蚀刻表面到达窗口层105。
图10A是其中实施太阳能电池的晶片的顶部平面图。仅出于说明的目的而描绘四个电池,且本发明不限于每个晶片任何特定电池数目。
在每一电池中,存在网格线501(图9的横截面中更明确地展示)、互连总线502和接触垫503。网格和总线的几何形状和数目是说明性的,且本发明不限于所说明的实施例。
图10B是图10A所展示的具有四个太阳能电池的晶片的底部平面图。
图11是在下一工艺步骤之后图11的太阳能电池的横截面图,在所述工艺步骤中在具有网格线501的晶片的“底部”侧的整个表面上方施加抗反射(ARC)介电涂覆层130。
图12是根据本发明在下一工艺步骤之后图11的太阳能电池的横截面图,在所述工艺步骤中使用磷化物和砷化物蚀刻剂向下蚀刻沟道510和半导体结构的一部分到达金属层123,从而界定外围边界并留下平台结构,所述平台结构构成太阳能电池。图12中所描绘的横截面是如从图13所示的A-A平面看到的横截面。
图13是图12的晶片的顶部平面图,其描绘使用磷化物和砷化物蚀刻剂在每一电池的周边周围蚀刻的沟道510。
图14A是本发明第一实施例中在下一工艺步骤之后图12的太阳能电池的横截面图,在所述工艺步骤中通过碾磨、研磨或蚀刻近似地使替代衬底125薄化为相对较薄的层125a。
图14B是本发明第二实施例中在下一工艺步骤之后图14A的太阳能电池的横截面图,在所述工艺步骤中通过粘合剂将覆盖玻璃紧固到电池的顶部。
图15是本发明第三实施例中在下一工艺步骤之后图14B的太阳能电池的横截面图,在所述工艺步骤中将覆盖玻璃紧固到电池的顶部且完全移除替代衬底125,从而仅留下形成太阳能电池的背侧接触的金属接触层123。所述替代衬底可在后续晶片处理操作中再次使用。
图16是本发明的倒置变形多结太阳能电池的一个或一个以上子电池中的发射极和基极层中的掺杂分布的曲线图。本发明范围内的各种掺杂分布和此类掺杂分布的优点在2007年12月13日申请且以引用的方式并入本文中的第11/956,069号共同待决美国专利申请案中更明确地描述。本文所描绘的掺杂分布仅为说明性的,且在不脱离本发明范围的情况下,可利用其它更复杂的分布,如所属领域的技术人员将明白的。
将了解,上文描述的元件中的每一者或两者或两者以上一起也可有效地应用于不同于上述类型的构造的其它类型的构造中。
虽然本发明的优选实施例利用三个子电池的垂直堆叠,但本发明可应用于具有更少或更大数目的子电池(即,双结电池、四结电池、五结电池等)的堆叠。在四结或更多结电池的情况下,还可利用一个以上变形分级夹层的使用。
根据本发明的结构和方法可应用于通过适当选择生长衬底的导电性类型而形成具有p/n或n/p配置或两者的电池。如果生长衬底具有与电池中的p和n层序列的配置所需要的导电性类型相反的导电性类型,那么可在整个电池中使用恰当的隧道二极管,如本发明中所说明。
另外,虽然优选实施例经配置为具有顶部和底部电触点,但可替代地借助于到达位于子电池之间的侧面导电半导体层的金属触点来接触子电池。此类配置可用于形成3端子、4端子和一般来说,n端子装置。子电池可使用这些额外端子在电路中互连,使得可有效地使用每一子电池中的大部分可用光生电流密度,从而使多结电池得到高效率,尽管光生电流密度通常在各种子电池中有所不同。
如上文陈述,本发明可利用一个或一个以上或所有同质结电池或子电池(即,其中在p型半导体与n型半导体之间形成p-n结的电池或子电池,所述p型半导体与n型半导体两者具有相同的化学成分和相同带隙,不同之处只是掺杂剂种类和类型)或者一个或一个以上异质结电池或子电池的布置。具有p型和n型InGaP的子电池A是同质结子电池的一个实例。或者,如2008年1月__日申请的第11/____号美国专利申请案中更明确地描述,本发明可利用一个或一个以上或所有异质结电池或子电池,即其中在p型半导体与n型半导体之间形成p-n结的电池或子电池,其中除了在形成p结的p型和n型区中利用不同掺杂剂种类和类型以外,在n型和n型区中还具有半导体材料的不同化学成分和/或在p型区中具有不同带隙能量。
在一些电池中,可在发射极层与基极层之间放置较薄的所谓“本征层”,其具有与发射极或基极层相同或不同的成分。本征层用以抑制空间电荷区中的少数载流子复合。类似地,基极层或发射极层还可在其厚度的一部分或全部上方为本征的或非有意掺杂(“ND”)的。
窗口或BSF层的成分可利用服从晶格常数和带隙要求的其它半导体化合物,且可包括AlInP、AlAs、AlP、AlGaInP、AlGaAsP、AlGaInAs、AlGaInPAs、GaInP、GaInAs、GaInPAs、AlGaAs、AlInAs、AlInPAs、GaAsSb、AlAsSb、GaAlAsSb、AlInSb、GaInSb、AlGaInSb、AlN、GaN、InN、GaInN、AlGaInN、GaInNAs、AlGaInNAs、ZnSSe、CdSSe和类似材料,且仍落在本发明的精神内。
尽管已将本发明说明并描述为在倒置变形多结太阳能电池中实施,但不希望其局限于所展示的细节,因为可在不以任何方式脱离本发明的精神的情况下作出各种修改和结构改变。
因此,尽管对本发明的描述主要集中于太阳能电池或光伏装置,但所属领域的技术人员知道,例如热光伏(TPV)电池、光电检测器和发光二极管(LED)等其它光电子装置在结构、物理学和材料上非常类似于光伏装置,只是在掺杂等方面具有一些微小变化。举例来说,光电检测器可由与上文描述的光伏装置类似的III-V材料和结构制成,但可能具有较多的轻微掺杂区以实现光敏感性而非使电力产生最大化。同样,LED也可用类似结构和材料制作,但可能具有较多的重度掺杂区以缩短复合时间,因此缩短用以产生光而非电力的辐射寿命。因此,本发明也适用于具有如上文针对光伏电池所描述的类似结构、材料和物质成分、相关制造物件和改进的光电检测器和LED。
在不作进一步分析的情况下,前文将全面揭示本发明的要点,使得其他人能够在不省略从现有技术的观点来看清楚地构成本发明的一般或特定方面的本质特性的特征的情况下通过应用当前知识来容易地将其修改用于各种应用,且因此,此类修改应当并希望涵盖于所附权利要求书的等效物的意义和范围内。

