CN109148622A - 一种双面用高效太阳能电池及其制备方法 - Google Patents

一种双面用高效太阳能电池及其制备方法 Download PDF

Info

Publication number
CN109148622A
CN109148622A CN201810927131.2A CN201810927131A CN109148622A CN 109148622 A CN109148622 A CN 109148622A CN 201810927131 A CN201810927131 A CN 201810927131A CN 109148622 A CN109148622 A CN 109148622A
Authority
CN
China
Prior art keywords
gaas
battery
sub
gainnas
gainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810927131.2A
Other languages
English (en)
Inventor
黄珊珊
黄辉廉
张小宾
潘旭
刘建庆
彭娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co Ltd
Original Assignee
Zhongshan Dehua Chip Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co Ltd filed Critical Zhongshan Dehua Chip Technology Co Ltd
Priority to CN201810927131.2A priority Critical patent/CN109148622A/zh
Publication of CN109148622A publication Critical patent/CN109148622A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种双面用高效太阳能电池及其制备方法,采用金属有机化学气相沉积技术或分子束外延生长技术在GaAs衬底的上表面依次生长第一GaAs缓冲层、第一隧道结、GaAs子电池、第二隧道结、GaInP子电池和高掺杂浓度的n型GaAs盖帽层,在GaAs衬底的下表面依次生长第二GaAs缓冲层、GaInNAs子电池和高掺杂浓度的n型GaAs盖帽层,得到GaInP/GaAs/GaInNAs三结电池,在GaInP/GaAs/GaInNAs三结电池上、下表面进行光刻、沉积减反射膜、制备电极及后续电池芯片制作即可;本发明可以使电池的带隙结构与太阳光谱更加匹配,提高GaAs多结电池的整体开路电压,同时电池背面的入射光也能被吸收利用,最终提高电池的光电转换效率。

