CN112447868B - 一种高质量四结空间太阳电池及其制备方法 - Google Patents

一种高质量四结空间太阳电池及其制备方法 Download PDF

Info

Publication number
CN112447868B
CN112447868B CN202011331408.9A CN202011331408A CN112447868B CN 112447868 B CN112447868 B CN 112447868B CN 202011331408 A CN202011331408 A CN 202011331408A CN 112447868 B CN112447868 B CN 112447868B
Authority
CN
China
Prior art keywords
layer
type
sub
band gap
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011331408.9A
Other languages
English (en)
Other versions
CN112447868A (zh
Inventor
黄珊珊
刘建庆
黄辉廉
刘恒昌
刘雪珍
杨文奕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co ltd
Original Assignee
Zhongshan Dehua Chip Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co ltd filed Critical Zhongshan Dehua Chip Technology Co ltd
Priority to CN202011331408.9A priority Critical patent/CN112447868B/zh
Publication of CN112447868A publication Critical patent/CN112447868A/zh
Application granted granted Critical
Publication of CN112447868B publication Critical patent/CN112447868B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only Ge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种高质量四结空间太阳电池及其制备方法,包括Ge衬底,在Ge衬底上按照层状叠加结构由下至上依次设有Ge子电池、GaInP成核层、GaInAs缓冲层、第一隧穿结、组分渐变缓冲层、DBR反射层、GaInAs子电池、第二隧穿结、AlGaInAs子电池、第三隧穿结、AlGaInP子电池;AlGaInAs子电池和AlGaInP子电池的基区与发射区之间形成耗尽层,基区和发射区为带隙渐变结构,通过在含Al子电池中引入带隙渐变结构,提高了耗尽层的材料质量,降低光生载流子主要产生区域的少子复合速率,提高光生载流子收集效率,同时,渐变的带隙具有辅助背场的作用,使远离耗尽层的光生载流子向耗尽层漂移,远离耗尽层的Al组分使含Al子电池的有效带隙更宽,有利于获得更高开路电压。

Description

一种高质量四结空间太阳电池及其制备方法
技术领域
本发明涉及太阳能光伏发电的技术领域,尤其是指一种高质量四结空间太阳电池及其制备方法。
背景技术
正向失配AlGaInP/AlGaInAs/GaInAs/Ge四结太阳电池基于正向失配三结电池,通过开发大失配GaInAs子电池、引入高Al组分AlGaInAs子电池、宽带隙AlGaInP子电池,不仅优化了太阳光谱的综合利用,更提升单波段光谱的利用效率,最终实现产品的整体性能提升,获得效率面向34%以上的正向失配四结太阳电池。同时,与三结电池相比,四结电池抗辐射能力显著提升,尤其适用于环境恶劣的外太空环境。
在半导体材料中适当地用Al原子替代Ga原子,提高材料的禁带宽度。但由于Al原子的活泼性较大,极易与环境中的水氧形成牢固的Al-O键,在宽禁带材料中形成Al-O缺陷,同时在材料外延生长过程中外来掺杂与材料体内的缺陷耦合,而在电池结构中引入大量的深能级缺陷,加速电子空穴对的复合,而对电池性能产生不利影响。在磷化物材料中材料质量对于Al组分更为敏感,因此在宽禁带AlGaInP材料中由于较高的Al组分而使得材料的氧系杂质、缺陷增加,非辐射复合严重,少子寿命所受影响也比较大,电池的电压和电流都受到不良影响,制约太阳电池的光电转换效率,太阳电池的抗辐照特性也大打折扣。
而用于带隙组合为1.9/1.4/1.1/0.67eV的正装失配四结电池,由于GaInAs子电池的In组分高达23%,为达到晶格匹配其AlGaInP子电池及AlGaInAs子电池分别具有71%及23%的In组分,要分别达到1.9eV及1.4eV的禁带宽度,其Al组分需分别达到21%及30%。现有生产条件下,水、氧等杂质的存在很难完全杜绝,而四结电池开发中,高铝组分材料的应用又无法避免。
发明内容