Claims (13)

1.一种多结太阳能电池,其包含:
上部第一太阳能子电池,其具有第一带隙;
中部第二太阳能子电池,其邻近于所述第一太阳能子电池并具有小于所述第一带隙的第二带隙,且具有异质结基极和发射极;
分级夹层,其邻近于所述第二太阳能子电池,所述分级夹层具有大于所述第二带隙的第三带隙;以及
下部太阳能子电池,其邻近于所述分级夹层,所述下部子电池具有小于所述第二带隙的第四带隙,使得所述下部太阳能子电池相对于所述第二太阳能子电池晶格失配。
2.根据权利要求1所述的多结太阳能电池,其中所述分级夹层在成分上经分级以使一侧上的所述中部第二太阳能子电池与另一侧上的所述下部太阳能子电池晶格匹配。
3.根据权利要求1所述的多结太阳能电池,其中所述分级夹层由基于As、P、N、Sb的III-V化合物半导体中的任一者构成,所述半导体服从具有大于或等于所述中部第二太阳能子电池的平面内晶格参数且小于或等于所述下部太阳能子电池的平面内晶格参数的平面内晶格参数并且具有大于所述中部第二太阳能子电池的带隙能量的带隙能量的限制。
4.根据权利要求1所述的多结太阳能电池,其中所述分级夹层由(InxGa1-x)yAl1-yAs构成。
5.根据权利要求1所述的多结太阳能电池,其中所述上部第一太阳能子电池由InGa(Al)P构成。
6.根据权利要求1所述的多结太阳能电池,其中所述中部第二太阳能子电池由InGaP发射极层和GaAs或In0.015GaAs基极层构成。
7.根据权利要求1所述的多结太阳能电池,其中所述下部太阳能子电池由InGaAs基极层和InGaP发射极层构成,所述InGaP发射极层与所述基极晶格匹配。
8.根据权利要求1所述的多结太阳能电池,其中
所述下部太阳能子电池具有在0.8到1.2eV范围内的带隙,
中部第二太阳能子电池具有在1.2到1.6eV范围内的带隙;且
所述上部第一太阳能子电池设置在所述中部第二太阳能子电池上方并与之晶格匹配,且具有在1.8到2.1eV范围内的带隙。
9.根据权利要求8所述的多结太阳能电池,其中所述下部太阳能子电池设置在选自由蓝宝石、GaAs、Ge或Si的群组的衬底上方,且通过粘合剂接合到所述衬底。
10.一种形成多结太阳能电池的方法,其包含:
形成第一子电池,其包含具有第一带隙和第一晶格常数的第一半导体材料;形成第二子电池,其包含具有第二带隙和第二晶格常数的第二半导体材料,其中所述第二带隙小于所述第一带隙且所述第二晶格常数大于所述第一晶格常数;
形成晶格常数过渡材料,其安置于所述第一子电池与所述第二子电池之间,所述晶格常数过渡材料具有从所述第一晶格常数逐渐变化到所述第二晶格常数的晶格常数,并且具有大于所述第二带隙的第三带隙;以及
形成第三子电池,其邻近于所述晶格常数过渡材料且具有小于所述第二带隙的第四带隙,使得所述第三子电池相对于所述第二子电池晶格失配。
11.根据权利要求10所述的方法,其中所述过渡材料由基于As、P、N、Sb的III-V化合物半导体中的任一者构成,所述半导体服从具有大于或等于所述第一子电池的平面内晶格参数且小于或等于所述第二子电池的平面内晶格参数的平面内晶格参数并且具有大于所述第二子电池的带隙能量的带隙能量的限制,且所述过渡材料的所述带隙保持恒定在1.50eV。
12.根据权利要求10所述的方法,其中所述第一子电池由GaInP、GaAs、GaInAs、GaAsSb或GaInAsN发射极区和GaAs、GaInAs、GaAsSb或GaInAsN基极区构成,且所述第二子电池由InGaAs基极和发射极区构成。
13.根据权利要求10所述的方法,其中
所述第三子电池具有在0.8到1.2eV范围内的带隙;
所述第二子电池具有在1.2到1.6eV范围内的带隙,且设置在所述第三子电池上方;且
所述第一子电池具有在1.8到2.1eV范围内的带隙,且设置在所述第二子电池上方并与之晶格匹配。
CN200810171863.XA 2008-01-31 2008-11-12 倒置变形多结太阳能电池中的异质结子电池 Active CN101499495B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/023,772 2008-01-31
US12/023,772 US20090078310A1 (en) 2007-09-24 2008-01-31 Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells

Publications (2)

Publication Number Publication Date
CN101499495A CN101499495A (zh) 2009-08-05
CN101499495B true CN101499495B (zh) 2014-05-14

Family

ID=40720009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810171863.XA Active CN101499495B (zh) 2008-01-31 2008-11-12 倒置变形多结太阳能电池中的异质结子电池

Country Status (5)

