CN106252448B - 一种含GaInNAs材料的多结太阳能电池及其制备方法 - Google Patents

一种含GaInNAs材料的多结太阳能电池及其制备方法 Download PDF

Info

Publication number
CN106252448B
CN106252448B CN201610718426.XA CN201610718426A CN106252448B CN 106252448 B CN106252448 B CN 106252448B CN 201610718426 A CN201610718426 A CN 201610718426A CN 106252448 B CN106252448 B CN 106252448B
Authority
CN
China
Prior art keywords
gainnas
type
sub
battery
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610718426.XA
Other languages
English (en)
Other versions
CN106252448A (zh
Inventor
张小宾
黄珊珊
马涤非
吴波
潘旭
张杨
杨翠柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co Ltd
Original Assignee
Zhongshan Dehua Chip Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co Ltd filed Critical Zhongshan Dehua Chip Technology Co Ltd
Priority to CN201610718426.XA priority Critical patent/CN106252448B/zh
Publication of CN106252448A publication Critical patent/CN106252448A/zh
Application granted granted Critical
Publication of CN106252448B publication Critical patent/CN106252448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/065Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the graded gap type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种含GaInNAs材料的多结太阳能电池及其制备方法,包括n型基底,在n型基底之上,按照层状叠加结构由下至上依次设置有至少三个子电池,全部子电池按带隙增加的顺序依次以串联方式堆叠,各子电池之间通过隧道结连接,在顶电池之上制备有增透膜,在增透膜之上制备有正面电极,在n型基底之下制备有背面电极;在上述所有的子电池中至少一个子电池为具有渐变带隙结构的背结型GaInNAs子电池,背结型GaInNAs子电池从下到上包括依次层状叠加的n型背场层、n型GaInNAs材料层、非有意掺杂的GaInNAs材料层、p型窗口层。本发明既可以满足多结电池带隙组合的理论设计要求,又能解决GaInNAs材料少子扩散长度较小的问题,提高电池转换效率。