Description

一种双面用高效太阳能电池及其制备方法
技术领域
本发明涉及太阳能光伏发电的技术领域,尤其是指一种双面用高效太阳能电池及其制备方法。
背景技术
以多种禁带宽度不同的半导体材料构成多结级联太阳能电池,按照材料的禁带宽度从宽到窄由上至下依次排列,可分别选择性吸收和转换不同波段的太阳光谱,大幅度提高太阳能电池的光电转换效率。GaInP/GaInAs/Ge三结太阳电池是砷化镓多结电池的主流结构,电池结构上整体保持晶格匹配,带隙结构为1.9/1.40/0.67eV,在AM0光谱下转换效率可达到30%。然而,对于太阳光光谱,由于GaInAs子电池和Ge子电池之间较大的带隙差距,这种三结电池的带隙组合并不是最佳的,这种结构下Ge底电池吸收的太阳光谱能量比中电池和顶电池吸收的多出很多,因此Ge电池的短路电流最大可接近中电池和顶电池的两倍,造成太阳光谱在红外波段的极大浪费,太阳光谱利用效率不高。
将传统三结太阳电池的Ge底电池换成带隙接近1.0eV的底电池,形成带隙结构为1.90/1.4/1eV的三结太阳电池,其开路电压可达到3.05V。经理论研究与实验证明,在GaAs材料中同时掺入少量的In和N形成Ga1-xInxNyAs1-y四元合金材料,当x:y=2.8、0<y<0.06时,Ga1-xInxNyAs1-y材料晶格常数与GaAs基本匹配,且带隙在0.8eV-1.4eV之间变化,而当0.02<y<0.03时,其带隙为1.0eV--1.1eV之间。因此,针对目前传统的GaInP/GaInAs/Ge三结电池结构,将Ge底电池换成带隙接近1.0eV的GaInNAs底电池,并利用上下表面均接收光谱的结构大大提高GaInNAs底电池的短路电流密度,使GaInP/GaInAs/GaInNAs三结电池的短路电流密度达到17.5mA/cm2,可大大提高电池转换效率至34%。
发明内容
本发明的目的在于克服现有技术的不足,提出了一种双面用高效太阳能电池及其制备方法,可以使电池的带隙结构与太阳光谱更加匹配,提高GaAs多结电池的整体开路电压,最终提高电池的光电转换效率。
为实现上述目的,本发明所提供的技术方案,如下:
一种双面用高效太阳能电池,包括有GaAs衬底,所述GaAs衬底为双面抛光的n型GaAs单晶片,在所述GaAs衬底的上表面按照层状叠加结构由下至上依次设置有第一GaAs缓冲层、GaAs子电池和GaInP子电池,在所述GaAs衬底的下表面按照层状叠加结构由上至下依次设置有第二GaAs缓冲层和GaInNAs子电池,所述第一GaAs缓冲层与GaAs子电池之间通过第一隧道结连接,所述GaAs子电池与GaInP子电池之间通过第二隧道结连接;所述GaInP子电池、GaAs子电池、第一GaAs缓冲层、第二GaAs缓冲层及GaInNAs子电池所有材料层与GaAs衬底保持晶格匹配;所述GaInP子电池和GaInNAs子电池上均生长高掺杂浓度的n型GaAs盖帽层作为欧姆接触层以及均进行光刻、沉积减反射膜、制备电极及后续电池芯片制作;所述GaInNAs子电池中GaInNAs材料的光学带隙为1eV;所述GaInNAs子电池从上至下依次包括有n型AlGaAs窗口层、n型Ga1-xInxNyAs1-y层或n型GaAs层、p型Ga1-xInxNyAs1-y层及p型AlGaAs背场层,其中x:y=2.8:1,0.02<y<0.03,Ga1-xInxNyAs1-y材料带隙为1.0eV。
所述GaInP子电池中GaInP材料的光学带隙为1.9eV。
所述GaAs子电池中GaAs材料的光学带隙为1.4eV。
所述双面用高效太阳能电池的制备方法,具体是:采用金属有机化学气相沉积技术(MOCVD)或分子束外延生长技术(MBE)在GaAs衬底的上表面按照层状叠加结构由下至上依次生长第一GaAs缓冲层、第一隧道结、GaAs子电池、第二隧道结、GaInP子电池和高掺杂浓度的n型GaAs盖帽层,然后将GaAs衬底翻转180°,在GaAs衬底的下表面按照层状叠加结构由上至下依次生长第二GaAs缓冲层、GaInNAs子电池和高掺杂浓度的n型GaAs盖帽层,得到GaInP/GaAs/GaInNAs三结电池,在GaInP/GaAs/GaInNAs三结电池上表面进行光刻、沉积减反射膜、制备电极及后续电池芯片制作,然后将GaInP/GaAs/GaInNAs三结电池翻转180°,在GaInP/GaAs/GaInNAs三结电池下表面进行光刻、沉积减反射膜、制备电极及后续电池芯片制作,即可完成双面用高效太阳能电池的制备;其中,所述GaInNAs子电池结构从上至下依次包括有n型AlGaAs窗口层、n型Ga1-xInxNyAs1-y层或n型GaAs层、p型Ga1-xInxNyAs1-y层及p型AlGaAs背场层,x:y=2.8:1,0.02<y<0.03,Ga1-xInxNyAs1-y材料带隙为1.0eV。
本发明与现有技术相比,具有如下优点与有益效果:
利用GaAs双面衬底,并结合GaInNAs材料的自身特点,在GaAs衬底的上表面设置有GaInP和GaAs子电池,在其下表面设置带隙约1eV的GaInNAs子电池,最终得到带隙结构为1.9/1.4/1.0eV的GaInP/GaAs/GaInNAs三结电池,并在所述GaInP/GaAs/GaInNAs三结电池上下表面分别制备欧姆接触层、进行光刻、沉积减反射膜、制备电极及后续电池芯片制作。本发明不仅可以提高太阳电池对太阳光谱的利用率,还可以通过吸收利用背面入射光,从而提高多结太阳电池的光电转换效率;同时,可以减薄GaInNAs子电池基区厚度,节省原材料和时间成本,提高生产效率。
附图说明
图1为本发明所述双面用高效太阳能电池的结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
如图1所示,本实施例所提供的双面用高效太阳能电池,包括有GaAs衬底,所述GaAs衬底为双面抛光的n型GaAs单晶片,在所述GaAs衬底的上表面按照层状叠加结构由下至上依次设置有第一GaAs缓冲层、GaAs子电池和GaInP子电池,在所述GaAs衬底的下表面按照层状叠加结构由上至下依次设置有第二GaAs缓冲层和GaInNAs子电池,所述第一GaAs缓冲层与GaAs子电池之间通过第一隧道结连接,所述GaAs子电池与GaInP子电池之间通过第二隧道结连接;所述GaInP子电池、GaAs子电池、第一GaAs缓冲层、第二GaAs缓冲层及GaInNAs子电池所有材料层与GaAs衬底保持晶格匹配;所述GaInP子电池和GaInNAs子电池上均生长高掺杂浓度的n型GaAs盖帽层作为欧姆接触层以及均进行光刻、沉积减反射膜、制备电极及后续电池芯片制作;所述GaInNAs子电池中GaInNAs材料的光学带隙约为1eV;所述GaInNAs子电池从上至下依次包括有n型AlGaAs窗口层、n型Ga1-xInxNyAs1-y层或n型GaAs层、p型Ga1-xInxNyAs1-y层及p型AlGaAs背场层,其中x:y=2.8:1,0.02<y<0.03,Ga1-xInxNyAs1-y材料带隙约为1.0eV;所述GaInP子电池中GaInP材料的光学带隙约为1.9eV;所述GaAs子电池中GaAs材料的光学带隙约为1.4eV。
下面为本实施例上述双面用高效太阳能电池的具体制作方法,其具体过程如下:
以4英寸双面抛光的n型GaAs单晶片为衬底,采用金属有机化学气相沉积技术(MOCVD)或分子束外延生长技术(MBE)在GaAs衬底的上表面按照层状叠加结构由下至上依次生长第一GaAs缓冲层、第一隧道结、GaAs子电池、第二隧道结、GaInP子电池和高掺杂浓度的n型GaAs盖帽层,然后将GaAs衬底翻转180°,在GaAs衬底的下表面按照层状叠加结构由上至下依次生长第二GaAs缓冲层、GaInNAs子电池和高掺杂浓度的n型GaAs盖帽层,得到GaInP/GaAs/GaInNAs三结电池,在GaInP/GaAs/GaInNAs三结电池上表面进行光刻、沉积减反射膜、制备电极及后续电池芯片制作,然后将GaInP/GaAs/GaInNAs三结电池翻转180°,在GaInP/GaAs/GaInNAs三结电池下表面进行光刻、沉积减反射膜、制备电极及后续电池芯片制作,即可完成双面用高效太阳能电池的制备;其中,所述GaInNAs子电池结构从上至下依次包括有n型AlGaAs窗口层、n型Ga1-xInxNyAs1-y层或n型GaAs层、p型Ga1-xInxNyAs1-y层及p型AlGaAs背场层,x:y=2.8:1,0.02<y<0.03,Ga1-xInxNyAs1-y材料带隙约为1.0eV。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (4)