Country Link
US (1) US20090078310A1 (zh)
EP (1) EP2086024B1 (zh)
JP (1) JP5425480B2 (zh)
CN (1) CN101499495B (zh)
TW (1) TWI441343B (zh)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122724A1 (en) 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
US20100229926A1 (en) 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US9117966B2 (en) 2007-09-24 2015-08-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell
US9634172B1 (en) 2007-09-24 2017-04-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US10170656B2 (en) 2009-03-10 2019-01-01 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with a single metamorphic layer
US10381501B2 (en) 2006-06-02 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US20090078309A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US8686282B2 (en) 2006-08-07 2014-04-01 Emcore Solar Power, Inc. Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells
US20080029151A1 (en) * 2006-08-07 2008-02-07 Mcglynn Daniel Terrestrial solar power system using III-V semiconductor solar cells
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
US20100093127A1 (en) * 2006-12-27 2010-04-15 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
US10381505B2 (en) 2007-09-24 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells including metamorphic layers
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20100012175A1 (en) 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US9287438B1 (en) * 2008-07-16 2016-03-15 Solaero Technologies Corp. Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation
US8263853B2 (en) * 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US7741146B2 (en) 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
US8330036B1 (en) * 2008-08-29 2012-12-11 Seoijin Park Method of fabrication and structure for multi-junction solar cell formed upon separable substrate
US8912428B2 (en) * 2008-10-22 2014-12-16 Epir Technologies, Inc. High efficiency multijunction II-VI photovoltaic solar cells
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US10541349B1 (en) 2008-12-17 2020-01-21 Solaero Technologies Corp. Methods of forming inverted multijunction solar cells with distributed Bragg reflector
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US7960201B2 (en) * 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US8778199B2 (en) 2009-02-09 2014-07-15 Emoore Solar Power, Inc. Epitaxial lift off in inverted metamorphic multijunction solar cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US9018519B1 (en) 2009-03-10 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US20100282305A1 (en) 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100319764A1 (en) * 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
IT1394853B1 (it) * 2009-07-21 2012-07-20 Cesi Ct Elettrotecnico Sperimentale Italiano Giacinto Motta S P A Cella fotovoltaica ad elevata efficienza di conversione
US8263856B2 (en) * 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts
DE102009049397B4 (de) 2009-10-14 2018-09-06 Solaero Technologies Corp. Herstellungsverfahren mit Surrogatsubstrat für invertierte metamorphische Multijunction-Solarzellen
DE102009050454A1 (de) * 2009-10-23 2011-04-28 Emcore Corp. Vier-Junction-invertierte-metamorphe-Multijunction-Solarzelle mit zwei metamorphen Schichten
TWI411116B (zh) * 2009-11-17 2013-10-01 Epistar Corp 一種高效率太陽能電池
US20110114163A1 (en) * 2009-11-18 2011-05-19 Solar Junction Corporation Multijunction solar cells formed on n-doped substrates
DE102009057020B4 (de) * 2009-12-03 2021-04-29 Solaero Technologies Corp. Wachstumssubstrate für invertierte metamorphe Multijunction-Solarzellen
US10340405B2 (en) * 2009-12-10 2019-07-02 Epir Technologies, Inc. Tunnel heterojunctions in Group IV/Group II-IV multijunction solar cells
TW201137944A (en) * 2009-12-25 2011-11-01 Sumitomo Chemical Co Semiconductor substrate, method for making a semiconductor substrate, and method for making a photo-electric conversion device
JP5215284B2 (ja) 2009-12-25 2013-06-19 シャープ株式会社 多接合型化合物半導体太陽電池
US20110232730A1 (en) 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
TWI562195B (en) * 2010-04-27 2016-12-11 Pilegrowth Tech S R L Dislocation and stress management by mask-less processes using substrate patterning and methods for device fabrication