Description

一种含GaInNAs材料的多结太阳能电池及其制备方法
技术领域
本发明涉及太阳能电池设计领域,具体涉及一种含GaInNAs材料的多结太阳能电池及其制备方法。
背景技术
太阳电池是利用半导体材料的光伏效应,收集太阳光谱中的光子并将其能量转化为电能的物理器件。太阳光谱是连续、不均匀分布的,高效光电转换的基本原则是保证不同波长的光子都能够被吸收且转化为电流,从而确保了光子数量,同时采用多种禁带宽度不同的材料有针对性地来吸收光子,保证不同波长的光子能量损耗小。基于III-V族化合物半导体材料制备而成的高效多结太阳能电池的转换效率远远超过了目前已知的其他各种光伏电池,目前最成熟的高效多结电池为晶格匹配的GaInP/GaInAs/Ge三结太阳电池,其带隙组合为1.85/1.40/0.67eV。然而,这种三结电池的带隙组合并不是最佳的,由于中电池GaInAs材料及底电池Ge材料的带隙差异较大,造成Ge子电池的短路电流密度远高于GaInP子电池及GaInAs子电池,由于串联结构的电流限制原因,在工作时底电池产生的很大一部分载流子不能被有效利用,造成了不必要的能量损失,限制了太阳电池的光电转换效率进一步提高。
近年来,很多机构也在开发新型结构的多结太阳电池以改善多个子电池之间的电流匹配,提升效率。这些新型结构的多结太阳电池针对其电流分配不合理的880~1800nm波段进行电池带隙的重新分配和组合,能够更加合理地利用太阳光谱,以达到更高的光电转换效率,但这些多结太阳电池的禁带分布对太阳电池材料提出新的要求,特别是用于吸收低能光子的窄禁带半导体材料。
稀氮化合物GaInNAs材料是一种极具潜力的多元化合物半导体材料。通过控制材料中In原子与N原子的含量,GaInNAs材料可在GaAs或Ge基底上晶格匹配外延生长,并实现禁带宽度在0.8~1.4eV之间连续可调。基于稀氮化合物的晶格匹配材料体系太阳电池,可实现电池全结构的晶格匹配一次生长,提高太阳电池外延片质量的同时降低了器件工艺的难度与复杂度。通过调整GaInNAs材料的禁带宽度,太阳电池的禁带分布可实现进一步优化,更接近理想的光谱匹配。这为光谱匹配程度更高的三结太阳电池、以及更高效率的多结太阳电池的生产与研制提供了极大便利。
实际上,GaInNAs体系自1996年以来,科研人员便在这一领域进行了如火如荼的研究。MOCVD具有低成本,高产量的优点,适用于规模化生产,是目前太阳电池外延片的主要生产手段。例如,Wu等人制备了p-GaAs/i-GaInNAs/n-GaAs结构的双异质结单结太阳能电池,经过氮气气氛下550℃退火1小时后,GaInNAs的晶体质量提高,EQE响应明显提高,获得的GaInNAs单电池在全波段的Jsc从2.82mA/cm2提升到14.4mA/cm2,Voc从0.35V提升到0.50V,但在设计的1000nm吸收峰附近,其外量子效率仍不到35%,这是由于GaInNAs电池的少子扩散长度较小导致电池的长波响应较低,使得优化后的单电池效率也仅为4.46%(“Characterization of the post-thermal annealing effect for p-GaAs/i-InGaAsN/n-GaAs hetero-junction solar cells”,Solar Energy Materials&Solar Cells.2012,107:344-347)。类似地,韩国的Youngjo Kim等人生长并制备GaInNAsSb/Ge(1.14/0.67eV)双结太阳能电池,受限于GaInNAsSb材料的少子扩散长度及低量子效率,短路电流密度受GaInNAsSb子电池的限制仅为13.14mA/cm2,双结电池的转换效率为9.05%(“InGaAsNSb/Gedouble-junction solar cells grown by metalorganic chemical vapor deposition”,Solar Energy,2014,102:126-130)。
由此可见,在利用MOCVD技术制备GaInNAs材料的过程中主要的问题在于:由于GaInNAs需要低温生长才能保证N原子的有效并入,材料中会同时引入大量的C原子,造成背景载流子浓度过高,降低少子寿命,影响少子扩散长度。此时,若GaInNAs材料层太厚,并不能形成对光生载流子的有效收集;若GaInNAs材料太薄则造成电池吸收率太低,不能将相应波段的光子完全吸收。因此,如果引入渐变带隙结构的GaInNAs材料层,则可以有效解决该问题,提高对光生载流子的有效收集。在结构设计中,可以通过调节N、In原子的并入比率来调节GaInNAs材料的带隙变化并同时保持与相邻结构晶格匹配,降低远离结区的区域的N含量来获得较宽的带隙,使短波部分的光更倾向于被远离结区的区域吸收,由于此区域N原子含量较低引入的C原子浓度低,少子寿命较长,有利于提高远离结区区域的少子收集效率;而靠近结区的区域N原子含量较高带隙较窄,使长波部分的光更倾向于被靠近结区的区域吸收,虽然这部分区域的少子寿命短,扩散长度较小,但由于更靠近结区而使光生载流子被有效收集,完美解决了少子扩散长度较小和吸收厚度要求之间的矛盾。此外,渐变的带隙构成的势垒也可以形成附加电场,帮助少子收集,从而进一步提高电池转换效率。
