CN106784127B - 一种双结薄膜太阳能电池组件及其制作方法 - Google Patents

一种双结薄膜太阳能电池组件及其制作方法 Download PDF

Info

Publication number
CN106784127B
CN106784127B CN201510809748.0A CN201510809748A CN106784127B CN 106784127 B CN106784127 B CN 106784127B CN 201510809748 A CN201510809748 A CN 201510809748A CN 106784127 B CN106784127 B CN 106784127B
Authority
CN
China
Prior art keywords
layer
battery
type
binode
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510809748.0A
Other languages
English (en)
Other versions
CN106784127A (zh
Inventor
顾世海
张庆钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zishi Energy Co ltd
Original Assignee
Beijing Chong Yu Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Chong Yu Technology Co Ltd filed Critical Beijing Chong Yu Technology Co Ltd
Priority to CN201510809748.0A priority Critical patent/CN106784127B/zh
Priority to JP2018525555A priority patent/JP6640355B2/ja
Priority to KR1020187017267A priority patent/KR20180083922A/ko
Priority to PCT/CN2016/104203 priority patent/WO2017084491A1/zh
Priority to DE112016005313.4T priority patent/DE112016005313T5/de
Priority to US15/775,012 priority patent/US20180331245A1/en
Publication of CN106784127A publication Critical patent/CN106784127A/zh
Application granted granted Critical
Publication of CN106784127B publication Critical patent/CN106784127B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种双结薄膜太阳能电池组件及其制作方法,电池组件由多个电池单元串联而成,每个电池单元包括选择性生长衬底、底电池和顶电池,顶电池上设有正面金属电极层,选择性生长衬底包括金属基底、图形化的绝缘层和N型微晶锗籽晶层,绝缘层形成于金属基底上,N型微晶锗籽晶层位于绝缘层所形成的图形中;底电池为多晶锗底电池层,顶电池为GaAs电池,多晶锗底电池至顶电池间依次生长有N型的扩散层、N型的缓冲层、隧道结N型区和隧道结P型区,正面金属电极层上形成有减反射层。本发明采用两次选择性生长工艺在金属基底上生长多晶锗/砷化镓薄膜电池结构,合理的禁带匹配设计可使电池转化效率达到32%(AM1.5),实现太阳能电池的低成本和柔性化。