US8187907B1 (en) 2010-05-07 2012-05-29 Emcore Solar Power, Inc. Solder structures for fabrication of inverted metamorphic multijunction solar cells
US8642883B2 (en) 2010-08-09 2014-02-04 The Boeing Company Heterojunction solar cell
CN101976691B (zh) * 2010-08-23 2012-11-21 北京工业大学 一种五结化合物半导体太阳能光伏电池芯片
US9214580B2 (en) * 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US10283658B2 (en) * 2011-02-09 2019-05-07 The Board Of Regents Of The University Of Oklahoma Interband cascade devices
US11121272B2 (en) * 2011-02-09 2021-09-14 Utica Leaseco, Llc Self-bypass diode function for gallium arsenide photovoltaic devices
US9716196B2 (en) 2011-02-09 2017-07-25 Alta Devices, Inc. Self-bypass diode function for gallium arsenide photovoltaic devices
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
WO2012173619A1 (en) * 2011-06-15 2012-12-20 Epir Technologies, Inc. Tunnel heterojunctions in group iv / goup ii-vi multijunction solar cells
WO2013074530A2 (en) 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
EP2650930A1 (de) * 2012-04-12 2013-10-16 AZURSPACE Solar Power GmbH Solarzellenstapel
CN102651417B (zh) * 2012-05-18 2014-09-03 中国科学院苏州纳米技术与纳米仿生研究所 三结级联太阳能电池及其制备方法
CN102790119B (zh) * 2012-07-19 2015-12-16 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN102969387B (zh) * 2012-11-08 2016-01-06 王伟明 GaInP/GaAs/InGaAs三结太阳能电池外延结构
US10153388B1 (en) 2013-03-15 2018-12-11 Solaero Technologies Corp. Emissivity coating for space solar cell arrays
US9559237B2 (en) * 2013-04-10 2017-01-31 The Boeing Company Optoelectric devices comprising hybrid metamorphic buffer layers
US9853180B2 (en) 2013-06-19 2017-12-26 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with surface passivation
US9214594B2 (en) 2013-08-07 2015-12-15 Solaero Technologies Corp. Fabrication of solar cells with electrically conductive polyimide adhesive
US9768326B1 (en) 2013-08-07 2017-09-19 Solaero Technologies Corp. Fabrication of solar cells with electrically conductive polyimide adhesive
KR20150092608A (ko) * 2014-02-05 2015-08-13 엘지전자 주식회사 화합물 태양 전지
EP3103142B1 (en) 2014-02-05 2020-08-19 Array Photonics, Inc. Monolithic multijunction power converter
JP2016082041A (ja) * 2014-10-15 2016-05-16 株式会社リコー 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
EP3012874B1 (de) * 2014-10-23 2023-12-20 AZUR SPACE Solar Power GmbH Stapelförmige integrierte Mehrfachsolarzelle
US9758261B1 (en) 2015-01-15 2017-09-12 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with lightweight laminate substrate
US10087535B2 (en) 2015-03-23 2018-10-02 Alliance For Sustainable Energy, Llc Devices and methods for photoelectrochemical water splitting
EP3091583B1 (en) 2015-05-07 2020-09-23 SolAero Technologies Corp. Multijunction inverted metamorphic solar cell
US10403778B2 (en) * 2015-10-19 2019-09-03 Solaero Technologies Corp. Multijunction solar cell assembly for space applications
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
US10361330B2 (en) 2015-10-19 2019-07-23 Solaero Technologies Corp. Multijunction solar cell assemblies for space applications
US10256359B2 (en) 2015-10-19 2019-04-09 Solaero Technologies Corp. Lattice matched multijunction solar cell assemblies for space applications
US9935209B2 (en) 2016-01-28 2018-04-03 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10270000B2 (en) 2015-10-19 2019-04-23 Solaero Technologies Corp. Multijunction metamorphic solar cell assembly for space applications
US9985161B2 (en) 2016-08-26 2018-05-29 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US9929300B2 (en) 2015-11-13 2018-03-27 Solaero Technologies Corp. Multijunction solar cells with electrically conductive polyimide adhesive
EP3171413A1 (en) 2015-11-20 2017-05-24 SolAero Technologies Corp. Inverted metamorphic multijunction solar cell
WO2017205100A1 (en) 2016-05-23 2017-11-30 Solar Junction Corporation Exponential doping in lattice-matched dilute nitride photovoltaic cells
US10263134B1 (en) 2016-05-25 2019-04-16 Solaero Technologies Corp. Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell
US10636926B1 (en) 2016-12-12 2020-04-28 Solaero Technologies Corp. Distributed BRAGG reflector structures in multijunction solar cells