发明内容
本发明的目的在于克服现有技术的不足与缺点,提供一种含GaInNAs材料的多结太阳能电池及其制备方法,在保证晶格匹配的基础上,既可以满足多结电池带隙组合的理论设计要求,又能解决GaInNAs材料少子扩散长度较小的问题,最大程度地发挥多结电池的优势,提高电池转换效率。
为实现上述目的,本发明所提供的技术方案,如下:
一种含GaInNAs材料的多结太阳能电池,包括有一个n型基底,在所述n型基底之上,按照层状叠加结构由下至上依次设置有至少三个子电池,全部子电池按带隙增加的顺序依次以串联方式堆叠,各子电池之间通过隧道结连接,各子电池与相邻结构保持晶格匹配,在顶电池之上制备有增透膜,在增透膜之上制备有正面电极,在n型基底之下制备有背面电极;其中,在上述所有的子电池中至少一个子电池为具有渐变带隙结构的背结型GaInNAs子电池,所述背结型GaInNAs子电池从下到上包括依次层状叠加的n型背场层、n型GaInNAs材料层、非有意掺杂的GaInNAs材料层、p型窗口层,所述非有意掺杂的GaInNAs材料层的带隙渐变分布并始终与相邻结构保持晶格匹配,所述渐变带隙分布位于1.0eV与1.3eV之间,所述渐变带隙分布依赖于深度位置,层的底部带隙最低,层的顶部带隙最高。
所述n型基底为n型Ge基底或n型GaAs基底。
所述n型背场层采用的材料有GaAs、AlGaAs或GaInP,该n型背场层的生长温度为450~650℃,掺杂浓度为5e17~1e19/cm3,生长速率为10~100nm/min,厚度为100~200nm。
所述n型GaInNAs材料层带隙为1.0eV,该n型GaInNAs材料层生长温度为450~600℃,掺杂浓度为5e17~5e18/cm3,生长速率为10~100nm/min,厚度为80~150nm。
所述非有意掺杂的GaInNAs材料层生长温度为450~600℃,生长速率为10~100nm/min,厚度为800~2000nm。
所述p型窗口层采用的材料有AlInP、AlGaAs或GaInP,该p型窗口层的生长温度为550~650℃,掺杂浓度为5e17~5e18/cm3,生长速率为10~50nm/min,厚度为20~80nm。
所述正面电极为AuGeNi/Au正面电极;所述背面电极为Au/Ag/Au背面电极。
所述增透膜为MgF2/ZnS、Ta2O5/A12O3、Ta2O5/SiO2、TiO2/SiO2中的一种。
一种含GaInNAs材料的多结太阳能电池的制备方法,包括以下步骤:
步骤1:选择一基底;
步骤2:采用金属有机物化学气相沉积技术,在选择的基底上生长GaInNAs子电池以下的子电池;
步骤3:采用金属有机物化学气相沉积技术,改变生长条件,生长背结型GaInNAs子电池,从下到上依次生长GaInNAs子电池的n型背场层、n型GaInNAs材料层、非有意掺杂的GaInNAs材料层、p型窗口层;
步骤4:采用金属有机物化学气相沉积技术,改变生长条件,在GaInNAs子电池之上生长GaInNAs子电池以上的子电池;
步骤5:对多结太阳能电池进行退火处理;
步骤6:利用离子源辅助镀膜技术在多结太阳能电池上表面制备增透膜;
步骤7:利用电子束蒸发技术在多结太阳能电池上表面及下表面分别制备电接触层。
在步骤1中,所述基底为n型Ge基底或n型GaAs基底;
在步骤2中,所述GaInNAs子电池以下的子电池的带隙小于GaInNAs子电池的带隙,且保证各子电池的带隙从下到上依次递增,各子电池与相邻结构保持晶格匹配;
在步骤3中,所述n型背场层采用GaAs、AlGaAs或GaInP材料,该n型背场层的生长温度为450~650℃;该n型背场层掺杂浓度为5e17~1e19/cm3;该n型背场层的生长速率为10~100nm/min;该n型背场层的厚度为100~200nm;
在步骤3中,所述n型GaInNAs材料层带隙为1.0eV,该n型GaInNAs材料层生长温度为450~600℃;该n型GaInNAs材料层掺杂浓度为5e17~5e18/cm3;该n型GaInNAs材料层的生长速率为10~100nm/min;该n型GaInNAs材料层厚度为80~150nm;
在步骤3中,所述非有意掺杂的GaInNAs材料层为带隙渐变分布结构,所述带隙渐变分布为从下到上线性递增,底部结构层材料带隙为1.0eV,顶部结构层材料带隙为1.3eV,在包含砷烷、TMGa、TMHy及TMIn等源的气氛中生长,通过改变TMIn、TMHy的流量或生长温度,在所述区域中产生渐变的组分分布,并始终与相邻结构保持晶格匹配;该非有意掺杂的GaInNAs材料层生长温度为450~600℃;该非有意掺杂的GaInNAs材料层的生长速率为10~100nm/min;该非有意掺杂的GaInNAs材料层的厚度为800~2000nm;