Description

一种双结薄膜太阳能电池组件及其制作方法
技术领域
本发明涉及一种III-V族双结薄膜电池的制作方法,更具体地讲,涉及一种具有选择性生长衬底的双结薄膜太阳能电池组件及其制作方法。
背景技术
1954年世界上首次发现GaAs材料具有光伏效应,20世纪60年代,Gobat等研制了第1个掺锌GaAs太阳能电池,转化率仅为9%~10%,远低于27%的理论值。最早的单结晶体GaAs电池的做法和现在的单晶硅做法基本相同,但是作为直接禁带半导体,吸收层厚度只需要几个微米,晶体GaAs无疑是巨大的浪费。
20世纪70年代,IBM公司和前苏联Ioffe技术物理所等为代表的研究单位,采用LPE(液相外延)技术引入GaAlAs异质窗口层,降低了GaAs表面的复合速率,使GaAs太阳电池的效率达16%。不久,美国的HRL(Hughes Research Lab)及Spectrolab通过改进LPE技术使得电池的平均效率达到18%,并实现批量生产,开创了高效率砷化镓太阳电池的新时代。
从上世纪80年代后,GaAs太阳能电池技术经历了从LPE到MOCVD,从同质外延到异质外延,从单结到多结叠层结构,从LM结构到IMM结构等几个发展阶段,其发展速度日益加快,效率也不断提高。目前最高效率已达到单结28.8%(alta devices),三结44.4%(SharpIMM),四结实验室最高接近50%(Fhg-ISE)
目前锗衬底的三结GaAs电池是研究的重点,双结GaAs电池的研究比较少,通常双结电池都采用GaAs和InGaP作为底电池和顶电的双结电池,用电学和光学低损耗的隧道结连接而成。双结必须要考虑底电池和顶电池的禁带宽度匹配问题,对于AM0来说,最佳的禁带宽度是1.23eV和1.97eV,理论效率可以达到35.8%。目前技术上比较可行的是采用晶格匹配的材料从而放宽了对禁带宽度Eg的要求,而且由于底电池的禁带宽度是1.42eV,顶电池是1.9eV左右,两者的差值只有0.48eV左右,并且底电池的禁带宽度过大,不能吸收900nm以上波长的光线、最终的是造成底电池的光生电流密度小于顶电池的电流密度,导致二者的光生电流不匹配,会严重降低了电池的内量子效率。
双结GaAs电池通常都是GaAs作为衬底、GaAs和InGaP分别作为底电池和顶电池的双结电池,这种双结电池成本比单结GaAs电池高,外延的成本几乎是单结的两倍,但效率比单结的稍微高一点,目前单结最高效率28.8%、双结最高效率30.8%,还需要使用大量的铟作为原材料。
另外,双结GaAs和GaInP的吸收层厚度都比较大,导致电池整体厚度大于10个μm。而柔性薄膜电池的厚度一般要求在1-10μm之间,此类双结电池无法实现电池柔性。
发明内容
为此,本发明为了实现双结III-V族电池的柔性化,降低双结电池的制造成本,提高电池的发电效率。本发明提供了一种具有选择性生长衬底的双结薄膜太阳能电池组件及其制作方法。
为解决上述技术问题,本发明的技术方案为:
一方面,本发明提供了一种双结薄膜太阳能电池组件,由多个电池单元串联而成,每个电池单元包括选择性生长衬底、底电池和顶电池,所述顶电池上设有正面金属电极层,所述选择性生长衬底包括金属基底、图形化的绝缘层和N型微晶锗籽晶层,所述绝缘层形成于所述金属基底上,所述N型微晶锗籽晶层位于所述绝缘层所形成的图形中;所述底电池为多晶锗底电池层,所述顶电池为GaAs电池,所述多晶锗底电池至所述顶电池之间依次生长有N型的扩散层、N型的缓冲层、隧道结N型区和隧道结P型区,所述正面金属电极层上形成有减反射层。
所述缓冲层为N型的InGaAs-GaAs渐变缓冲层,其中铟的比例由1%渐变到0%。
所述的减反射层为MgF2或ZnS减反射层。
所述GaAs电池为在所述隧道结P型区依次外延生长的P型的AlGaAs背场、P型的GaAs基区、N型的AlGaAs发射极、N型的AlGaAs窗口层和N+型的GaAs正面接触层,所述正面金属电极层位于所述正面接触层上。
所述窗口层由所述正面接触层中外露,且其表面形成粗化结构。
另一方面,本发明还提供了一种双结薄膜太阳能电池组件的制作方法,所述方法包括如下步骤:
步骤一,在金属基底上沉积绝缘层,并将绝缘层图形化;
步骤二,在图形化的绝缘层表面沉积一层微晶锗籽晶层,去除绝缘层表面多余的微晶锗材料,制成具有微晶锗籽晶层的选择性生长衬底;
步骤三,将具有微晶锗籽晶层的选择性生长衬底表面沉积一层多晶锗底电池层,制得多晶锗底电池;
步骤四,在多晶锗底电池层表面通过外延生长依次形成扩散层、缓冲层、隧道结和顶电池结构,制得双结电池结构;
步骤五,在顶电池结构上形成图形化的正面金属电极层;
步骤六,将位于多晶锗底电池层上方外延生长的双结电池结构分离成多个独立电池单元;
步骤七,在正面金属电极层上形成减反射层,并依次切割减反射层、多晶锗底电池层和选择性生长衬底,将各电池单元彻底分开;
步骤八,将各电池单元串联后置于上下两柔性衬底之间进行封装,制得薄膜电池组件。