US10930808B2 (en) 2017-07-06 2021-02-23 Array Photonics, Inc. Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells
EP3669402A1 (en) 2017-09-27 2020-06-24 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having a dilute nitride layer
CN107768475B (zh) * 2017-10-27 2019-01-01 南京工业大学 一种太阳能电池组件
CN108182911B (zh) * 2017-11-16 2020-03-24 青岛海信电器股份有限公司 液晶显示装置、led背光电路及led灯条供电电路
US20190181289A1 (en) 2017-12-11 2019-06-13 Solaero Technologies Corp. Multijunction solar cells
WO2020168025A1 (en) * 2019-02-15 2020-08-20 Alta Devices, Inc. Self-bypass diode function for gallium arsenide photovoltaic devices
WO2020185528A1 (en) 2019-03-11 2020-09-17 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions
DE102019003069B4 (de) * 2019-04-30 2023-06-01 Azur Space Solar Power Gmbh Stapelförmige hochsperrende lll-V-Halbleiterleistungsdioden
EP3799136B1 (de) * 2019-09-27 2023-02-01 AZUR SPACE Solar Power GmbH Monolithische mehrfachsolarzelle mit genau vier teilzellen
CN111092127A (zh) * 2019-11-26 2020-05-01 中国电子科技集团公司第十八研究所 一种正向晶格失配三结太阳电池
EP3937259A1 (de) * 2020-07-10 2022-01-12 AZUR SPACE Solar Power GmbH Monolithische metamorphe mehrfachsolarzelle
US20220238747A1 (en) 2021-01-28 2022-07-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell
EP4092763A1 (en) 2021-05-18 2022-11-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells
EP4092762A1 (en) 2021-05-18 2022-11-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells
EP4092761A1 (en) 2021-05-18 2022-11-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells
EP4213224A1 (en) 2022-01-14 2023-07-19 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells with shifted junction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507077A (zh) * 2002-12-13 2004-06-23 ������������ʽ���� 太阳能电池组件的制造方法
US6951819B2 (en) * 2002-12-05 2005-10-04 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US348834A (en) * 1886-09-07 Bridle-bit
US3964155A (en) * 1972-02-23 1976-06-22 The United States Of America As Represented By The Secretary Of The Navy Method of planar mounting of silicon solar cells
US4017332A (en) * 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4255211A (en) * 1979-12-31 1981-03-10 Chevron Research Company Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface
DE3036260A1 (de) * 1980-09-26 1982-04-29 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur herstellung von elektrischen kontakten an einer silizium-solarzelle
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4881979A (en) * 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
US4612408A (en) * 1984-10-22 1986-09-16 Sera Solar Corporation Electrically isolated semiconductor integrated photodiode circuits and method
JPH0666274B2 (ja) * 1987-07-01 1994-08-24 日本電気株式会社 ▲iii▼−v族化合物半導体の形成方法
US4824489A (en) * 1988-02-02 1989-04-25 Sera Solar Corporation Ultra-thin solar cell and method
JPH02218174A (ja) * 1989-02-17 1990-08-30 Mitsubishi Electric Corp 光電変換半導体装置
US5217539A (en) * 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5053083A (en) * 1989-05-08 1991-10-01 The Board Of Trustees Of The Leland Stanford Junior University Bilevel contact solar cells
US5021360A (en) * 1989-09-25 1991-06-04 Gte Laboratories Incorporated Method of farbicating highly lattice mismatched quantum well structures
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5322572A (en) * 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
JP3169497B2 (ja) * 1993-12-24 2001-05-28 三菱電機株式会社 太陽電池の製造方法
US5479032A (en) * 1994-07-21 1995-12-26 Trustees Of Princeton University Multiwavelength infrared focal plane array detector
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6166318A (en) * 1998-03-03 2000-12-26 Interface Studies, Inc. Single absorber layer radiated energy conversion device
US6239354B1 (en) * 1998-10-09 2001-05-29 Midwest Research Institute Electrical isolation of component cells in monolithically interconnected modules
US6300557B1 (en) * 1998-10-09 2001-10-09 Midwest Research Institute Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
US6165873A (en) * 1998-11-27 2000-12-26 Nec Corporation Process for manufacturing a semiconductor integrated circuit device