本发明的目的在于克服现有技术的不足与缺点,提出了一种工艺简单、性能优异的高质量四结空间太阳电池及制备方法,通过引入渐变带隙的基区及发射区,可以提高含Al子电池的质量及电性能,最终发挥四结电池的优势,提高电池整体光电转换效率,提升电池的抗辐照特性。
为实现上述目的,本发明所提供的技术方案为:一种高质量四结空间太阳电池,包括Ge衬底,所述Ge衬底为p型Ge单晶片,在所述Ge衬底上面按照层状叠加结构由下至上依次设置有Ge子电池、GaInP成核层、GaInAs缓冲层、第一隧穿结、组分渐变缓冲层、DBR反射层、GaInAs子电池、第二隧穿结、AlGaInAs子电池、第三隧穿结、AlGaInP子电池;所述AlGaInAs子电池和AlGaInP子电池的基区与发射区之间形成耗尽层,且基区和发射区均为带隙渐变结构,基区的带隙随其Al组分沿远离衬底方向逐渐降低而降低,而发射区的带隙随其Al组分沿远离衬底方向逐渐增加而增加,通过在AlGaInAs子电池和AlGaInP子电池中引入带隙渐变结构,能够提高耗尽层的材料质量,降低光生载流子主要产生区域的少子复合速率,提高光生载流子收集效率,同时,渐变的带隙具有辅助背场的作用,使远离耗尽层的光生载流子向耗尽层漂移,并且,远离耗尽层的Al组分使AlGaInAs子电池和AlGaInP子电池的有效带隙更宽,有利于获得更高的开路电压。
进一步,所述GaInP成核层、GaInAs缓冲层与Ge衬底保持晶格匹配;所述DBR反射层、GaInAs子电池、AlGaInAs子电池、AlGaInP子电池保持晶格匹配,与Ge衬底及GaInP成核层、GaInAs缓冲层晶格失配,并通过引入组分渐变缓冲层完成两组晶格之间的过渡。
进一步,所述AlGaInAs子电池包含依次叠加的p型背场层、p型AlGaInAs带隙渐变基区、n型AlGaInAs带隙渐变发射区和n型窗口层,其中,AlGaInAs材料的In组分保持不变,禁带宽度为1.3~1.5eV。
进一步,所述p型AlGaInAs带隙渐变基区沿远离衬底方向Al组分线性降低,其带隙随Al组分线性降低而降低,厚度为1000~2000nm;所述n型AlGaInAs带隙渐变发射区沿远离衬底方向Al组分线性增加,其带隙随Al组分线性增加而增加,厚度为80~120nm。
进一步,所述AlGaInP子电池包含依次叠加的p型背场层、p型AlGaInP带隙渐变基区、n型AlGaInP带隙渐变发射区和n型窗口层,其中,AlGaInP材料的In组分保持不变,禁带宽度为1.8~2.1eV。
进一步,所述p型AlGaInP带隙渐变基区沿远离衬底方向Al组分线性降低,其带隙随Al组分线性降低而降低,厚度为400~600nm;所述n型AlGaInP带隙渐变发射区沿远离衬底方向Al组分线性增加,其带隙随Al组分线性增加而增加,厚度为40~60nm。
进一步,所述GaInP成核层为n型掺杂层,电子浓度为1×1018/cm3~1×1019/cm3,厚度为5~20nm;所述GaInAs缓冲层为n型掺杂层,电子浓度为5×1017/cm3~1×1019/cm3,厚度为500~1500nm;所述组分渐变缓冲层的材料为AlGaInP、AlGaInAs或GaInP,总厚度为2000~3000nm。
进一步,所述DBR反射层的反射波长为900~1200nm,其组合层的对数为10~30对;所述GaInAs子电池包含依次叠加的p型背场层、p型基区、n型发射区和n型窗口层,总厚度为1500~3000nm,光学带隙为1.0~1.2eV。
进一步,所述第一隧穿结与Ge衬底晶格匹配,该第一隧穿结包含叠加的n型层和p型层,厚度10~20nm,掺杂浓度为1e19~1e20cm-3,其中,n型层为GaInP、AlGaAs或GaAs,p型层为AlGaAs或GaAs;所述第二隧穿结和第三隧穿结与GaInAs子电池晶格匹配,该第二隧穿结和第三隧穿结均包含叠加的n型层和p型层,厚度10~20nm,掺杂浓度为1e19~1e20cm-3,其中,n型层为AlInP、AlGaInP或AlGaInAs,p型层为AlGaInAs。
本发明也提供了上述高质量四结空间太阳电池的制备方法,包括以下步骤:
步骤1:选择一p型Ge衬底,对衬底进行n型掺杂,其中n型掺杂源为磷原子;
步骤2:采用金属有机物化学气相沉积技术,在选择的衬底上生长一层低温的GaInP成核层,生长温度为500~600℃,生长速率为6~40nm/min,该GaInP成核层用于增加衬底表面的成核密度;
步骤3:采用金属有机物化学气相沉积技术,改变生长条件,在GaInP成核层上生长GaInAs缓冲层,生长温度为550~650℃,生长速率为60~300nm/min,该GaInAs缓冲层用于减少外延层的缺陷密度,提高晶体质量;
步骤4:采用金属有机物化学气相沉积技术,改变生长条件,在GaInAs缓冲层上生长第一隧穿结,生长温度为450~600℃,生长速率为10~60nm/min;
步骤5:采用金属有机物化学气相沉积技术,改变生长条件,在第一隧穿结上生长组分渐变缓冲层,生长温度为550~650℃,生长速率为60~300nm/min,通过控制III族源的流量,使In组分沿远离衬底方向阶梯式递增;
步骤6:采用金属有机物化学气相沉积技术,改变生长条件,在组分渐变缓冲层上生长DBR反射层,生长温度为500~700℃,生长速率为10~60nm/min;