所述步骤一中在金属基底上沉积绝缘层,并将绝缘层图形化,其具体方法是:在金属基底表面沉积1-5μm厚的绝缘层;通过涂布、显影和曝光方法在绝缘层表面形成图形;采用湿法刻蚀工艺去除多余的绝缘层材料,实现绝缘层的图形化。
所述步骤二中采用PECVD设备在图形化的绝缘层表面沉积一层高掺杂P型微晶锗籽晶层,通入纯锗烷和乙硼烷并加热至400~700℃,在反应压强10-2~10Pa、掺杂浓度1-3×1019cm-3下生长形成P型微晶锗籽晶层;采用化学腐蚀抛光工艺去除绝缘层表面上多余的微晶锗籽晶层,制得具有微晶锗籽晶层的选择性生长衬底。
所述步骤四中的在多晶锗底电池层表面通过外延生长依次形成扩散层、缓冲层、隧道结和顶电池结构,其具体方法是:在多晶锗底电池层表面生长N型的InGaP扩散层;通过P元素在高温下向多晶锗底电池层内部进行扩散形成浅的扩散PN结;在PH3的氛围下对扩散层InGaP进行退火处理;在恒温条件下依次生长缓冲层、隧道结、顶电池的背场,基区,发射极、窗口层和正面接触层。
所述步骤五中在双结电池的正面接触层上通过电镀和湿法刻蚀方法形成图形化的正面金属电极层;然后去除未被正面金属电极层覆盖下的正面接触层,露出窗口层并在窗口层表面形成粗化结构。
所述步骤八中的通过铜箔将分离后的各电池串联,然后置于上下两层PET薄膜之间,通过层压机封装形成薄膜柔性电池组件。
本发明的上述技术方案相比现有技术具有以下优点:
A.本发明采用GaAs衬底、多晶锗和GaAs分别作为底电池和顶电池的双结电池,首先,多晶锗底电池的禁带宽度是0.65eV,顶电池GaAs的禁带宽度是1.4eV,该组合更有利于分割太阳能光谱,形成比较合理的电流匹配,而且能够进一步吸收波长在900-2000nm范围内的光线,电池转化效率可达到32%(AM1.5)。
B.本发明采用两次选择性生长工艺在金属基底上生长多晶锗/砷化镓薄膜电池结构,通过更合理的禁带匹配设计来提高电池的效率;采用批量生产更低廉的衬底、更薄的浅结多晶Ge作为底电池、更少的铟材料的使用和金属基板本身作为背面金属电极层、以及通过电镀制作正面电极等技术来降低柔性双结GaAs电池的制造成本,从而实现了多晶锗作为底电池的双结三五族电池的低成本、高效率和柔性化。
C.本发明采用多晶锗底电池的制造成本比GaAs作为底电池低,由于扩散结厚度、底电池的厚度可以小于1微米,且不需要生长复杂的电池结构,只需要通过高温扩散就能形成PN结,制作工艺简单;同时多晶锗作为底电池的价格也要比GaAs作为底电池价格低,且该电池仅缓冲层需要用到材料占比<1%的铟,可以减少铟这种原材料的限制,因此可大大降低电池制造成本。
D.本发明中的双结薄膜太阳能电池制作方法与现有技术中的制作方法采用相反的制作过程,现有技术中都是先有电池结构再做正面金属电极层和背面金属电极层;而本发明首先完成了金属基底和图形化绝缘层的制作,图形化的绝缘层起到绝缘和反射的作用,而图形化的金属基底可作为背面金属电极层,简化了电池的制作过程。
E.本发明中微晶锗籽晶层主要作用是为多晶锗底电池层的生长提供了一定数量的形核中心,从而形成更好的多晶锗材料,即为二次选择性生长:在金属基底表面常规生长技术只能获得微晶锗材料,为了获得多晶锗需要采用二次选择性生长技术。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明所提供的多晶Ge/GaAs双结电池的外延结构示意图;
图2是具有图形化绝缘层的金属基底结构俯视图;
图3是具有图形化绝缘层的金属基底结构正视图;
图4是在绝缘层的表面生长微晶锗籽晶层的正视图;
图5是本发明所提供的选择性生长衬底的结构示意图;
图6是在选择性生长衬底上形成多晶锗底电池层的结构示意图;
图7是多晶Ge/GaAs双结电池上形成的正面金属电极层结构示意图;
图8是多晶Ge/GaAs双结电池结构示意图;
图9是本发明所提供的双结太阳能电池组件的制作方法框图。
图中:
100-金属基底 102-绝缘层
104-微晶锗籽晶层
106-多晶锗底电池层 105-选择性生长衬底
108-扩散层 110-缓冲层
112-隧道结N型区 114-隧道结P型区
116-背场 118-基区
120-发射极 122-窗口层
124-正面接触层 125-外延结构层
126-顶电池 127-双结电池结构
200-正面金属电极层 300-减反射层。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。
本发明提供一种多晶Ge(锗)作为底电池,GaAs(砷化镓)作为顶电池的双结柔性薄膜电池的制作方法,结合图1和图9具体制作方法如下:
步骤一,在金属基底上沉积绝缘层,并将绝缘层图形化