1.一种双面用高效太阳能电池,包括有GaAs衬底,其特征在于:所述GaAs衬底为双面抛光的n型GaAs单晶片,在所述GaAs衬底的上表面按照层状叠加结构由下至上依次设置有第一GaAs缓冲层、GaAs子电池和GaInP子电池,在所述GaAs衬底的下表面按照层状叠加结构由上至下依次设置有第二GaAs缓冲层和GaInNAs子电池,所述第一GaAs缓冲层与GaAs子电池之间通过第一隧道结连接,所述GaAs子电池与GaInP子电池之间通过第二隧道结连接;所述GaInP子电池、GaAs子电池、第一GaAs缓冲层、第二GaAs缓冲层及GaInNAs子电池所有材料层与GaAs衬底保持晶格匹配;所述GaInP子电池和GaInNAs子电池上均生长高掺杂浓度的n型GaAs盖帽层作为欧姆接触层以及均进行光刻、沉积减反射膜、制备电极及后续电池芯片制作;所述GaInNAs子电池中GaInNAs材料的光学带隙为1eV;所述GaInNAs子电池从上至下依次包括有n型AlGaAs窗口层、n型Ga1-xInxNyAs1-y层或n型GaAs层、p型Ga1-xInxNyAs1-y层及p型AlGaAs背场层,其中x:y=2.8:1,0.02<y<0.03,Ga1-xInxNyAs1-y材料带隙为1.0eV。
2.根据权利要求1所述的一种双面用高效太阳能电池,其特征在于:所述GaInP子电池中GaInP材料的光学带隙为1.9eV。
3.根据权利要求1所述的一种双面用高效太阳能电池,其特征在于:所述GaAs子电池中GaAs材料的光学带隙为1.4eV。
4.一种权利要求1所述双面用高效太阳能电池的制备方法,其特征在于:采用金属有机化学气相沉积技术或分子束外延生长技术在GaAs衬底的上表面按照层状叠加结构由下至上依次生长第一GaAs缓冲层、第一隧道结、GaAs子电池、第二隧道结、GaInP子电池和高掺杂浓度的n型GaAs盖帽层,然后将GaAs衬底翻转180°,在GaAs衬底的下表面按照层状叠加结构由上至下依次生长第二GaAs缓冲层、GaInNAs子电池和高掺杂浓度的n型GaAs盖帽层,得到GaInP/GaAs/GaInNAs三结电池,在GaInP/GaAs/GaInNAs三结电池上表面进行光刻、沉积减反射膜、制备电极及后续电池芯片制作,然后将GaInP/GaAs/GaInNAs三结电池翻转180°,在GaInP/GaAs/GaInNAs三结电池下表面进行光刻、沉积减反射膜、制备电极及后续电池芯片制作,即可完成双面用高效太阳能电池的制备;其中,所述GaInNAs子电池结构从上至下依次包括有n型AlGaAs窗口层、n型Ga1-xInxNyAs1-y层或n型GaAs层、p型Ga1-xInxNyAs1-y层及p型AlGaAs背场层,x:y=2.8:1,0.02<y<0.03,Ga1-xInxNyAs1-y材料带隙为1.0eV。
CN201810927131.2A 2018-08-15 2018-08-15 一种双面用高效太阳能电池及其制备方法 Pending CN109148622A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810927131.2A CN109148622A (zh) 2018-08-15 2018-08-15 一种双面用高效太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810927131.2A CN109148622A (zh) 2018-08-15 2018-08-15 一种双面用高效太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN109148622A true CN109148622A (zh) 2019-01-04