在步骤3中,所述p型窗口层采用AlInP、AlGaAs或GaInP材料,该p型窗口层的生长温度为550~650℃;该p型窗口层掺杂浓度为5e17~5e18/cm3;该p型窗口层的生长速率为10~50nm/min;该p型窗口层的厚度为20~80nm;
在步骤4中,所述GaInNAs子电池以上的子电池的带隙大于GaInNAs子电池的带隙,且保证各子电池的带隙从下到上依次递增,各子电池与相邻结构保持晶格匹配;
在步骤5中,所述退火处理是在砷烷气氛或氢气气氛或氮气气氛中退火30~120分钟;退火温度为650~850℃;
在步骤6中,所述增透膜为MgF2/ZnS、Ta2O5/A12O3、Ta2O5/SiO2、TiO2/SiO2中的一种;
在步骤7中,在多结太阳能电池的上表面制备AuGeNi/Au正面电极,下表面制备Au/Ag/Au背面电极。
本发明与现有技术相比,具有如下优点与有益效果:
1、本发明设计了具有背结型GaInNAs子电池的多结太阳电池,所述背结型子电池具有带隙渐变的GaInNAs材料层。其中,在制备带隙渐变的GaInNAs材料层时,通过调节N、In原子的并入比来调节GaInNAs材料的带隙变化并同时保持与相邻结构晶格匹配。如图1所示,所述带隙渐变的GaInNAs材料层的顶部N原子含量较低,因而带隙较宽,少子扩散长度L1较大;而GaInNAs材料层的底部N原子含量较高,因而带隙较窄,少子扩散长度L2较小,这样短波光生少子在少子扩散长度较大的顶部产生,长波光生少子在靠近结区的底部产生,有利于光生少子的有效收集。此外,渐变的带隙构成的势垒也可以形成附加电场,帮助少子收集,从而进一步提高电池转换效率。
2、图2示出背结型GaInNAs子电池与常规GaInNAs子电池的结构对比,下表1示出分别含这两种GaInNAs子电池的多结太阳能电池在AM0下电性能对比,可以看出含背结型GaInNAs子电池的多结太阳能电池在880~1200nm部分积分电流密度大大提高了,优化了对太阳光谱的利用,这将使各子电池的电流分配更均匀,减少热损耗,进而带来较高的光电转换效率。
表1含常规GaInNAs子电池与含背结型GaInNAs子电池的多结太阳能电池在AM0下光电性能分析
附图说明
图1为背结型GaInNAs子电池结构及能带分布示意图。
图2为背结型GaInNAs子电池与常规的GaInNAs子电池结构对比图。
图3为含背结型GaInNAs子电池的三结太阳能电池结构示意图。
图4为含背结型GaInNAs子电池的四结太阳能电池结构示意图。
具体实施方式
本发明提供一种含GaInNAs材料的多结太阳能电池,也提供了用于制造这种多结太阳能电池的方法,所述多结太阳能电池中的至少一个子电池为GaInNAs子电池,该GaInNAs子电池为具有渐变带隙结构的背结型电池。
下面结合两个具体实施例对本发明作进一步说明。
实施例1(三结太阳能电池)
如图3所示,本实施例所述的三结太阳能电池结构,包括有n型基底,所述n型基底为n型Ge基底,在所述n型基底之上,按照层状叠加结构由下至上依次设置有背结型GaInNAs子电池、GaAs子电池和GaInP子电池,三结子电池按带隙增加的顺序依次以串联方式堆叠,各结子电池之间通过隧道结连接,在顶电池之上制备有增透膜,在增透膜之上制备有正面电极,在n型基底之下制备有背面电极。
所述背结型GaInNAs子电池的结构从下到上包括依次层状叠加的n型背场层、n型GaInNAs材料层、非有意掺杂的GaInNAs材料层、p型窗口层,该背结型GaInNAs子电池的总厚度为1200~1800nm。
所述GaAs子电池总厚度为2000nm,GaAs的光学带隙为1.40eV。
所述GaInP子电池中电池总厚度为700nm,GaInP的光学带隙为1.85eV。
具体地,本实施例提供了上述三结太阳能电池的具体制作方法,该方法采用金属有机物化学气相沉积技术,在外延生长过程中,采用TMGa、TMIn、TMHy、TMAl、砷烷、磷烷作为III-V组分源,采用DEZn作为p型掺杂源,乙硅烷作为n型掺杂源,隧道结掺杂源包括Te、乙硅烷、CCl4。所有材料生长温度在540~780℃之间。该方法具体包括以下步骤:
步骤1:选择一基底,该基底为n型Ge基底。
步骤2:采用金属有机物化学气相沉积技术,在n型基底上生长背结型GaInNAs子电池,所述背结型GaInNAs子电池的具体结构如图1所示;
先在基底之上生长n型背场层,该n型背场层可以采用但不限于GaAs、AlGaAs或GaInP等带隙较宽的材料,该n型背场层的生长温度为450~650℃,优选范围为540~600℃;该n型背场层掺杂浓度为5e17~1e19/cm3,优选范围为1e18~5e18/cm3;该n型背场层的生长速率为10~100nm/min,优选范围为10~50nm/min;该n型背场层的厚度为100~200nm,优选范围为150~180nm;