步骤7:采用金属有机物化学气相沉积技术,改变生长条件,在DBR反射层上生长GaInAs子电池,生长温度为600~700℃,生长速率为60~300nm/min;
步骤8:采用金属有机物化学气相沉积技术,改变生长条件,在GaInAs子电池上生长第二隧穿结,生长温度为450~600℃,生长速率为15~60nm/min;
步骤9:采用金属有机物化学气相沉积技术,改变生长条件,在第二隧穿结上生长AlGaInAs子电池,生长温度为600~800℃,生长速率为40~300nm/min,保持In流量不变,通过控制III族源的流量生长不同Al组分的AlGaInAs材料;
步骤10:采用金属有机物化学气相沉积技术,改变生长条件,在AlGaInAs子电池上生长第三隧穿结,生长温度为450~600℃,生长速率为10~40nm/min;
步骤11:采用金属有机物化学气相沉积技术,改变生长条件,在第三隧穿结上生长AlGaInP子电池,生长温度为600~800℃,生长速率为15~80nm/min,保持In流量不变,通过控制III族源的流量生长不同Al组分的AlGaInP材料。
本发明与现有技术相比,具有如下优点与有益效果:
通过在含Al子电池中引入带隙渐变结构,提高了耗尽层材料质量,降低光生载流子主要产生区域的少子复合速率,提高载流子收集效率;同时,渐变的带隙具有辅助背场的作用,使远离耗尽层的光生载流子向耗尽层漂移;并且,远离耗尽层较高的Al组分使含Al子电池的有效带隙更宽,有利于获得更高的开路电压。
根据分析,在AM0空间光谱下,相比没有带隙渐变结构的四结电池,本发明制作的四结电池短路电流Jsc、开路电压Voc及填充因子FF均得到较大提升,转换效率达到34%,抗辐照特性也得到明显改善,请见下表1所示的无带隙渐变结构和有带隙渐变结构的四结太阳电池在AM0光电性能分析。
表1
Figure GDA0003556071310000051
Figure GDA0003556071310000061
附图说明
图1为实施例中高质量四结空间太阳电池的结构示意图。
图2为实施例中带隙渐变的含Al子电池及其对应层禁带宽度示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
如图1和图2所示,本实施例提供了一种高质量四结空间太阳电池,包括Ge衬底,所述Ge衬底为p型Ge单晶片;在所述Ge衬底上面按照层状叠加结构由下至上依次设置有Ge子电池、GaInP成核层、GaInAs缓冲层、第一隧穿结、AlxGayIn1-x-yAs组分渐变缓冲层、DBR反射层、GaInAs子电池、第二隧穿结、AlGaInAs子电池、第三隧穿结和AlGaInP子电池;所述AlGaInAs子电池和AlGaInP子电池的基区与发射区之间形成耗尽层,且基区和发射区均为带隙渐变结构,基区的带隙随其Al组分沿远离衬底方向逐渐降低而降低,而发射区的带隙随其Al组分沿远离衬底方向逐渐增加而增加,通过在AlGaInAs子电池和AlGaInP子电池中引入带隙渐变结构,能够提高耗尽层的材料质量,降低光生载流子主要产生区域的少子复合速率,提高光生载流子收集效率,同时,渐变的带隙具有辅助背场的作用,使远离耗尽层的光生载流子向耗尽层漂移,并且,远离耗尽层的Al组分使AlGaInAs子电池和AlGaInP子电池的有效带隙更宽,有利于获得更高的开路电压。
所述GaInP成核层、GaInAs缓冲层与Ge衬底保持晶格匹配;所述DBR反射层、GaInAs子电池、AlGaInAs子电池、AlGaInP子电池保持晶格匹配,与所述Ge衬底及GaInP成核层、GaInAs缓冲层晶格失配;通过引入AlxGayIn1-x-yAs组分渐变缓冲层完成两组晶格之间的过渡。
所述Ge子电池通过磷扩散形成n型发射区,厚度为150nm。
所述GaInP成核层为n型掺杂层,电子浓度为1×1018/cm3~1×1019/cm3(优选3×1018/cm3),厚度为5~20nm(优选5nm)。
所述GaInAs缓冲层为n型掺杂层,电子浓度为5×1017/cm3~1×1019/cm3(优选2×1018/cm3),厚度为500~1500nm(优选500nm)。
所述第一隧穿结包含n型GaAs层及p型GaAs层,厚度10~20nm(优选10nm),掺杂浓度为1e19~1e20cm-3,其中,n型GaAs层掺杂浓度为1×1019/cm3,p型GaAs层掺杂浓度为1×1020/cm3
所述AlxGayIn1-x-yAs组分渐变缓冲层,总厚度为2000~3000nm(优选2000nm)Al组分固定为30%,In组分从1%渐变到23%。
所述DBR发射层材料为Al0.78In0.22As/Ga0.77In0.23As,反射波长为900~1200nm(优选950~1150nm),其组合层的对数为10~30对(优选12对)。
所述GaInAs子电池包含p型AlGaInAs背场、p型GaInAs基区、n型GaInAs发射区、n型AlInP窗口层,总厚度为1500~3000nm(优选1500nm),GaInAs材料的In组分约为23%,光学带隙约为1.0~1.2eV(优选1.1eV)。