采用PECVD(Plasma Enhanced Chemical Vapor Deposition等离子体增强化学气相沉积法)设备,采用大尺寸的金属基板,批量生产合适尺寸的金属基底。将该尺寸的金属基底(长度和宽度都是裁切后的衬底尺寸的整数倍)投入到PECVD设备当中,该金属基底可为不锈钢箔、Cu箔中的一种,在金属基底的表面沉积1-5μm厚的绝缘层,绝缘层材料可以选用SiO2、Al2O3、SiNX等氧氮化合物中的一种。
其次,采用光刻和湿法刻蚀技术在金属基底上制作图形化的绝缘层。通过涂布、显影和曝光在绝缘层表面形成的图形,然后采用湿法刻蚀工艺去除多余的绝缘层材料,并用丙酮去除固化的光刻胶,完成金属基底上图形化绝缘层的制作,且该图形化绝缘层形状也是最终电池背面金属电极层的图形结构。这样,金属基底即起到背面金属电极层的作用,同时由于其上沉积绝缘层,因此,也起到了绝缘和反射的作用。
步骤二,在图形化的绝缘层表面沉积一层微晶锗籽晶层,去除绝缘层表面多余的微晶锗材料,制成具有微晶锗籽晶层的选择性生长衬底
采用PECVD设备在图形化的绝缘层表面沉积选择性生长一层高掺杂P型微晶锗籽晶层,采用化学腐蚀抛光工艺去除绝缘层表面多余的微晶锗材料后制备成具有微晶锗籽晶层的选择性生长衬底。
如图2所示,采用激光切割技术,将选择性生长衬底沿A方向进行分离,完成选择性生长衬底的制作。
该高掺杂的微晶锗籽晶层既是下一步生长多晶锗底电池层的基础,也是电池底部传输载流子的通道。
步骤三,将具有微晶锗籽晶层的选择性生长衬底表面沉积一层多晶锗底电池层,制得多晶锗底电池。采用LPCVD(Low Pressure Chemical Vapor Deposition低压力化学气相沉积法)设备在具有微晶锗籽晶层的选择性生长衬底表面沉积一层低掺杂P型多晶锗底电池层,厚度在5μm左右,制得多晶锗底电池,如图6所示。
步骤四,在多晶锗底电池层表面通过外延生长依次形成扩散层、缓冲层、隧道结和顶电池结构,制得双结电池结构。
采用MOCVD(Metal-organic Chemical Vapor DePosition金属有机化合物化学气相淀积)等外延设备在底电池上外延生长形成双结电池结构。外延温度630-670℃,压力50-100torr,其中优选的外延温度650℃,压力76torr。
具体地,首先通过扩散在多晶锗底电池层表面形成浅结底电池,主要的扩散元素是磷,并对扩散层进行退火处理,消除界面缺陷,保证扩散层表面的晶体质量,有利于进一步外延生长形成隧道结和顶电池。
然后在恒温条件下在扩散层上依次生长缓冲层、隧道结、顶电池的背场、基区、发射极、窗口层和正面接触层,完成外延层的生长后降至常温,从而制得双结电池结构,如图8所示。
上述制作方法中加入了退火处理技术,能够进一步提高隧道结和顶电池的结晶质量,顶电池结构采用GaAs和AlGaAs材料,这样减少了In原材料的使用量,而且整个过程不需要变温,在恒温的条件下完成外延层生长。
步骤五,在顶电池结构上形成图形化的正面金属电极层
采用整面电镀技术在正面接触层上镀一层金属层,形成正面金属电极层,通过湿法刻蚀工艺去除部分正面金属电极层,形成正面图形化的电极结构,金属层为铜电极层时其蚀刻液为FeCl3和HCl的混合液。采用湿法刻蚀工艺,将非电极覆盖的正面接触层124去除,露出窗口层122,并且形成窗口层表面粗化结构,蚀刻液为NH4OH和H2O2的混合物,在常温下腐蚀。
步骤六,将位于多晶锗底电池层上方外延生长的双结电池结构分离成多个独立电池单元
采用湿法刻蚀工艺,如图7所示,将电池沿B方向初步分离,一直腐蚀至多晶锗底电池层,采用不同比例的H3PO4和H2O2混合液、HCl和C2H6O2混合液等腐蚀液,轮流依次腐蚀;
步骤七,采用PECVD等设备在正面金属电极层上形成减反射层,通过激光切割工艺沿湿法腐蚀的位置依次切割减反射层、多晶锗底电池层和选择性生长衬底,将各电池单元彻底分开。
步骤八,将各电池单元串联后置于上下两柔性衬底之间进行封装,制得薄膜电池组件。可以通过铜箔将相邻的电池进行串联,采用层压机封装。
通过上述的制作方法所形成的双结薄膜太阳能电池组件如图8和图1所示。
其中的电池组件由多个电池单元串联而成,每个电池单元包括选择性生长衬底、底电池和顶电池126,顶电池上设有正面金属电极层200,底电池为多晶锗底电池层106,选择性生长衬底105包括图形化的金属基底100、图形化的绝缘层102和N型微晶锗籽晶层104,绝缘层102形成于金属基底100上,N型微晶锗籽晶层104位于绝缘层102所形成的图形中;顶电池126为砷化镓(GaAs)电池,多晶锗底电池层106至顶电池126之间依次生长有N型的扩散层108、N型的缓冲层110、隧道结N型区112和隧道结P型区114,在正面金属电极层200上形成有减反射层300。其中缓冲层110为N型的InGaAs-GaAs渐变缓冲层,其中铟的比例由1%渐变到0%。减反射层300为MgF2或ZnS减反射层。