JP3657143B2 (ja) * 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US6815736B2 (en) * 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
JP3909811B2 (ja) * 2001-06-12 2007-04-25 パイオニア株式会社 窒化物半導体素子及びその製造方法
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6690041B2 (en) * 2002-05-14 2004-02-10 Global Solar Energy, Inc. Monolithically integrated diodes in thin-film photovoltaic devices
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US6794631B2 (en) * 2002-06-07 2004-09-21 Corning Lasertron, Inc. Three-terminal avalanche photodiode
US20060048700A1 (en) * 2002-09-05 2006-03-09 Wanlass Mark W Method for achieving device-quality, lattice-mismatched, heteroepitaxial active layers
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
US6818928B2 (en) * 2002-12-05 2004-11-16 Raytheon Company Quaternary-ternary semiconductor devices
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
US20050211291A1 (en) * 2004-03-23 2005-09-29 The Boeing Company Solar cell assembly
US8227689B2 (en) * 2004-06-15 2012-07-24 The Boeing Company Solar cells having a transparent composition-graded buffer layer
US20060021565A1 (en) * 2004-07-30 2006-02-02 Aonex Technologies, Inc. GaInP / GaAs / Si triple junction solar cell enabled by wafer bonding and layer transfer
US7846759B2 (en) * 2004-10-21 2010-12-07 Aonex Technologies, Inc. Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
FR2878076B1 (fr) * 2004-11-17 2007-02-23 St Microelectronics Sa Amincissement d'une plaquette semiconductrice
US10374120B2 (en) * 2005-02-18 2019-08-06 Koninklijke Philips N.V. High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
US7166520B1 (en) * 2005-08-08 2007-01-23 Silicon Genesis Corporation Thin handle substrate method and structure for fabricating devices using one or more films provided by a layer transfer process
US8637759B2 (en) * 2005-12-16 2014-01-28 The Boeing Company Notch filter for triple junction solar cells
US20090078309A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20100186804A1 (en) * 2009-01-29 2010-07-29 Emcore Solar Power, Inc. String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers
US8536445B2 (en) * 2006-06-02 2013-09-17 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US20090078308A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Thin Inverted Metamorphic Multijunction Solar Cells with Rigid Support
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US20080029151A1 (en) * 2006-08-07 2008-02-07 Mcglynn Daniel Terrestrial solar power system using III-V semiconductor solar cells
US7842881B2 (en) * 2006-10-19 2010-11-30 Emcore Solar Power, Inc. Solar cell structure with localized doping in cap layer
US20080149173A1 (en) * 2006-12-21 2008-06-26 Sharps Paul R Inverted metamorphic solar cell with bypass diode
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
US20080185038A1 (en) * 2007-02-02 2008-08-07 Emcore Corporation Inverted metamorphic solar cell with via for backside contacts
US20090038679A1 (en) * 2007-08-09 2009-02-12 Emcore Corporation Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support
US20090078311A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090223554A1 (en) * 2008-03-05 2009-09-10 Emcore Corporation Dual Sided Photovoltaic Package
US20090229662A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells
US20090229658A1 (en) * 2008-03-13 2009-09-17 Emcore Corporation Non-Isoelectronic Surfactant Assisted Growth In Inverted Metamorphic Multijunction Solar Cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) * 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US8263853B2 (en) * 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US7741146B2 (en) * 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US20100147366A1 (en) * 2008-12-17 2010-06-17 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector
US7785989B2 (en) * 2008-12-17 2010-08-31 Emcore Solar Power, Inc. Growth substrates for inverted metamorphic multijunction solar cells
US7960201B2 (en) * 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US8263856B2 (en) * 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951819B2 (en) * 2002-12-05 2005-10-04 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
CN1507077A (zh) * 2002-12-13 2004-06-23 ������������ʽ���� 太阳能电池组件的制造方法