所述第二隧穿结包含n型GaInP层和p型AlGaInAs层,厚度10~20nm,掺杂浓度为1e19~1e20cm-3,其中,n型GaInP层的In组分为71%,掺杂浓度为1×1019/cm3,厚度10nm,p型AlGaInAs层的In组分为23%,掺杂浓度为1×1020/cm3,厚度10nm。
所述AlGaInAs子电池包含p型AlInP背场层、p型AlGaInAs带隙渐变基区、n型AlGaInAs带隙渐变发射区、n型AlInP窗口层,AlGaInAs材料的In组分约为23%,禁带宽度约为1.3~1.5eV;所述p型AlGaInAs带隙渐变基区沿远离衬底方向Al组分从35%渐变至25%,禁带宽度约从1.45eV渐变至1.35eV,厚度约为1000~2000nm(优选1500nm);所述的n型AlGaInAs带隙渐变发射区沿远离衬底方向Al组分从25%渐变至35%,禁带宽度约从1.35eV渐变至1.45eV,厚度约为80~120nm(100nm)。
所述第三隧穿结包含n型AlGaInP层和p型AlGaInAs层,厚度10~20nm,掺杂浓度为1e19~1e20cm-3;其中,n型AlGaInP层的In组分为71%,掺杂浓度为1×1019/cm3,厚度10nm,p型AlGaInAs层的In组分为23%,掺杂浓度为1×1020/cm3,厚度10nm。
所述AlGaInP子电池包含p型AlInP背场层、p型AlGaInP带隙渐变基区、n型AlGaInP带隙渐变发射区、n型AlInP窗口层,AlGaInP材料的In组分约为71%,禁带宽度约为1.8~2.1eV;所述p型AlGaInAs带隙渐变基区沿远离衬底方向Al组分从25%渐变至15%,禁带宽度约从1.93eV渐变至1.85eV,厚度为厚度约为400~600nm(优选500nm);所述的n型AlGaInAs带隙渐变发射区沿远离衬底方向Al组分从15%渐变至25%,禁带宽度约从1.85eV渐变至1.93eV,厚度约为40~60nm(优选50nm)。
本实施例也提供了一种高质量四结空间太阳电池的具体制作方法,该方法包括但不局限于金属有机物化学气相沉积技术、分子束外延技术和气相外延技术,优先采用金属有机物化学气相沉积技术,该方法具体包括以下步骤:
步骤1:选择一p型Ge衬底,利用P原子对衬底进行n型掺杂,厚度约为150nm。
步骤2:采用金属有机物化学气相沉积技术,在选择的衬底上生长一层低温的GaInP成核层,生长温度为500~600℃,优选范围为500~550℃;该GaInP成核层的生长速率为6~40nm/min,优选范围为6~20nm/min;该GaInP成核层用于增加衬底表面的成核密度。
步骤3:采用金属有机物化学气相沉积技术,改变生长条件,在GaInP成核层上生长GaInAs缓冲层;该GaInAs缓冲层生长温度为550~650℃,优选范围为600~650℃;该GaInAs缓冲层的生长速率为60~300nm/min,优选范围为100~200nm/min;该GaInAs缓冲层用于减少外延层的缺陷密度,提高晶体质量。
步骤4:采用金属有机物化学气相沉积技术,改变生长条件,在GaInAs缓冲层上生长第一隧穿结;该第一隧穿结生长温度为450~600℃,优选范围为500~550℃;该第一隧穿结的生长速率为10~60nm/min,优选范围为10~30nm/min。
步骤5:采用金属有机物化学气相沉积技术,改变生长条件,在第一隧穿结上生长AlxGayIn1-x-yAs组分渐变缓冲层;该AlxGayIn1-x-yAs组分渐变缓冲层生长温度为550~650℃,优选范围为600~650℃;生长速率为60~300nm/min,优选范围为100~200nm/min;通过控制Al、Ga、In等III族源的流量,使Al组分为30%,In组分沿远离衬底方向从1%阶梯式递增至23%。
步骤6:采用金属有机物化学气相沉积技术,改变生长条件,在AlxGayIn1-x-yAs组分渐变缓冲层上生长DBR反射层;该DBR反射层的生长温度为500~700℃,优选范围为600~650℃;该DBR反射层的生长速率为10~60nm/min,优选范围为20~40nm/min。
步骤7:采用金属有机物化学气相沉积技术,改变生长条件,在DBR反射层上生长GaInAs子电池;该GaInAs子电池的生长温度为600~700℃,优选范围为600~650℃;该GaInAs子电池的生长速率为60~300nm/min,优选范围为100~200nm/min。
步骤8:采用金属有机物化学气相沉积技术,改变生长条件,在GaInAs子电池上生长第二隧穿结;该第二隧穿结的生长温度为450~600℃,优选范围为500~550℃;该第二隧穿结的生长速率为15~60nm/min,优选范围为10~30nm/min。
步骤9:采用金属有机物化学气相沉积技术,改变生长条件,在第二隧穿结上生长AlGaInAs子电池;该AlGaInAs子电池的生长温度为600~800℃,优选范围为650~700℃;该AlGaInAs子电池的生长速率为40~300nm/min,优选范围为100~200nm/min;保持In流量不变,通过控制Al、Ga等III族源的流量生长不同Al组分的AlGaInAs材料。