在n型背场层之上生长带隙为1.0eV的n型GaInNAs材料层,该n型GaInNAs材料层生长温度为450~600℃,优选范围为450~550℃;该n型GaInNAs材料层掺杂浓度为5e17~5e18/cm3,优选范围为5e17~2e18/cm3;该n型GaInNAs材料层的生长速率为10~100nm/min,优选范围为10~50nm/min;该n型GaInNAs材料层厚度为80~150nm,优选范围为80~120nm;
在n型GaInNAs材料层生长带隙渐变的非有意掺杂的GaInNAs材料层,所述带隙渐变分布为从下到上线性递增,在层的底部的带隙为1.0eV,在层的顶部带隙为1.3eV,在生长期间,通过改变TMIn、TMHy的流量或改变生长温度,以在所述区域中产生渐变的组分分布,并始终与相邻结构保持晶格匹配;该非有意掺杂的GaInNAs材料层生长温度为450~600℃,优选范围为450~550℃;该非有意掺杂的GaInNAs材料层的生长速率为10~100nm/min,优选范围为10~50nm/min;该非有意掺杂的GaInNAs材料层的厚度为800~2000nm,优选范围为1000~1500nm;
在非有意掺杂的GaInNAs材料层生长p型窗口层,该p型窗口层可以采用但不限于AlInP、AlGaAs或GaInP等宽带隙材料,该p型窗口层的生长温度为550~650℃,优选范围为600~650℃;该p型窗口层掺杂浓度为5e17~5e18/cm3,优选范围为7e17~2e18/cm3;该p型窗口层的生长速率为10~50nm/min,优选范围为10~20nm/min;该p型窗口层的厚度为20~80nm,优选范围为20~40nm。
步骤3:在GaInNAs子电池之上生长高掺杂AlGaAs第一隧道结,该隧道结总厚度为20~50nm,优选范围为20~30nm;该隧道结生长温度为450~600℃,优选范围为500~550℃;该隧道结的生长速率为10~60nm/min,优选范围为10~30nm/min。
步骤4:在第一隧道结之上生长带隙在1.40eV左右的GaAs子电池,该GaAs子电池生长温度为600~700℃,优选范围为600~650℃;该子电池的生长速率为100~300nm/min,优选范围为200~250nm/min。
步骤5:在GaAs子电池之上生长高掺杂GaInP第二隧道结,该隧道结总厚度为20~50nm,优选范围为20~30nm;该隧道结生长温度为450~600℃,优选范围为500~550℃;该隧道结的生长速率为10~60nm/min,优选范围为10~30nm/min。
步骤6:在第二隧道结之上生长带隙在1.85eV左右的GaInP子电池,该GaInP子电池生长温度为600~700℃,优选范围为600~650℃;该子电池的生长速率为40~200nm/min,优选范围为40~100nm/min。
步骤7:在生长完顶部子电池之后,在砷烷气氛或氢气气氛或氮气气氛中(优选砷烷气氛)进行退火处理,退火时间30~120分钟,优选范围为30~60分钟;退火温度为650~850℃,优选范围为650~700℃。
步骤8:利用离子源辅助镀膜技术在顶部子电池之上制备增透膜,该增透膜包括但不限于:MgF2/ZnS、Ta2O5/A12O3、Ta2O5/SiO2、TiO2/SiO2
步骤9:在电池的上表面制备AuGeNi/Au正面电极,下表面制备Au/Ag/Au背面电极。
实施例2(四结太阳能电池)
如图4所示,本实施例所述的四结太阳能电池结构,包括有n型基底,所述n型基底为n型GaAs基底,在所述n型基底之上,按照层状叠加结构由下至上依次设置有GaAs/InAs量子点子电池、背结型GaInNAs子电池、GaAs子电池和GaInP子电池,四结子电池按带隙增加的顺序依次以串联方式堆叠,各结子电池之间通过隧道结连接,在顶电池之上制备有增透膜,在增透膜之上制备有正面电极,在n型基底之下制备有背面电极。
所述GaAs/InAs量子点子电池总厚度为400~600nm,光学带隙为0.7eV。
所述背结型GaInNAs子电池的结构从下到上包括n型背场层、n型GaInNAs材料层、非有意掺杂的GaInNAs材料层、p型窗口层,该背结型GaInNAs子电池的总厚度为1200~1800nm。。
所述GaAs子电池总厚度为2000nm,GaAs的光学带隙为1.40eV。
所述GaInP子电池中电池总厚度为700nm,GaInP的光学带隙为1.85eV。
具体地,本实施例提供了上述四结太阳能电池的具体制作方法,该方法采用金属有机物化学气相沉积技术,在外延生长过程中,采用TMGa、TMIn、TMHy、TMAl、砷烷、磷烷作为III-V组分源,采用DEZn作为p型掺杂源,乙硅烷作为n型掺杂源,隧道结掺杂源包括Te、乙硅烷、CCl4。所有材料生长温度在540~780℃之间。该方法具体包括以下步骤:
步骤1:选择一基底,该基底为n型GaAs基底。