GaAs电池为在隧道结P型区114依次外延生长的P型的AlGaAs背场116、P型的GaAs基区118、N型的AlGaAs发射极120、N型的AlGaAs窗口层122和N+型的GaAs正面接触层124,正面金属电极层200位于正面接触层124上,窗口层122由正面接触层124中外露,且其表面形成粗化结构。
以下通过具体实施例来说明双结薄膜电池组件的制作方法。
步骤一、采用PECVD设备、湿法刻蚀技术,批量生产金属基底100,这里的金属基底100可以为方形、圆形或长方形等特定形状。首先采用PECVD设备在金属基底100的表面沉积绝缘层102,该绝缘层102具有反射光线的作用。该绝缘层102的材料可以是SiO2,Al2O3,SiNx等,本实施例采用的是SiO2绝缘层。先抽真空到5Pa,加热温度到300℃;然后通入Ar和TEOS,Ar:200sccm和TEOS:30sccm,气压为50Pa;打开射频电压,并将功率调整至300W;沉积薄膜厚度为5μm。
依次通过光刻胶涂布、显影和曝光在绝缘层表面形成图形,采用湿法刻蚀工艺去除多余的绝缘层材料,并用去胶液去除固化的光刻胶,形成图形化的绝缘层102,如图3所示。
旋涂涂布正胶SU-8光刻胶,厚度约为5μm,线宽1-2μm,线间距5-10微米;用去离子水冲洗干净;其中的腐蚀液为浓硫酸腐蚀液腐蚀绝缘层,在20~60℃腐蚀10分钟;然后用丙酮去除固化的正胶,去胶后进行清洗。
步骤二、如图4所示,采用PECVD设备在绝缘层102所形成的图形中沉积一层微晶锗籽晶层104,加热至400~700℃,生长室通入纯锗烷和乙硼烷,控制纯锗烷和乙硼烷流量比,反应室压强10-2~10Pa,生长厚度为2μm N型微晶锗籽晶层,其掺杂浓度1-3×1019cm-3
如图5所示,采用化学腐蚀抛光工艺去除绝缘层表面多余的微晶锗材料,制备成具有微晶锗籽晶层的选择性生长衬底105。腐蚀液为过氧化氢和氢氧化钠混合腐蚀液。
采用激光切割技术,将选择性生长衬底105沿A方向进行分离,如图2所示,完成选择性生长衬底105的制作。
如图6所示,采用LPCVD设备在选择性生长衬底表面沉积一层多晶锗底电池层106。将选择性生长衬底105加热至500~800℃,生长室通入纯锗烷和乙硼烷,控制纯锗烷和乙硼烷流量比,生长室压强1~200torr,生长厚度为1-5μm的N型多晶锗底电池层106,其掺杂浓度1×1017cm-3
步骤三、用MOCVD等外延设备在多晶锗底电池层106上外延生长制得双结电池结构,如图8和图1所示。外延温度630~670℃,压力50~100torr,实施例中采用外延温度650℃,压力76torr。
(1)升温到650℃,在多晶锗底电池层106的表面生长20nm的N型的InxGa1-xP扩散层108,x≈0.5;然后升温到750℃保持一段时间,再降温到650℃,在PH3的氛围下进行退火,提高扩散层108表面的晶体质量;
(2)在扩散层108的表面生长80nm到200nm的N型的InGaAs渐变缓冲层110,In的比例逐渐从1%减少到0%;
(3)在缓冲层110的表面生长20nm的N+型的GaAs隧道结N型区112;
(4)在隧道结N型区112的表面生长20nm的P+型的AlxGa1-xAs隧道结P型区114,x≈0.7;
(5)在隧道结P型区114的表面生长40nm的P型的AlxGa1-xAs背场116,x≈0.7;
(6)在背场116的表面生长3000nm的P型的GaAs基区118;
(7)在基区118的表面生长50nm的N型的AlxGa1-xAs发射极120,x≈0.3;
(8)在发射极120的表面生长20nm的N型的(AlxGa1-x)yIn1-yP窗口层122,x≈0.7、y≈0.5;
(9)在窗口层122的表面生长20nm的N+型的GaAs正面接触层124。
步骤五,在顶电池结构上形成图形化的正面金属电极层,如图7所示;
清洗电池正面,采用电镀工艺,在正面接触层表面沉积正面金属电极层,电极层的厚度是1-10μm,材料选择铜或者铜镍合金。采用光刻工艺和湿法工艺,去除不需要的金属电极层,形成图形化的正面电极图形,蚀刻液为30%FeCl3+4%HCl+H2O,常温蚀刻。采用湿法刻蚀工艺,将非电极覆盖的正面接触层去除,露出窗口层,并且在窗口层表面形成粗化结构,蚀刻液为NH4OH和H2O2的混合物,常温腐蚀。
步骤六、采用湿法刻蚀工艺,将特定位置的外延结构层125沿B方向初步分离,如图2所示,一直腐蚀至多晶锗底电池层,从而将外延结构层分离,腐蚀液采用不同比例的H3PO4和H2O2混合液、HCl和C2H6O2混合液等,并轮流依次腐蚀。
步骤七、采用PECVD设备在电池正面沉积一层MgF2或ZnS减反射层。采用激光切割工艺,切割减反射层、底电池的多晶锗底电池层和选择性生长衬底,实现单个电池分离。
步骤八、将相邻的电池用铜箔进行串联,将串联好的的电池放置在上下两层PET之间,采用层压机封装成薄膜柔性电池组件。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明保护的范围之中。