步骤10:采用金属有机物化学气相沉积技术,改变生长条件,在AlGaInAs子电池上生长第三隧穿结;该第三隧穿结的生长温度为450~600℃,优选范围为500~550℃;该第三隧穿结的生长速率为10~40nm/min,优选范围为10~30nm/min。
步骤11:采用金属有机物化学气相沉积技术,改变生长条件,在第三隧穿结上生长AlGaInP子电池;该AlGaInP子电池的生长温度为600~800℃,优选范围为650~700℃;该AlGaInP子电池的生长速率为15~80nm/min,优选范围为30~50nm/min;保持In流量不变,通过控制Al、Ga等III族源的流量生长不同Al组分的AlGaInP材料。
综上所述,本发明通过在含Al子电池中引入带隙渐变结构,提高了耗尽层材料质量,降低光生载流子主要产生区域的少子复合速率,提高载流子收集效率;同时,渐变的带隙具有辅助背场的作用,使远离耗尽层的光生载流子向耗尽层漂移;并且,远离耗尽层较高的Al组分使含Al子电池的有效带隙更宽,有利于获得更高的开路电压。总之,本发明可以更加充分地利用太阳光能量,提高GaAs多结电池的光电转换效率,值得推广。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (10)

1.一种高质量四结空间太阳电池,包括Ge衬底,其特征在于:所述Ge衬底为p型Ge单晶片,在所述Ge衬底上面按照层状叠加结构由下至上依次设置有Ge子电池、GaInP成核层、GaInAs缓冲层、第一隧穿结、组分渐变缓冲层、DBR反射层、GaInAs子电池、第二隧穿结、AlGaInAs子电池、第三隧穿结、AlGaInP子电池;所述AlGaInAs子电池和AlGaInP子电池的基区与发射区之间形成耗尽层,且基区和发射区均为带隙渐变结构,基区的带隙随其Al组分沿远离衬底方向逐渐降低而降低,而发射区的带隙随其Al组分沿远离衬底方向逐渐增加而增加,通过在AlGaInAs子电池和AlGaInP子电池中引入带隙渐变结构,能够提高耗尽层的材料质量,降低光生载流子主要产生区域的少子复合速率,提高光生载流子收集效率,同时,渐变的带隙具有辅助背场的作用,使远离耗尽层的光生载流子向耗尽层漂移,并且,远离耗尽层的Al组分使AlGaInAs子电池和AlGaInP子电池的有效带隙更宽,有利于获得更高的开路电压。
2.根据权利要求1所述的一种高质量四结空间太阳电池,其特征在于:所述GaInP成核层、GaInAs缓冲层与Ge衬底保持晶格匹配;所述DBR反射层、GaInAs子电池、AlGaInAs子电池、AlGaInP子电池保持晶格匹配,与Ge衬底及GaInP成核层、GaInAs缓冲层晶格失配,并通过引入组分渐变缓冲层完成两组晶格之间的过渡。
3.根据权利要求1所述的一种高质量四结空间太阳电池,其特征在于:所述AlGaInAs子电池包含依次叠加的p型背场层、p型AlGaInAs带隙渐变基区、n型AlGaInAs带隙渐变发射区和n型窗口层,其中,AlGaInAs材料的In组分保持不变,禁带宽度为1.3~1.5eV。
4.根据权利要求3所述的一种高质量四结空间太阳电池,其特征在于:所述p型AlGaInAs带隙渐变基区沿远离衬底方向Al组分线性降低,其带隙随Al组分线性降低而降低,厚度为1000~2000nm;所述n型AlGaInAs带隙渐变发射区沿远离衬底方向Al组分线性增加,其带隙随Al组分线性增加而增加,厚度为80~120nm。
5.根据权利要求1所述的一种高质量四结空间太阳电池,其特征在于:所述AlGaInP子电池包含依次叠加的p型背场层、p型AlGaInP带隙渐变基区、n型AlGaInP带隙渐变发射区和n型窗口层,其中,AlGaInP材料的In组分保持不变,禁带宽度为1.8~2.1eV。
6.根据权利要求5所述的一种高质量四结空间太阳电池,其特征在于:所述p型AlGaInP带隙渐变基区沿远离衬底方向Al组分线性降低,其带隙随Al组分线性降低而降低,厚度为400~600nm;所述n型AlGaInP带隙渐变发射区沿远离衬底方向Al组分线性增加,其带隙随Al组分线性增加而增加,厚度为40~60nm。
7.根据权利要求1所述的一种高质量四结空间太阳电池,其特征在于:所述GaInP成核层为n型掺杂层,电子浓度为1×1018/cm3~1×1019/cm3,厚度为5~20nm;所述GaInAs缓冲层为n型掺杂层,电子浓度为5×1017/cm3~1×1019/cm3,厚度为500~1500nm;所述组分渐变缓冲层的材料为AlGaInP、AlGaInAs或GaInP,总厚度为2000~3000nm。
8.根据权利要求1所述的一种高质量四结空间太阳电池,其特征在于:所述DBR反射层的反射波长为900~1200nm,其组合层的对数为10~30对;所述GaInAs子电池包含依次叠加的p型背场层、p型基区、n型发射区和n型窗口层,总厚度为1500~3000nm,光学带隙为1.0~1.2eV。
9.根据权利要求1所述的一种高质量四结空间太阳电池,其特征在于:所述第一隧穿结与Ge衬底晶格匹配,该第一隧穿结包含叠加的n型层和p型层,厚度10~20nm,掺杂浓度为1e19~1e20cm-3,其中,n型层为GaInP、AlGaAs或GaAs,p型层为AlGaAs或GaAs;所述第二隧穿结和第三隧穿结与GaInAs子电池晶格匹配,该第二隧穿结和第三隧穿结均包含叠加的n型层和p型层,厚度10~20nm,掺杂浓度为1e19~1e20cm-3,其中,n型层为AlInP、AlGaInP或AlGaInAs,p型层为AlGaInAs。