Also Published As

Publication number Publication date
TW200941741A (en) 2009-10-01
EP2086024A3 (en) 2012-12-05
TWI441343B (zh) 2014-06-11
EP2086024B1 (en) 2018-10-31
EP2086024A2 (en) 2009-08-05
JP5425480B2 (ja) 2014-02-26
US20090078310A1 (en) 2009-03-26
JP2009182325A (ja) 2009-08-13
CN101499495A (zh) 2009-08-05

Similar Documents

Publication Publication Date Title
CN101499495B (zh) 倒置变形多结太阳能电池中的异质结子电池
CN101740647B (zh) 具有两个变质层的四结倒置变质多结太阳能电池
US8969712B2 (en) Four junction inverted metamorphic multijunction solar cell with a single metamorphic layer
US7741146B2 (en) Demounting of inverted metamorphic multijunction solar cells
US7960201B2 (en) String interconnection and fabrication of inverted metamorphic multijunction solar cells
US9231147B2 (en) Heterojunction subcells in inverted metamorphic multijunction solar cells
US20090272430A1 (en) Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20090288703A1 (en) Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US20160181464A1 (en) Method of forming an inverted metamorphic multijunction solar cell with dbr layer adjacent to the top subcell
EP3159940B1 (en) Multijunction metamorphic solar cell assembly for space applications
US20090078311A1 (en) Surfactant Assisted Growth in Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US20100122764A1 (en) Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US20100229913A1 (en) Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US20100147366A1 (en) Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector
US20100186804A1 (en) String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers
US20100282307A1 (en) Multijunction Solar Cells with Group IV/III-V Hybrid Alloys for Terrestrial Applications
US11063168B1 (en) Inverted multijunction solar cells with distributed bragg reflector
US10170656B2 (en) Inverted metamorphic multijunction solar cell with a single metamorphic layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: EMCORE SOLAR POWER INC.

Free format text: FORMER OWNER: ONCOGEN (US) 3005 FIRST AVENUE, SEATTLE, WASHINGTON, DC. 98121. U.S.A.

Effective date: 20141128

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141128

Address after: New Mexico, USA

Patentee after: Emcore Solar Power, Inc.

Address before: New Jersey, USA

Patentee before: Onco

ASS Succession or assignment of patent right

Owner name: SOLE TECHNOLOGY, INC.

Free format text: FORMER OWNER: EMCORE SOLAR POWER INC.

Effective date: 20150309

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150309

Address after: New Mexico, USA

Patentee after: SUOAIER TECHNOLOGY CO., LTD.

Address before: New Mexico, USA

Patentee before: Emcore Solar Power, Inc.