Claims (11)

1.一种双结薄膜太阳能电池组件,由多个电池单元串联而成,每个电池单元包括选择性生长衬底、底电池和顶电池,所述顶电池上设有正面金属电极层,其特征在于,所述选择性生长衬底包括金属基底、图形化的绝缘层和N型微晶锗籽晶层,所述绝缘层形成于所述金属基底上,所述N型微晶锗籽晶层位于所述绝缘层所形成的图形中;所述底电池为多晶锗底电池层,所述顶电池为GaAs电池,所述多晶锗底电池至所述顶电池之间依次生长有N型的扩散层、N型的缓冲层、隧道结N型区和隧道结P型区,所述正面金属电极层上形成有减反射层。
2.根据权利要求1所述的双结薄膜太阳能电池组件,其特征在于,所述缓冲层为N型的InGaAs-GaAs渐变缓冲层,其中铟的比例由1%渐变到0%。
3.根据权利要求1所述的双结薄膜太阳能电池组件,其特征在于,所述的减反射层为MgF2或ZnS减反射层。
4.根据权利要求1-3任一所述的双结薄膜太阳能电池组件,其特征在于,所述GaAs电池为在所述隧道结P型区依次外延生长的P型的AlGaAs背场、P型的GaAs基区、N型的AlGaAs发射极、N型的AlGaAs窗口层和N+型的GaAs正面接触层,所述正面金属电极层位于所述正面接触层上。
5.根据权利要求4所述的双结薄膜太阳能电池组件,其特征在于,所述窗口层由所述正面接触层中外露,且其表面形成粗化结构。
6.一种双结薄膜太阳能电池组件的制作方法,其特征在于,所述方法包括如下步骤:
步骤一,在金属基底上沉积绝缘层,并将绝缘层图形化;
步骤二,在图形化的绝缘层表面沉积一层微晶锗籽晶层,去除绝缘层表面多余的微晶锗材料,制成具有微晶锗籽晶层的选择性生长衬底;
步骤三,将具有微晶锗籽晶层的选择性生长衬底表面沉积一层多晶锗底电池层,制得多晶锗底电池;
步骤四,在多晶锗底电池层表面通过外延生长依次形成扩散层、缓冲层、隧道结和顶电池结构,制得双结电池结构;
步骤五,在顶电池结构上形成图形化的正面金属电极层;
步骤六,将位于多晶锗底电池层上方外延生长的双结电池结构分离成多个独立电池单元;
步骤七,在正面金属电极层上形成减反射层,并依次切割减反射层、多晶锗底电池层和选择性生长衬底,将各电池单元彻底分开;
步骤八,将各电池单元串联后置于上下两柔性衬底之间进行封装,制得薄膜电池组件。
7.根据权利要求6所述的制作方法,其特征在于,所述步骤一中在金属基底上沉积绝缘层,将绝缘层图形化,其具体方法是:在金属基底表面沉积1-5μm厚的绝缘层;通过涂布、显影和曝光方法在绝缘层表面形成图形;采用湿法刻蚀工艺去除多余的绝缘层材料实现绝缘层的图形化。
8.根据权利要求6所述的制作方法,其特征在于,所述步骤二中采用PECVD设备在图形化的绝缘层表面沉积一层高掺杂P型微晶锗籽晶层,通入纯锗烷和乙硼烷并加热至400~700℃,在反应压强102~10Pa、掺杂浓度1-3×1019cm3下生长形成P型微晶锗籽晶层;采用化学腐蚀抛光工艺去除绝缘层表面上多余的微晶锗籽晶层,制得具有微晶锗籽晶层的选择性生长衬底。
9.根据权利要求6所述的制作方法,其特征在于,所述步骤四中的在多晶锗底电池层表面通过外延生长依次形成扩散层、缓冲层、隧道结和顶电池结构,其具体方法是:在多晶锗底电池层表面生长N型的InGaP扩散层;通过P元素在高温下向多晶锗底电池层内部进行扩散形成浅的扩散PN结;在PH3的氛围下对扩散层InGaP进行退火处理;在恒温条件下依次生长缓冲层、隧道结、顶电池的背场,基区,发射极、窗口层和正面接触层。
10.根据权利要求9所述的制作方法,其特征在于,所述步骤五中在双结电池的正面接触层上通过电镀和湿法刻蚀方法形成图形化的正面金属电极层;然后去除未被正面金属电极层覆盖下的正面接触层,露出窗口层并在窗口层表面形成粗化结构。
11.根据权利要求6所述的制作方法,其特征在于,所述步骤八中的通过铜箔将分离后的各电池串联,然后置于上下两层PET薄膜之间,通过层压机封装形成薄膜柔性电池组件。
CN201510809748.0A 2015-11-20 2015-11-20 一种双结薄膜太阳能电池组件及其制作方法 Expired - Fee Related CN106784127B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201510809748.0A CN106784127B (zh) 2015-11-20 2015-11-20 一种双结薄膜太阳能电池组件及其制作方法
JP2018525555A JP6640355B2 (ja) 2015-11-20 2016-11-01 2接合型薄膜ソーラーセルアセンブリおよびその製造方法
KR1020187017267A KR20180083922A (ko) 2015-11-20 2016-11-01 이중 접합 박막 태양전지 모듈 및 그 제조 방법
PCT/CN2016/104203 WO2017084491A1 (zh) 2015-11-20 2016-11-01 双结薄膜太阳能电池组件及其制作方法
DE112016005313.4T DE112016005313T5 (de) 2015-11-20 2016-11-01 Doppelübergangs-Dünnschicht-Solarzellenmodul und Herstellungsverfahren dafür
US15/775,012 US20180331245A1 (en) 2015-11-20 2016-11-01 Dual-junction thin film solar cell module, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510809748.0A CN106784127B (zh) 2015-11-20 2015-11-20 一种双结薄膜太阳能电池组件及其制作方法