10.一种权利要求1至9任意一项所述的高质量四结空间太阳电池的制备方法,其特征在于,包括以下步骤:
步骤1:选择一p型Ge衬底,对衬底进行n型掺杂,其中n型掺杂源为磷原子;
步骤2:采用金属有机物化学气相沉积技术,在选择的衬底上生长一层低温的GaInP成核层,生长温度为500~600℃,生长速率为6~40nm/min,该GaInP成核层用于增加衬底表面的成核密度;
步骤3:采用金属有机物化学气相沉积技术,改变生长条件,在GaInP成核层上生长GaInAs缓冲层,生长温度为550~650℃,生长速率为60~300nm/min,该GaInAs缓冲层用于减少外延层的缺陷密度,提高晶体质量;
步骤4:采用金属有机物化学气相沉积技术,改变生长条件,在GaInAs缓冲层上生长第一隧穿结,生长温度为450~600℃,生长速率为10~60nm/min;
步骤5:采用金属有机物化学气相沉积技术,改变生长条件,在第一隧穿结上生长组分渐变缓冲层,生长温度为550~650℃,生长速率为60~300nm/min,通过控制III族源的流量,使In组分沿远离衬底方向阶梯式递增;
步骤6:采用金属有机物化学气相沉积技术,改变生长条件,在组分渐变缓冲层上生长DBR反射层,生长温度为500~700℃,生长速率为10~60nm/min;
步骤7:采用金属有机物化学气相沉积技术,改变生长条件,在DBR反射层上生长GaInAs子电池,生长温度为600~700℃,生长速率为60~300nm/min;
步骤8:采用金属有机物化学气相沉积技术,改变生长条件,在GaInAs子电池上生长第二隧穿结,生长温度为450~600℃,生长速率为15~60nm/min;
步骤9:采用金属有机物化学气相沉积技术,改变生长条件,在第二隧穿结上生长AlGaInAs子电池,生长温度为600~800℃,生长速率为40~300nm/min,保持In流量不变,通过控制III族源的流量生长不同Al组分的AlGaInAs材料;
步骤10:采用金属有机物化学气相沉积技术,改变生长条件,在AlGaInAs子电池上生长第三隧穿结,生长温度为450~600℃,生长速率为10~40nm/min;
步骤11:采用金属有机物化学气相沉积技术,改变生长条件,在第三隧穿结上生长AlGaInP子电池,生长温度为600~800℃,生长速率为15~80nm/min,保持In流量不变,通过控制III族源的流量生长不同Al组分的AlGaInP材料。
CN202011331408.9A 2020-11-24 2020-11-24 一种高质量四结空间太阳电池及其制备方法 Active CN112447868B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011331408.9A CN112447868B (zh) 2020-11-24 2020-11-24 一种高质量四结空间太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011331408.9A CN112447868B (zh) 2020-11-24 2020-11-24 一种高质量四结空间太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN112447868A CN112447868A (zh) 2021-03-05
CN112447868B true CN112447868B (zh) 2022-05-20

Family

ID=74737610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011331408.9A Active CN112447868B (zh) 2020-11-24 2020-11-24 一种高质量四结空间太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN112447868B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11658256B2 (en) * 2019-12-16 2023-05-23 Solaero Technologies Corp. Multijunction solar cells
EP4092761A1 (en) * 2021-05-18 2022-11-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells
EP4092763A1 (en) * 2021-05-18 2022-11-23 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction solar cells
CN113594285B (zh) * 2021-09-30 2021-12-21 南昌凯迅光电有限公司 一种正向四结砷化镓太阳电池及其制作方法