步骤2:在基底上生长带隙为0.7eV的GaAs/InAs量子点子电池,生长温度为450~600℃,优选范围为470~540℃;该子电池的生长速率为10~100nm/min,优选范围为10~50nm/min。
步骤3:在GaAs/InAs量子点子电池之上生长高掺杂AlGaAs第一隧道结,该隧道结总厚度为20~50nm,优选范围为20~30nm;该隧道结生长温度为450~600℃,优选范围为500~550℃;该隧道结的生长速率为10~60nm/min,优选范围为10~30nm/min。
步骤4:采用金属有机物化学气相沉积技术,在第一隧道结之上生长背结型GaInNAs子电池,所述背结型GaInNAs子电池的具体结构如图1所示,
先在基底之上生长n型背场层,该n型背场层可以采用但不限于GaAs、AlGaAs或GaInP等带隙较宽的材料,该n型背场层的生长温度为450~650℃,优选范围为540~600℃;该n型背场层掺杂浓度为5e17~1e19/cm3,优选范围为1e18~5e18/cm3;该n型背场层的生长速率为10~100nm/min,优选范围为10~50nm/min;该n型背场层的厚度为100~200nm,优选范围为150~180nm;
在n型背场层之上生长带隙为1.0eV的n型GaInNAs材料层,该n型GaInNAs材料层生长温度为450~600℃,优选范围为450~550℃;该n型GaInNAs材料层掺杂浓度为5e17~5e18/cm3,优选范围为5e17~2e18/cm3;该n型GaInNAs材料层的生长速率为10~100nm/min,优选范围为10~50nm/min;该n型GaInNAs材料层厚度为80~150nm,优选范围为80~120nm;
在n型GaInNAs材料层生长带隙渐变的非有意掺杂的GaInNAs材料层,所述带隙渐变分布为从下到上线性递增,在层的底部的带隙为1.0eV,在层的顶部带隙为1.3eV,在生长期间,通过改变TMIn、TMHy的流量或改变生长温度,以在所述区域中产生渐变的组分分布,并始终与相邻结构保持晶格匹配;该非有意掺杂的GaInNAs材料层生长温度为450~600℃,优选范围为450~550℃;该非有意掺杂的GaInNAs材料层的生长速率为10~100nm/min,优选范围为10~50nm/min;该非有意掺杂的GaInNAs材料层的厚度为800~2000nm,优选范围为1000~1500nm;
在非有意掺杂的GaInNAs材料层生长p型窗口层,该p型窗口层可以采用但不限于AlInP、AlGaAs或GaInP等宽带隙材料,该p型窗口层的生长温度为550~650℃,优选范围为600~650℃;该p型窗口层掺杂浓度为5e17~5e18/cm3,优选范围为7e17~2e18/cm3;该p型窗口层的生长速率为10~50nm/min,优选范围为10~20nm/min;该p型窗口层的厚度为20~80nm,优选范围为20~40nm。
步骤5:在GaInNAs子电池之上生长高掺杂AlGaAs第二隧道结,该隧道结总厚度为20~50nm,优选范围为20~30nm;该隧道结生长温度为450~600℃,优选范围为500~550℃;该隧道结的生长速率为10~60nm/min,优选范围为10~30nm/min。
步骤6:在第二隧道结之上生长带隙在1.40eV左右的GaAs子电池,该GaAs子电池生长温度为600~700℃,优选范围为600~650℃;该子电池的生长速率为100~300nm/min,优选范围为200~250nm/min。
步骤7:在GaAs子电池之上生长高掺杂GaInP第三隧道结,该隧道结总厚度为20~50nm,优选范围为20~30nm;该隧道结生长温度为450~600℃,优选范围为500~550℃;该隧道结的生长速率为10~60nm/min,优选范围为10~30nm/min。
步骤8:在第三隧道结之上生长带隙为1.85eV左右的GaInP子电池,该GaInP子电池生长温度为600~700℃,优选范围为600~650℃;该子电池的生长速率为40~200nm/min,优选范围为40~100nm/min。
步骤9:在生长完顶部子电池之后,在砷烷气氛或氢气气氛或氮气气氛中(优选砷烷气氛)进行退火处理,退火时间30~120分钟,优选范围为30~60分钟;退火温度为650~850℃,优选范围为650~700℃。
步骤10:利用离子源辅助镀膜技术在顶部子电池之上制备增透膜,该增透膜包括但不限于:MgF2/ZnS、Ta2O5/A12O3、Ta2O5/SiO2、TiO2/SiO2
步骤11:在电池的上表面制备AuGeNi/Au正面电极,下表面制备Au/Ag/Au背面电极。
综上所述,本发明利用带隙渐变的背结型GaInNAs子电池特点,结合其少子扩散长度与带隙之间的关系,将GaInNAs子电池应用于多结电池中,充分提高GaInNAs子电池的电流密度,可以使多结电池更加合理地利用太阳光谱,提高多结电池的转换效率。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (9)