Publications (2)

Publication Number Publication Date
CN106784127A CN106784127A (zh) 2017-05-31
CN106784127B true CN106784127B (zh) 2019-02-01

Family

ID=58717309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510809748.0A Expired - Fee Related CN106784127B (zh) 2015-11-20 2015-11-20 一种双结薄膜太阳能电池组件及其制作方法

Country Status (6)

Country Link
US (1) US20180331245A1 (zh)
JP (1) JP6640355B2 (zh)
KR (1) KR20180083922A (zh)
CN (1) CN106784127B (zh)
DE (1) DE112016005313T5 (zh)
WO (1) WO2017084491A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148609A (zh) * 2017-06-27 2019-01-04 海门市绣羽工业设计有限公司 一种具有防反射层的砷化镓太阳能电池
TWI645586B (zh) * 2017-12-05 2018-12-21 國家中山科學研究院 一種可提升光均勻度之中空奈米結構二次光學透鏡之製作方法
KR102070852B1 (ko) * 2018-11-07 2020-01-29 재단법인대구경북과학기술원 Czts계 태양전지 및 이의 제조방법
JP7389457B2 (ja) * 2019-09-12 2023-11-30 国立研究開発法人産業技術総合研究所 太陽電池
KR20210069469A (ko) * 2019-12-03 2021-06-11 삼성전자주식회사 알루미늄 가공물의 표면 무늬 형성 방법
CN112331774B (zh) * 2020-11-04 2022-12-30 上海交通大学 砷化镓/碳纳米管异质结超薄太阳能电池结构及其制备
CN112531077B (zh) * 2020-12-11 2022-07-29 中国电子科技集团公司第十八研究所 一种空间用柔性砷化镓太阳电池制备方法
CN114899254B (zh) * 2022-04-12 2023-07-07 中山德华芯片技术有限公司 一种三结太阳能电池及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431721A (zh) * 2003-01-14 2003-07-23 河北科技大学 一种太阳能转换多结极联光电池
CN101459204A (zh) * 2007-12-13 2009-06-17 昂科公司 反项变质多结太阳能电池中的指数掺杂层
CN101499493A (zh) * 2009-02-23 2009-08-05 东南大学 一种三结太阳能电池
CN101651169A (zh) * 2009-07-07 2010-02-17 扬州汉光光电有限公司 一种高效太阳电池的制备方法
WO2011112612A1 (en) * 2010-03-08 2011-09-15 Alliance For Sustainable Energy, Llc Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618802B2 (ja) * 1994-11-04 2005-02-09 キヤノン株式会社 太陽電池モジュール
JP2001085723A (ja) * 1999-09-17 2001-03-30 Oki Electric Ind Co Ltd 太陽電池、及び太陽電池の製造方法
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
WO2009013034A1 (en) * 2007-07-20 2009-01-29 Interuniversitair Microelektronica Centrum (Imec) Method for providing a crystalline germanium layer on a substrate
US8034697B2 (en) * 2008-09-19 2011-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
TWI425643B (zh) * 2009-03-31 2014-02-01 Sony Corp 固態攝像裝置及其製造方法、攝像裝置和抗反射結構之製造方法
US8119904B2 (en) * 2009-07-31 2012-02-21 International Business Machines Corporation Silicon wafer based structure for heterostructure solar cells
CN101697359B (zh) * 2009-10-26 2012-01-25 新奥光伏能源有限公司 一种太阳能电池
JP5143289B2 (ja) * 2009-11-05 2013-02-13 三菱電機株式会社 光起電力装置およびその製造方法
CN102222734B (zh) * 2011-07-07 2012-11-14 厦门市三安光电科技有限公司 一种倒置太阳能电池制作方法
CN102254918A (zh) * 2011-07-22 2011-11-23 中国科学院苏州纳米技术与纳米仿生研究所 一种叠层式太阳能电池及制作方法
ITTO20110849A1 (it) * 2011-09-23 2013-03-24 Solbian En Alternative S R L Pannello fotovoltaico flessibile.
JP5886588B2 (ja) * 2011-10-18 2016-03-16 デクセリアルズ株式会社 導電性接着剤、並びに、それを用いた太陽電池モジュール、及びその製造方法
CN104541379B (zh) * 2012-06-22 2017-09-12 埃皮沃克斯股份有限公司 半导体基多结光伏装置的制造
TWI602315B (zh) * 2013-03-08 2017-10-11 索泰克公司 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法
JP2016066769A (ja) * 2014-09-26 2016-04-28 シャープ株式会社 太陽電池および太陽電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431721A (zh) * 2003-01-14 2003-07-23 河北科技大学 一种太阳能转换多结极联光电池
CN101459204A (zh) * 2007-12-13 2009-06-17 昂科公司 反项变质多结太阳能电池中的指数掺杂层
CN101499493A (zh) * 2009-02-23 2009-08-05 东南大学 一种三结太阳能电池
CN101651169A (zh) * 2009-07-07 2010-02-17 扬州汉光光电有限公司 一种高效太阳电池的制备方法
WO2011112612A1 (en) * 2010-03-08 2011-09-15 Alliance For Sustainable Energy, Llc Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