Family

ID=64793280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810927131.2A Pending CN109148622A (zh) 2018-08-15 2018-08-15 一种双面用高效太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN109148622A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614901A (zh) * 2020-12-18 2021-04-06 中山德华芯片技术有限公司 一种砷化镓多结太阳能电池芯片及其制备方法
CN112713211A (zh) * 2020-12-29 2021-04-27 中山德华芯片技术有限公司 一种硅基六结太阳电池及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346191A (zh) * 2013-06-06 2013-10-09 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池及其制备方法
CN104465843A (zh) * 2014-11-28 2015-03-25 瑞德兴阳新能源技术有限公司 一种双面生长的GaAs四结太阳电池
CN105336796A (zh) * 2015-09-24 2016-02-17 扬州乾照光电有限公司 倒置结构的双面受光GaAs多结太阳电池及其制备方法
CN105826420A (zh) * 2016-05-12 2016-08-03 中山德华芯片技术有限公司 一种具有反射层的双面生长四结太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346191A (zh) * 2013-06-06 2013-10-09 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池及其制备方法
CN104465843A (zh) * 2014-11-28 2015-03-25 瑞德兴阳新能源技术有限公司 一种双面生长的GaAs四结太阳电池
CN105336796A (zh) * 2015-09-24 2016-02-17 扬州乾照光电有限公司 倒置结构的双面受光GaAs多结太阳电池及其制备方法
CN105826420A (zh) * 2016-05-12 2016-08-03 中山德华芯片技术有限公司 一种具有反射层的双面生长四结太阳能电池及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614901A (zh) * 2020-12-18 2021-04-06 中山德华芯片技术有限公司 一种砷化镓多结太阳能电池芯片及其制备方法
CN112713211A (zh) * 2020-12-29 2021-04-27 中山德华芯片技术有限公司 一种硅基六结太阳电池及其制作方法
CN112713211B (zh) * 2020-12-29 2022-03-15 中山德华芯片技术有限公司 一种硅基六结太阳电池及其制作方法

Similar Documents

Publication Publication Date Title
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
CN104465843A (zh) 一种双面生长的GaAs四结太阳电池
CN104393098A (zh) 基于半导体量子点的多结太阳能电池及其制作方法
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN102412337A (zh) 一种高效四结太阳能电池及其制作方法
CN102790116B (zh) 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN210535681U (zh) 一种晶格失配的五结太阳能电池
CN103219414B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN109148622A (zh) 一种双面用高效太阳能电池及其制备方法
CN103199142B (zh) GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN102738292B (zh) 多结叠层电池及其制备方法
CN102790119B (zh) GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN106252448B (zh) 一种含GaInNAs材料的多结太阳能电池及其制备方法
CN205385027U (zh) 一种含dbr结构的五结太阳能电池
CN205385028U (zh) 一种晶格匹配的六结太阳能电池
CN109326674A (zh) 含多个双异质结子电池的五结太阳能电池及其制备方法
CN204118094U (zh) 一种带隙结构优化的三结太阳电池
CN209045589U (zh) 一种含多个双异质结子电池的五结太阳能电池
CN104218108B (zh) 一种高效率柔性薄膜太阳能电池
CN104465846B (zh) 一种含量子结构的双面生长四结太阳电池
Mizuno et al. A “smart stack” triple-junction cell consisting of InGaP/GaAs and crystalline Si

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190104