1.一种含GaInNAs材料的多结太阳能电池,其特征在于:包括有一个n型基底,在所述n型基底之上,按照层状叠加结构由下至上依次设置有至少三个子电池,全部子电池按带隙增加的顺序依次以串联方式堆叠,各子电池之间通过隧道结连接,各子电池与相邻结构保持晶格匹配,在顶电池之上制备有增透膜,在增透膜之上制备有正面电极,在n型基底之下制备有背面电极;其中,在上述所有的子电池中至少一个子电池为具有渐变带隙结构的背结型GaInNAs子电池,所述背结型GaInNAs子电池从下到上包括依次层状叠加的n型背场层、n型GaInNAs材料层、非有意掺杂的GaInNAs材料层、p型窗口层,所述非有意掺杂的GaInNAs材料层的带隙渐变分布并始终与相邻结构保持晶格匹配,所述渐变带隙分布位于1.0eV与1.3eV之间,所述渐变带隙分布依赖于深度位置,层的底部带隙最低,层的顶部带隙最高;所述n型背场层采用的材料有GaAs、AlGaAs或GaInP,该n型背场层的生长温度为450~650℃,掺杂浓度为5e17~1e19/cm3,生长速率为10~100nm/min,厚度为100~200nm。
2.根据权利要求1所述的一种含GaInNAs材料的多结太阳能电池,其特征在于:所述n型基底为n型Ge基底或n型GaAs基底。
3.根据权利要求1所述的一种含GaInNAs材料的多结太阳能电池,其特征在于:所述n型GaInNAs材料层带隙为1.0eV,该n型GaInNAs材料层生长温度为450~600℃,掺杂浓度为5e17~5e18/cm3,生长速率为10~100nm/min,厚度为80~150nm。
4.根据权利要求1所述的一种含GaInNAs材料的多结太阳能电池,其特征在于:所述非有意掺杂的GaInNAs材料层生长温度为450~600℃,生长速率为10~100nm/min,厚度为800~2000nm。
5.根据权利要求1所述的一种含GaInNAs材料的多结太阳能电池,其特征在于:所述p型窗口层采用的材料有AlInP、AlGaAs或GaInP,该p型窗口层的生长温度为550~650℃,掺杂浓度为5e17~5e18/cm3,生长速率为10~50nm/min,厚度为20~80nm。
6.根据权利要求1所述的一种含GaInNAs材料的多结太阳能电池,其特征在于:所述正面电极为AuGeNi/Au正面电极;所述背面电极为Au/Ag/Au背面电极。
7.根据权利要求1所述的一种含GaInNAs材料的多结太阳能电池,其特征在于:所述增透膜为MgF2/ZnS、Ta2O5/Al2O3、Ta2O5/SiO2、TiO2/SiO2中的一种。
8.一种含GaInNAs材料的多结太阳能电池的制备方法,其特征在于,包括以下步骤:
步骤1:选择一基底;
步骤2:采用金属有机物化学气相沉积技术,在选择的基底上生长GaInNAs子电池以下的子电池;
步骤3:采用金属有机物化学气相沉积技术,改变生长条件,生长背结型GaInNAs子电池,从下到上依次生长GaInNAs子电池的n型背场层、n型GaInNAs材料层、非有意掺杂的GaInNAs材料层、p型窗口层;
步骤4:采用金属有机物化学气相沉积技术,改变生长条件,在GaInNAs子电池之上生长GaInNAs子电池以上的子电池;
步骤5:对多结太阳能电池进行退火处理;
步骤6:利用离子源辅助镀膜技术在多结太阳能电池上表面制备增透膜;
步骤7:利用电子束蒸发技术在多结太阳能电池上表面及下表面分别制备电接触层。
9.根据权利要求8所述的一种含GaInNAs材料的多结太阳能电池的制备方法,其特征在于:在步骤1中,所述基底为n型Ge基底或n型GaAs基底;
在步骤2中,所述GaInNAs子电池以下的子电池的带隙小于GaInNAs子电池的带隙,且保证各子电池的带隙从下到上依次递增,各子电池与相邻结构保持晶格匹配;
在步骤3中,所述n型背场层采用GaAs、AlGaAs或GaInP材料,该n型背场层的生长温度为450~650℃;该n型背场层掺杂浓度为5e17~1e19/cm3;该n型背场层的生长速率为10~100nm/min;该n型背场层的厚度为100~200nm;
在步骤3中,所述n型GaInNAs材料层带隙为1.0eV,该n型GaInNAs材料层生长温度为450~600℃;该n型GaInNAs材料层掺杂浓度为5e17~5e18/cm3;该n型GaInNAs材料层的生长速率为10~100nm/min;该n型GaInNAs材料层厚度为80~150nm;
在步骤3中,所述非有意掺杂的GaInNAs材料层为带隙渐变分布结构,所述带隙渐变分布为从下到上线性递增,底部结构层材料带隙为1.0eV,顶部结构层材料带隙为1.3eV,在包含砷烷、TMGa、TMHy及TMIn的气氛中生长,通过改变TMIn、TMHy的流量或生长温度,在非有意掺杂的GaInNAs材料层的生长区域中产生渐变的组分分布,并始终与相邻结构保持晶格匹配;该非有意掺杂的GaInNAs材料层生长温度为450~600℃;该非有意掺杂的GaInNAs材料层的生长速率为10~100nm/min;该非有意掺杂的GaInNAs材料层的厚度为800~2000nm;
在步骤3中,所述p型窗口层采用AlInP、AlGaAs或GaInP材料,该p型窗口层的生长温度为550~650℃;该p型窗口层掺杂浓度为5e17~5e18/cm3;该p型窗口层的生长速率为10~50nm/min;该p型窗口层的厚度为20~80nm;
在步骤4中,所述GaInNAs子电池以上的子电池的带隙大于GaInNAs子电池的带隙,且保证各子电池的带隙从下到上依次递增,各子电池与相邻结构保持晶格匹配;
在步骤5中,所述退火处理是在砷烷气氛或氢气气氛或氮气气氛中退火30~120分钟;退火温度为650~850℃;
在步骤6中,所述增透膜为MgF2/ZnS、Ta2O5/Al2O3、Ta2O5/SiO2、TiO2/SiO2中的一种;
在步骤7中,在多结太阳能电池的上表面制备AuGeNi/Au正面电极,下表面制备Au/Ag/Au背面电极。
CN201610718426.XA 2016-08-24 2016-08-24 一种含GaInNAs材料的多结太阳能电池及其制备方法 Active CN106252448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610718426.XA CN106252448B (zh) 2016-08-24 2016-08-24 一种含GaInNAs材料的多结太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610718426.XA CN106252448B (zh) 2016-08-24 2016-08-24 一种含GaInNAs材料的多结太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN106252448A CN106252448A (zh) 2016-12-21
CN106252448B true CN106252448B (zh) 2017-08-25

Family

ID=57596053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610718426.XA Active CN106252448B (zh) 2016-08-24 2016-08-24 一种含GaInNAs材料的多结太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN106252448B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403850B (zh) * 2017-07-07 2023-05-12 中山德华芯片技术有限公司 一种含嵌入式背场结构的多结太阳能电池及其制备方法
CN115084294B (zh) * 2022-05-17 2023-03-24 深圳先进技术研究院 两端式叠层薄膜太阳能电池组件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465843A (zh) * 2014-11-28 2015-03-25 瑞德兴阳新能源技术有限公司 一种双面生长的GaAs四结太阳电池
CN105810778A (zh) * 2016-03-30 2016-07-27 中山德华芯片技术有限公司 MOCVD高温生长高质量GaInNAs子电池的方法
CN206022397U (zh) * 2016-08-24 2017-03-15 中山德华芯片技术有限公司 一种含背结型GaInNAs子电池的多结太阳能电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2768027B1 (en) * 2013-02-15 2019-10-30 AZUR SPACE Solar Power GmbH Layer structure for a group-III-nitride normally-off transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465843A (zh) * 2014-11-28 2015-03-25 瑞德兴阳新能源技术有限公司 一种双面生长的GaAs四结太阳电池
CN105810778A (zh) * 2016-03-30 2016-07-27 中山德华芯片技术有限公司 MOCVD高温生长高质量GaInNAs子电池的方法
CN206022397U (zh) * 2016-08-24 2017-03-15 中山德华芯片技术有限公司 一种含背结型GaInNAs子电池的多结太阳能电池

Also Published As

Publication number Publication date
CN106252448A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
US10355159B2 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
TWI542026B (zh) 高效多接面太陽能電池
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
US20140373907A1 (en) Four-Junction Quaternary Compound Solar Cell and Method Thereof
US20180331245A1 (en) Dual-junction thin film solar cell module, and preparation method thereof
US20140196773A1 (en) Multi-junction iii-v solar cell
CN106796965A (zh) 包括接合层的半导体结构、多结光伏电池和相关方法
CN109728119B (zh) 一种石墨烯/AlGaAs/GaAs/GaInAs多异质结太阳能电池及其制备方法
US8034654B2 (en) Method for forming a GexSi1-x buffer layer of solar-energy battery on a silicon wafer
Sharma et al. Methods for Integration of III-V Compound and Silicon Multijunction for High Efficiency Solar Cell Design
CN102983203A (zh) 三结级联太阳能电池及其制作方法
CN106252448B (zh) 一种含GaInNAs材料的多结太阳能电池及其制备方法
CN103000740B (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN109742187B (zh) 一种多节太阳能电池制造方法
CN109326674B (zh) 含多个双异质结子电池的五结太阳能电池及其制备方法
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN206022397U (zh) 一种含背结型GaInNAs子电池的多结太阳能电池
CN110931593A (zh) 一种晶格匹配的硅基无砷化合物四结太阳电池
CN109755340A (zh) 一种正向晶格失配三结太阳电池
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
Mizuno et al. A “smart stack” triple-junction cell consisting of InGaP/GaAs and crystalline Si
KR20140110911A (ko) 방사형 접합 반도체 나노구조의 저온 제조 방법, 방사형 접합 디바이스 및 방사형 접합 나노구조를 포함하는 태양 전지
CN103489939A (zh) 多结异质量子点阵列及其制备方法和多结异质量子点太阳能电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhang Xiaobin

Inventor after: Huang Shanshan

Inventor after: Ma Difei

Inventor after: Yang Wenyi

Inventor after: Pan Xu

Inventor after: Zhang Yang

Inventor after: Yang Cuibai

Inventor before: Zhang Xiaobin

Inventor before: Huang Shanshan

Inventor before: Ma Difei

Inventor before: Wu Bo

Inventor before: Pan Xu

Inventor before: Zhang Yang

Inventor before: Yang Cuibai

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: The invention relates to a multi junction solar cell containing GaInNAs material and a preparation method thereof

Effective date of registration: 20210929

Granted publication date: 20170825

Pledgee: Industrial Bank Limited by Share Ltd. Zhongshan branch

Pledgor: ZHONGSHAN DEHUA CHIP TECHNOLOGY Co.,Ltd.

Registration number: Y2021980010236