Also Published As

Publication number Publication date
DE112016005313T5 (de) 2018-10-04
WO2017084491A1 (zh) 2017-05-26
CN106784127A (zh) 2017-05-31
JP2018534785A (ja) 2018-11-22
KR20180083922A (ko) 2018-07-23
JP6640355B2 (ja) 2020-02-05
US20180331245A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
CN106784127B (zh) 一种双结薄膜太阳能电池组件及其制作方法
US10680126B2 (en) Photovoltaics on silicon
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
US4156310A (en) High bandgap window layer for gaas solar cells and fabrication process therefor
JP2012060176A (ja) 太陽電池
CN104396024A (zh) 具有含宽带隙半导体材料的发射极区域的太阳能电池
KR101380907B1 (ko) 광기전 장치를 위한 금속 접촉부 및 그의 저온 제조 공정
WO2013033671A1 (en) Solar cell
Gu et al. Design and growth of III–V nanowire solar cell arrays on low cost substrates
US20130174896A1 (en) Tandem solar cell using a silicon microwire array and amorphous silicon photovoltaic layer
JP2009224774A (ja) 太陽電池及びその製造方法
CN101728458B (zh) 多结太阳电池的制造方法
CN103928539A (zh) 多结iii-v太阳能电池及其制造方法
CN102790120A (zh) GaInP/GaAs/Ge三结级联太阳能电池及其制备方法
CN109285909A (zh) 一种多结太阳能电池及其制作方法
US9812601B2 (en) Solar celll
CN102244151A (zh) 一种太阳能电池的制作方法
CN106784108B (zh) 一种双结薄膜太阳能电池组件及其制作方法
CN109148622A (zh) 一种双面用高效太阳能电池及其制备方法
CN102738292B (zh) 多结叠层电池及其制备方法
US20120199188A1 (en) Metal contact formation and window etch stop for photovoltaic devices
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN108666391A (zh) 一种双结薄膜太阳能电池组件的制作方法及其电池组件
WO2013004188A1 (zh) 太阳能电池,系统,及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 102209 Beijing city Changping District town Beiqijia Hongfu Pioneer Park No. 15 hospital

Applicant after: BEIJING CHUANGYU TECHNOLOGY Co.,Ltd.

Address before: 102209 Beijing city Changping District town Beiqijia Hongfu Pioneer Park No. 15 hospital

Applicant before: BEIJING HANERGY CHUANGYU S&T Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 102200 room A129-1, Zhongxing Road, Changping District science and Technology Park, Beijing, China, 10

Patentee after: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY Co.,Ltd.

Address before: 102200 room A129-1, Zhongxing Road, Changping District science and Technology Park, Beijing, China, 10

Patentee before: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY (BEIJING) Co.,Ltd.

CP01 Change in the name or title of a patent holder
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 102200 room A129-1, Zhongxing Road, Changping District science and Technology Park, Beijing, China, 10

Patentee after: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY (BEIJING) Co.,Ltd.

Address before: 102209 Beijing city Changping District town Beiqijia Hongfu Pioneer Park No. 15 hospital

Patentee before: Beijing Chuangyu Technology Co.,Ltd.

TR01 Transfer of patent right

Effective date of registration: 20200618

Address after: 518112 Room 403, unit 2, building C, Dongfang Shengshi, Jinpai community, Buji street, Longgang District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen yongshenglong Technology Co.,Ltd.

Address before: 102200 room A129-1, Zhongxing Road, Changping District science and Technology Park, Beijing, China, 10

Patentee before: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210218

Address after: Room a129-1, No. 10, Zhongxing Road, science and Technology Park, Changping District, Beijing

Patentee after: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY Co.,Ltd.

Address before: Room 403, unit 2, building C, Dongfang Shengshi, Jinpai community, Buji street, Longgang District, Shenzhen, Guangdong 518112

Patentee before: Shenzhen yongshenglong Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210907

Address after: Unit 611, unit 3, 6 / F, building 1, yard 30, Yuzhi East Road, Changping District, Beijing 102208

Patentee after: Zishi Energy Co.,Ltd.

Address before: Room a129-1, No. 10, Zhongxing Road, science and Technology Park, Changping District, Beijing

Patentee before: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190201