CN114361274B (zh) * 2022-01-07 2024-04-16 上海交通大学 基于组分渐变硅碳应变层的硅基半导体光电材料与制备
EP4235817A1 (en) * 2022-02-28 2023-08-30 SolAero Technologies Corp., a corporation of the state of Delaware Multijunction metamorphic solar cells
CN114335208B (zh) * 2022-03-16 2022-06-10 南昌凯迅光电股份有限公司 一种新型砷化镓太阳电池及制作方法
CN117476797B (zh) * 2023-12-27 2024-03-29 中山大学 一种多结太阳电池及其制备方法和应用
CN117976754A (zh) * 2024-01-11 2024-05-03 中山大学 一种四结太阳电池及其制备方法和应用
CN118053939A (zh) * 2024-02-23 2024-05-17 昆山杜克大学 异质结热光伏电池的制备方法及异质结热光伏电池

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132983A (ja) * 1982-02-01 1983-08-08 Seiko Epson Corp 太陽電池の製造方法
US7429822B2 (en) * 2003-10-28 2008-09-30 Sharp Kabushiki Kaisha Organic electroluminescence device having a cathode with a metal layer that includes a first metal and a low work function metal
US20080137701A1 (en) * 2006-12-12 2008-06-12 Joseph Michael Freund Gallium Nitride Based Semiconductor Device with Reduced Stress Electron Blocking Layer
JP5140347B2 (ja) * 2007-08-29 2013-02-06 株式会社日立製作所 バイポーラトランジスタ及びその製造方法
CN101667715B (zh) * 2008-09-03 2010-10-27 中国科学院半导体研究所 一种单模高功率垂直腔面发射激光器及其制作方法
JP2010186899A (ja) * 2009-02-13 2010-08-26 Fuji Xerox Co Ltd 面発光型半導体レーザ、光半導体装置、光送信装置、光空間伝送装置、光送信システム、光空間伝送システムおよび面発光型半導体レーザの製造方法
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
US9018519B1 (en) * 2009-03-10 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
CN102184980B (zh) * 2011-04-02 2013-10-30 中国科学院苏州纳米技术与纳米仿生研究所 基于晶片键合的三结太阳能电池及其制备方法
US20170236954A1 (en) * 2011-08-05 2017-08-17 Beamreach High efficiency solar cell structures and manufacturing methods
US20150171230A1 (en) * 2011-08-09 2015-06-18 Solexel, Inc. Fabrication methods for back contact solar cells
CN102299159B (zh) * 2011-08-17 2013-11-20 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池及其制备方法
CN102651417B (zh) * 2012-05-18 2014-09-03 中国科学院苏州纳米技术与纳米仿生研究所 三结级联太阳能电池及其制备方法
CN102790116B (zh) * 2012-07-19 2015-09-09 中国科学院苏州纳米技术与纳米仿生研究所 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN102790134A (zh) * 2012-08-21 2012-11-21 天津三安光电有限公司 一种高效倒装五结太阳能电池及其制备方法
CN102820368B (zh) * 2012-08-30 2014-12-03 中山大学 三族氮化物基光电晶体管探测器件及其制作方法
CN102832285A (zh) * 2012-09-07 2012-12-19 天津三安光电有限公司 一种三结太阳能电池及其制备方法
CN103199130B (zh) * 2013-03-15 2016-03-09 中国科学院苏州纳米技术与纳米仿生研究所 正装四结太阳电池及其制备方法
CN103151415B (zh) * 2013-04-03 2015-10-28 中国科学院苏州纳米技术与纳米仿生研究所 三结太阳电池及其制备方法
CN103199142B (zh) * 2013-04-03 2016-08-03 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法
CN104300015B (zh) * 2014-10-13 2017-01-18 北京工业大学 AlGaAs/GaInAs/Ge连续光谱太阳能电池
KR102320551B1 (ko) * 2015-01-16 2021-11-01 엘지전자 주식회사 태양 전지의 제조 방법
FR3047840A1 (fr) * 2016-02-16 2017-08-18 Univ Paris Diderot - Paris 7 Procede de fabrication d'au moins une structure semi-conductrice presentant un empilement d'une ou de plusieurs couches d'arseniure de gallium-aluminium
CN106252451B (zh) * 2016-09-27 2018-08-28 中国电子科技集团公司第十八研究所 一种五结叠层太阳电池及其制备方法
KR101892279B1 (ko) * 2017-04-24 2018-08-28 엘지전자 주식회사 화합물 반도체 태양 전지 및 이의 제조 방법
US10586884B2 (en) * 2018-06-18 2020-03-10 Alta Devices, Inc. Thin-film, flexible multi-junction optoelectronic devices incorporating lattice-matched dilute nitride junctions and methods of fabrication
CN110379898B (zh) * 2019-05-22 2020-11-17 华灿光电(苏州)有限公司 发光二极管外延片及其生长方法

Also Published As

Publication number Publication date
CN112447868A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
US10355159B2 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
US10066318B2 (en) Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
CN107527967B (zh) 一种具有抗辐照结构的高效三结级联砷化镓太阳电池及其制造方法
US20150068581A1 (en) Fabrication Method for Multi-junction Solar Cells
JP2003218374A (ja) Iii−v族太陽電池
CN210535681U (zh) 一种晶格失配的五结太阳能电池
WO2012174952A1 (zh) 一种高倍聚光多结太阳能电池及其制备方法
CN109524492B (zh) 一种提高多结太阳能电池少数载流子收集的方法
CN109326674B (zh) 含多个双异质结子电池的五结太阳能电池及其制备方法
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
US20190288147A1 (en) Dilute nitride optical absorption layers having graded doping
CN111430493B (zh) 一种多结太阳能电池及供电设备
CN103000740B (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN111725332A (zh) 一种高性能三结砷化镓太阳电池
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN114171615B (zh) 一种硅基多结太阳电池及其渐变缓冲层
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
CN110797427B (zh) 倒装生长的双异质结四结柔性太阳能电池及其制备方法
CN109309139B (zh) 一种高电流密度晶格失配太阳能电池及其制备方法
CN112635608A (zh) 一种锗基晶格失配四结太阳电池
CN107403850B (zh) 一种含嵌入式背场结构的多结太阳能电池及其制备方法
CN212257428U (zh) 一种异质pn结空间电池外延片
CN111276560B (zh) 砷化镓太阳电池及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant