CN113594285B - 一种正向四结砷化镓太阳电池及其制作方法 - Google Patents
一种正向四结砷化镓太阳电池及其制作方法 Download PDFInfo
- Publication number
- CN113594285B CN113594285B CN202111155240.5A CN202111155240A CN113594285B CN 113594285 B CN113594285 B CN 113594285B CN 202111155240 A CN202111155240 A CN 202111155240A CN 113594285 B CN113594285 B CN 113594285B
- Authority
- CN
- China
- Prior art keywords
- algaas
- gaas
- thickness
- junction
- gainp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001218 Gallium arsenide Inorganic materials 0.000 title claims abstract description 119
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims abstract description 125
- 230000005641 tunneling Effects 0.000 claims abstract description 48
- 239000002096 quantum dot Substances 0.000 claims abstract description 28
- 230000005684 electric field Effects 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims description 42
- 239000002019 doping agent Substances 0.000 claims description 26
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical class [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 8
- 238000009792 diffusion process Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 239000011701 zinc Substances 0.000 description 9
- 229910000673 Indium arsenide Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0687—Multiple junction or tandem solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035209—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
- H01L31/035218—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种正向四结砷化镓太阳电池及其制作方法,该太阳电池自下向上依次为Ge衬底、Ge底电池、GaAs缓冲层、第一隧穿结、InyAlGaAs缓冲层、第一组DBR、第一子电池、第二隧穿结、第二组DBR、第二子电池、第三隧穿结、AlGaInP顶电池;所述第一子电池由InxAlGaAs背电场,InxGaAs基区,分段式量子点InxGaAs发射区及第一AlInP或GaInP窗口层组成;所述第二子电池由InxAlGaAs背电场,InxAlGaAs基区,分段式量子点InxAlGaAs发射区及第二AlInP或GaInP窗口层组成;所述AlGaInP顶电池由AlGaInP背电场、GaInP基区、GaInP发射区及IZO窗口层组成。本发明制作的正向四结砷化镓太阳电池,电流密度得到大幅提升,光电转换率高、稳定性好。
Description
技术领域
本发明涉及砷化镓太阳电池结构技术领域,具体是涉及一种正向四结砷化镓太阳电池及其制作方法。
背景技术
目前空间用砷化镓多结太阳电池主要为GaInP/(In)GaAs/Ge三结太阳电池,其批产转换效率已经达到29.5%-30.5%(AM0)。该电池各子电池材料晶格完全匹配,易于生长,但现有转换效率已逐渐接近理论极限31.9%(AM0),转换效率提升的空间极为有限。
为进一步提高空间太阳电池的性能,满足空间航天器对电源越来越高的要求,研发更高效率、易于规模化生产的太阳电池是光伏产业和技术发展的必然。增加子电池数量、合理的将太阳光谱再重新分配是效率提升的有效手段。2010年以来,反向生长的GaInP/GaAs/InGaAs/InGaAs四结太阳电池成为研究的热点,实验室效率超过34%,但是这种太阳电池结构生长周期长,并且需要金属键合工艺,良率低、工艺不稳定且生产成本高。另外一种工艺路线是正向生长的GaInP/AlGaAs/InGaAs/Ge四结太阳电池,工艺相对简单,可以与GaInP/(In)GaAs/Ge三结太阳电池共用一条工艺线,但该结构的缺点在于电流密度低,工艺窗口小,工艺不稳定。
发明内容
本发明针对现有技术的不足,提供一种正向四结砷化镓太阳电池及其制作方法,该太阳电池采用应力调制结构的缓冲层,可以分步消除晶格失配带来的应力问题,同时过滤晶格失配产生的位错,可获得晶体质量高、翘曲度小的外延片;使用分段式量子点发射区,解决了正向四结太阳电池电流密度低的问题,为各子电池提供充足的电流余量,提高产品的转换效率和稳定性;通过采用IZO(氧化铟锌)窗口层技术,提高太阳光的入射几率,改善电流的收集作用,降低串联电阻,提升产品性能。
本发明通过下述技术方案实现一种正向四结砷化镓太阳电池,其特征在于,自下向上依次为Ge衬底、Ge底电池、GaAs缓冲层、第一隧穿结、InyAlGaAs缓冲层、第一组DBR、第一子电池、第二隧穿结、第二组DBR、第二子电池、第三隧穿结、AlGaInP顶电池;
所述第一子电池由InxAlGaAs背电场,InxGaAs基区,分段式量子点InxGaAs发射区及第一AlInP或GaInP窗口层组成;
所述第二子电池由InxAlGaAs背电场,InxAlGaAs基区,分段式量子点InxAlGaAs发射区及第二AlInP或GaInP窗口层组成;
所述AlGaInP顶电池由AlGaInP背电场、GaInP基区、GaInP发射区及IZO窗口层组成。
本技术方案采用分段式量子发射区,通过自组装的方式,分别在中电池与顶电池靠近窗口层一段的发射区内,插入量子点,在不降低产品开路电压的前提下,可大幅提升电流密度。在AlGaInP顶电池中采用高IZO作为正向四结太阳电池的窗口层,可以改善电流的收集作用,降低串联电阻;IZO带隙宽,可减小窗口层对入射光的吸收,折射率小,降低太阳光在太阳电池表面的反射。
进一步的,上述方案中所述InyAlGaAs缓冲层为应力调制结构,总层数m为5-13层,且m为奇数,厚度为0.8-2.6μm,掺杂浓度大于1×1018/cm3,其中,InyAlGaAs缓冲层中各层In组分y由以下公式确定,其中,a与b为沿生长方向的层数,x为所述第一子电池、第二子电池中In的组分:
进一步的,上述方案中所述分段式量子点InxGaAs发射区分为两段,第一段为InxGaAs材料,厚度为0.01-0.07μm,第二段为含有InAs量子点的InxGaAs材料,厚度为0.03-0.08μm;所述分段式量子点InxAlGaAs发射区分为两段,第一段为InxAlGaAs材料,厚度为0.01-0.07μm,第二段为含有InAs量子点的InxAlGaAs材料,厚度为0.03-0.08μm。
进一步的,上述方案中所述第一子电池的InxAlGaAs背电场厚度为0.05-0.1μm,所述InxGaAs基区和InxGaAs发射区总厚度为1-1.8μm,所述第一AlInP或GaInP窗口层厚度为0.05-0.2μm;所述第二子电池的InxAlGaAs背电场厚度为0.05-0.1μm,所述InxAlGaAs基区和InxAlGaAs发射区总厚度为1-1.8μm;所述第二AlInP或GaInP窗口层厚度为0.05-0.2μm。
进一步的,上述方案中所述第一AlInP或GaInP窗口层晶格常数是所述InxGaAs基区材料的98%-99.8%;第二AlInP或GaInP窗口层晶格常数是所述InxAlGaAs基区材料的98%-99.8%。本技术方案中窗口层晶格常数为基区材料的98%-99.8%,可用于平衡引入量子点时产生的应力。
进一步的,上述方案中所述第一隧穿结为N++GaAs/P++GaAs结构,其中,N++GaAs的厚度为0.01-0.03μm,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si中的一种或多种的组合;P++GaAs的厚度为0.01-0.03μm,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C中的一种或多种的组合。
进一步的,上述方案中所述第二隧穿结和所述第三隧穿结为N++GaInP/P++InxAlGaAs结构,其中,N++GaInP厚度为0.01-0.03μm,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si中的一种或多种的组合;P++InxAlGaAs的厚度为0.01-0.03μm,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C中的一种或多种的组合。
进一步的,上述方案中所述第一组DBR由15-30对InxAlGaAs/InxGaAs结构组成,InxAlGaAs层和InxGaAs层的厚度根据λ/4n计算,其中1000nm≤λ≤1300nm,n为对应InxAlGaAs或者InxGaAs材料的折射率;所述第二组DBR由15-30对InxAlGaAs/InxGaAs结构组成,InxAlGaAs层和InxGaAs层的厚度根据λ/4n计算,其中750nm≤λ≤950nm,n为对应InxAlGaAs或者InxGaAs材料的折射率。
进一步的,上述方案中所述AlGaInP背电场中Al的组分在0.3-0.8之间,厚度为0.02-0.15μm,所述GaInP基区及GaInP发射区的总厚度为0.5-1μm,所述IZO窗口层厚度为0.05-0.1μm。本技术方案中AlGaInP顶电池的晶格常数应与第一子电池、第二子电池相匹配。
本发明还提供一种正向四结砷化镓太阳电池的制作方法,包括以下步骤:
S1.在P型Ge衬底上,高温下通过PH3扩散的形式,形成Ge底电池发射区,然后生长GaInP成核层,所述GaInP成核层同时作为Ge底电池的窗口层;
S2.在Ge底电池上生长GaAs缓冲层;
S3.在GaAs缓冲层上生长第一隧穿结;
S4.在第一隧穿结上生长InyAlGaAs缓冲层;
S5.在InyAlGaAs缓冲层上生长第一组DBR;
S6.在第一组DBR上生长第一子电池;
S7.在第一子电池上生长第二隧穿结;
S8.在第二隧穿结上生长第二组DBR;
S9.在第二组DBR上生长第二子电池;
S10.在第二子电池上生长第三隧穿结;
S11.在第三隧穿结上生长AlGaInP顶电池。
本发明与现有技术相比,其有益效果有:
1.本发明使用应力调制结构的缓冲层,可以分步消除晶格失配带来的应力问题,同时可过滤晶格失配产生的位错,获得的晶体质量高、翘曲度小的外延片;
2.本发明采用分段式量子点发射区,通过自组装的方式,分别在中电池与顶电池靠近窗口层一段的发射区内插入量子点,解决了正向四结太阳电池电流密度低的问题,在不降低产品开路电压的前提下,大幅提升电流密度,为各子电池提供充足的电流余量,提高产品的转换效率和稳定性;
3.本发明通过IZO窗口层技术,采用高IZO作为正向四结太阳电池的窗口层,与AlInP窗口层相比,可有效改善电流的收集作用,降低串联电阻,提升产品性能;同时,IZO带隙宽,可减小窗口层对入射光的吸收,折射率小,可降低太阳光在太阳电池表面的反射,提高太阳光的入射几率;
4.本发明制作的太阳电池,电流密度得到大幅提升,光电转换率高、稳定性好。
附图说明
图1为本发明正向四结砷化镓太阳电池的结构示意图;
图2为本发明InyAlGaAs缓冲层的生长示意图;
图3为本发明第一子电池、第二子电池、顶电池的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
请参阅图1至图3,需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
图1为本发明一种正向四结砷化镓太阳电池的结构示意图,自下向上依次为Ge衬底、Ge底电池、GaAs缓冲层、第一隧穿结、InyAlGaAs缓冲层、第一组DBR、第一子电池、第二隧穿结、第二组DBR、第二子电池、第三隧穿结、AlGaInP顶电池。
本发明提供一种正向四结砷化镓太阳电池的制作方法,包括以下步骤:
S1.在P型Ge衬底上,高温下通过PH3扩散的形式,形成Ge底电池发射区,然后生长GaInP成核层,该成核层同时作为Ge底电池的窗口层。
S2.在Ge底电池上生长GaAs缓冲层;具体地,GaAs缓冲层厚度为0.1-0.8μm。
S3.在GaAs缓冲层上生长第一隧穿结;具体地,第一隧穿结为N++GaAs/P++GaAs结构,其中N++GaAs的厚度在0.01-0.03μm之间,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si中的一种或多种的组合;P++GaAs的厚度在0.01-0.03μm之间,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C中的一种或多种的组合。
S4.在第一隧穿结上生长InyAlGaAs缓冲层;其生长示意图如图2所示,具体地,InyAlGaAs缓冲层为应力调制结构,总层数m为5-13层,且m为奇数,厚度为0.8-2.6μm,掺杂浓度大于1×1018/cm3,其中,InyAlGaAs缓冲层中各层In组分y由以下公式确定,其中,a与b为沿生长方向的层数,x为第一子电池、第二子电池中In的组分:
S5.在InyAlGaAs缓冲层上生长第一组DBR;具体地,第一组DBR由15-30对InxAlGaAs/InxGaAs结构组成, InxAlGaAs层和InxGaAs层的厚度均根据λ/4n计算,其中1000nm≤λ≤1300nm,n为对应InxAlGaAs或者InxGaAs材料的折射率。
S6.在第一组DBR生长第一子电池;其结构图如图3所示,具体地,第一子电池为InxGaAs第一子电池,包括InxAlGaAs背电场,厚度为0.05-0.1μm;InxGaAs基区和InxGaAs发射区的总厚度为1-1.8μm;AlInP或GaInP窗口层厚度为0.05-0.2μm。其中,InxGaAs发射区分为两段,第一段为InxGaAs材料,厚度为0.01-0.07μm;第二段为含有InAs量子点的InxGaAs材料,厚度为0.03-0.08μm;其中AlInP或GaInP窗口层晶格常数是InxGaAs基区材料的98%-99.8%,用于平衡引入量子点时产生的应力。
S7.在第一子电池上生长第二隧穿结;具体地,第二隧穿结隧穿结为N++GaInP/P++InxAlGaAs结构,其中,N++GaInP厚度在0.01-0.03μm之间,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si中的一种或多种的组合;P++InxAlGaAs的厚度为0.01-0.03μm之间,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C中的一种或多种的组合。
S8.在第二隧穿结上生长第二组DBR;具体地,第二组DBR由15-30对InxAlGaAs/InxGaAs结构组成, InxAlGaAs层和InxGaAs层的厚度均根据λ/4n计算,其中750nm≤λ≤950nm,n为对应InxAlGaAs或者InxGaAs材料的折射率。
S9.在第二组DBR上生长第二子电池;其结构图如图3所示,具体地,第二子电池为InxAlGaAs第二子电池,包括InxAlGaAs背电场,厚度为0.05-0.1μm;InxAlGaAs基区和InxAlGaAs发射区总厚度为1-1.8μm;AlInP或GaInP窗口层,厚度为0.05-0.2μm。其中,InxAlGaAs发射区分为两段,第一段为InxAlGaAs材料,厚度0.01-0.07μm;第二段为含有InAs量子点的InxAlGaAs材料,厚度为0.03-0.08μm;其中,AlInP或GaInP窗口层晶格常数是InxAlGaAs基区材料的98%-99.8%,用于平衡引入量子点时产生的应力。
S10.在第二子电池上生长第三隧穿结;具体地,第三隧穿结隧穿结为N++GaInP/P++InxAlGaAs结构,其中,N++GaInP厚度在0.01-0.03μm之间,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si中的一种或多种的组合;P++InxAlGaAs的厚度在0.01-0.03μm之间,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C中的一种或多种的组合。
S11.在第三隧穿结上生长AlGaInP顶电池。具体地,AlGaInP顶电池晶格常数与第一子电池、第二子电池相匹配,由AlGaInP背电场、GaInP基区、GaInP发射区及IZO窗口层组成。其中,AlGaInP中Al的组分在0.3-0.8之间,厚度在0.02-0.15μm之间,GaInP基区及GaInP发射区的总厚度在0.5-1μm之间,IZO窗口层厚度在0.05-0.1μm之间。
实施例1
一种正向四结砷化镓太阳电池的制作方法,包括以下步骤:
S1.在P型Ge衬底上,高温下通过PH3扩散的形式,形成Ge底电池发射区,然后生长GaInP成核层,该成核层同时作为Ge底电池的窗口层。
S2.在Ge底电池上生长GaAs缓冲层,厚度为0.4μm。
S3.在GaAs缓冲层上生长第一隧穿结。第一隧穿结为N++GaAs/P++GaAs结构,其中N++GaAs的厚度为0.03μm,掺杂浓度为1.5×1019/cm3,掺杂剂为Si;P++GaAs的厚度为0.03μm,掺杂浓度为2.5×1019/cm3,掺杂剂为C。
S4.在第一隧穿结上生长InyAlGaAs缓冲层。InyAlGaAs缓冲层为应力调制结构,总层数m为9层,厚度为1μm,掺杂浓度为2×1018/cm3,其中,InyAlGaAs缓冲层中各层In组分由以下公式确定,a与b为沿生长方向的层数:
S5.在InyAlGaAs缓冲层上生长第一组DBR。第一组DBR由20对In0.2AlGaAs/In0.2GaAs结构组成, In0.2AlGaAs层和In0.2GaAs层的厚度均根据λ/4n计算,其中1000nm≤λ≤1300nm,n为对应In0.2AlGaAs或者In0.2GaAs材料的折射率。
S6.在第一组DBR上生长第一子电池。第一子电池包括In0.2AlGaAs背电场,厚度为0.06μm;In0.2GaAs基区和In0.2GaAs发射区,厚度1.5μm,其中,In0.2GaAs发射区分为两段,第一段为In0.2GaAs材料,厚度0.05μm;第二段为含有InAs量子点的In0.2GaAs材料,厚度为0.05μm;AlInP窗口层,厚度0.08μm,其中窗口层晶格常数是In0.2GaAs基区材料的99.8%,用于平衡引入量子点时产生的应力。
S7.在第一子电池上生长第二隧穿结。第二隧穿结隧穿结为N++GaInP/P++In0.2AlGaAs结构,其中,N++GaInP厚度为0.01μm,掺杂浓度为5×1019/cm3,掺杂剂为Te和Si的组合物;P++In0.2AlGaAs的厚度为0.01μm之间,掺杂浓度为1×1020/cm3,掺杂剂为Zn和C的组合物。
S8.在第二隧穿结上生长第二组DBR。第二组DBR由20对In0.2AlGaAs/In0.2GaAs结构组成, In0.2AlGaAs层和In0.2GaAs层的厚度均根据λ/4n计算,其中750nm≤λ≤950nm,n为对应In0.2AlGaAs或者In0.2GaAs材料的折射率。
S9.在第二组DBR上生长第二子电池。第二子电池包括In0.2AlGaAs背电场,厚度为0.1μm;In0.2AlGaAs基区和In0.2AlGaAs发射区,厚度1.6μm,其中,In0.2AlGaAs发射区分为两段,第一段为In0.2AlGaAs材料,厚度0.05μm;第二段为含有InAs量子点的In0.2AlGaAs材料,厚度为0.07μm;AlInP窗口层,厚度0.12μm,其中窗口层晶格常数是In0.2AlGaAs基区材料的99.8%,用于平衡引入量子点时产生的应力。
S10.在第二子电池上生长第三隧穿结。第三隧穿结隧穿结为N++GaInP/P++In0.2AlGaAs结构,其中,N++GaInP厚度为0.02μm之间,掺杂浓度为6×1019/cm3,掺杂剂为Te和Si的组合物;P++In0.2AlGaAs的厚度为0.02μm之间,掺杂浓度为7×1019/cm3,掺杂剂为Zn和C的组合物。
S11.在第三隧穿结上生长AlGaInP顶电池。顶电池晶格常数与第一子电池、第二子电池匹配,由AlGaInP背电场、GaInP基区、GaInP发射区及IZO窗口层组成。其中,AlGaInP中Al的组分为0.4,厚度为0.1μm,GaInP基区及GaInP发射区的总厚度为0.8μm,IZO窗口层厚度为0.07μm。
对制作的正向四结砷化镓太阳电池进行性能测试,其中,电流密度为16 mA/cm2,开路电压为3.45V,光电转换率为34.3%,稳定性好。
实施例2
一种正向四结砷化镓太阳电池的制作方法,包括以下步骤:
S1.在P型Ge衬底上,高温下通过PH3扩散的形式,形成Ge底电池发射区,然后生长GaInP成核层,该成核层同时作为Ge底电池的窗口层。
S2.在Ge底电池上生长GaAs缓冲层,厚度为0.3μm。
S3.在GaAs缓冲层上生长第一隧穿结。第一隧穿结为N++GaAs/P++GaAs结构,其中N++GaAs的厚度为0.02μm,掺杂浓度为3×1019/cm3,掺杂剂为Si;P++GaAs的厚度为0.02μm,掺杂浓度为5×1019/cm3,掺杂剂为C。
S4.在第一隧穿结上生长InyAlGaAs缓冲层。InyAlGaAs缓冲层为应力调制结构,总层数m为11层,厚度为1.5μm,掺杂浓度为1.5×1018/cm3,其中,InyAlGaAs缓冲层中各层In组分由以下公式确定,a与b为沿生长方向的层数:
S5.在InyAlGaAs缓冲层上生长第一组DBR。第一组DBR由25对In0.17AlGaAs/In0.17GaAs结构组成, In0.17AlGaAs层和In0.17GaAs层的厚度均根据λ/4n计算,其中1000nm≤λ≤1300nm,n为对应In0.17AlGaAs或者In0.17GaAs材料的折射率。
S6.在第一组DBR上生长第一子电池。第一子电池包括In0.17AlGaAs背电场,厚度为0.04μm;In0.17GaAs基区和In0.17GaAs发射区,厚度1.8μm,其中,In0.17GaAs发射区分为两段,第一段为In0.17GaAs材料,厚度0.04μm;第二段为含有InAs量子点的In0.17GaAs材料,厚度为0.06μm;AlInP窗口层,厚度0.1μm,其中窗口层晶格常数是In0.17GaAs基区材料的99.8%,用于平衡引入量子点时产生的应力。
S7.在第一子电池上生长第二隧穿结。第二隧穿结隧穿结为N++GaInP/P++In0.17AlGaAs结构,其中,N++GaInP厚度为0.015μm,掺杂浓度为6×1019/cm3,掺杂剂为Te和Si的组合物;P++In0.17AlGaAs的厚度为0.015μm之间,掺杂浓度为1.1×1020/cm3,掺杂剂为Zn和C的组合物。
S8.在第二隧穿结上生长第二组DBR。第二组DBR由25对In0.17AlGaAs/In0.17GaAs结构组成,In0.17AlGaAs层和In0.17GaAs层的厚度均根据λ/4n计算,其中750nm≤λ≤950nm,n为对应In0.17AlGaAs或者In0.17GaAs材料的折射率。
S9.在第二组DBR上生长第二子电池。第二子电池包括In0.17AlGaAs背电场,厚度为0.15μm;In0.17AlGaAs基区和In0.17AlGaAs发射区,厚度1.2μm,其中,In0.17AlGaAs发射区分为两段,第一段为In0.17AlGaAs材料,厚度0.04μm;第二段为含有InAs量子点的In0.17AlGaAs材料,厚度为0.06μm;AlInP窗口层,厚度0.10μm,其中窗口层晶格常数是In0.17AlGaAs基区材料的99.8%,用于平衡引入量子点时产生的应力。
S10.在第二子电池上生长第三隧穿结。第三隧穿结隧穿结为N++GaInP/P++In0.17AlGaAs结构,其中,N++GaInP厚度为0.02μm之间,掺杂浓度为4×1019/cm3,掺杂剂为Te和Si的组合物;P++In0.17AlGaAs的厚度为0.02μm之间,掺杂浓度为5×1019/cm3,掺杂剂为Zn和C的组合物。
S11.在第三隧穿结上生长AlGaInP顶电池。顶电池晶格常数与第一子电池、第二子电池匹配,由AlGaInP背电场、GaInP基区、GaInP发射区及IZO窗口层组成。其中,AlGaInP中Al的组分为0.5,厚度为0.05μm,GaInP基区及GaInP发射区的总厚度为0.65μm,IZO窗口层厚度为0.09μm。
对制作的正向四结砷化镓太阳电池进行性能测试,其中,电流密度为15.5mA/cm2,开路电压为3.49V,光电转换率为33.8%,稳定性好。
综上所述,本发明采用应力调制结构的缓冲层,可以分步消除晶格失配带来的应力问题,同时过滤晶格失配产生的位错,可获得晶体质量高、翘曲度小的外延片;使用分段式量子点发射区,解决了正向四结太阳电池电流密度低的问题,为各子电池提供充足的电流余量,提高产品的转换效率和稳定性;通过采用IZO窗口层技术,提高了太阳光的入射几率,改善电流的收集作用,降低串联电阻,提升产品性能;该方法制作的正向四结砷化镓太阳电池,电流密度得到大幅提升,光电转换率高、稳定性好。
最后需要强调的是,以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种正向四结砷化镓太阳电池,其特征在于,自下向上依次为Ge衬底、Ge底电池、GaAs缓冲层、第一隧穿结、InyAlGaAs缓冲层、第一组DBR、第一子电池、第二隧穿结、第二组DBR、第二子电池、第三隧穿结、AlGaInP顶电池;
所述第一子电池由InxAlGaAs背电场,InxGaAs基区,分段式量子点InxGaAs发射区及第一AlInP或GaInP窗口层组成;
所述第二子电池由InxAlGaAs背电场,InxAlGaAs基区,分段式量子点InxAlGaAs发射区及第二AlInP或GaInP窗口层组成;
所述AlGaInP顶电池由AlGaInP背电场、GaInP基区、GaInP发射区及IZO窗口层组成。
3.根据权利要求1所述的一种正向四结砷化镓太阳电池,其特征在于,所述分段式量子点InxGaAs发射区分为两段,第一段为InxGaAs材料,厚度为0.01-0.07μm,第二段为含有InAs量子点的InxGaAs材料,厚度为0.03-0.08μm;所述分段式量子点InxAlGaAs发射区分为两段,第一段为InxAlGaAs材料,厚度为0.01-0.07μm,第二段为含有InAs量子点的InxAlGaAs材料,厚度为0.03-0.08μm。
4.根据权利要求1所述的一种正向四结砷化镓太阳电池,其特征在于,所述第一子电池的InxAlGaAs背电场厚度为0.05-0.1μm,所述InxGaAs基区和InxGaAs发射区总厚度为1-1.8μm,所述第一AlInP或GaInP窗口层厚度为0.05-0.2μm;所述第二子电池的InxAlGaAs背电场厚度为0.05-0.1μm,所述InxAlGaAs基区和InxAlGaAs发射区总厚度为1-1.8μm;所述第二AlInP或GaInP窗口层厚度为0.05-0.2μm。
5.根据权利要求1-4任一项所述的一种正向四结砷化镓太阳电池,其特征在于,所述第一AlInP或GaInP窗口层晶格常数是所述InxGaAs基区材料的98%-99.8%;第二AlInP或GaInP窗口层晶格常数是所述InxAlGaAs基区材料的98%-99.8%。
6.根据权利要求1所述的一种正向四结砷化镓太阳电池,其特征在于,所述第一隧穿结为N++GaAs/P++GaAs结构,其中,N++GaAs的厚度为0.01-0.03μm,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si中的一种或多种的组合;P++GaAs的厚度为0.01-0.03μm,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C中的一种或多种的组合。
7.根据权利要求1所述的一种正向四结砷化镓太阳电池,其特征在于,所述第二隧穿结和所述第三隧穿结为N++GaInP/P++InxAlGaAs结构,其中,N++GaInP厚度为0.01-0.03μm,掺杂浓度为大于1×1019/cm3,掺杂剂为Te、Se、Si中的一种或多种的组合;P++InxAlGaAs的厚度为0.01-0.03μm,掺杂浓度大于2×1019/cm3,掺杂剂为Mg、Zn、C中的一种或多种的组合。
8.根据权利要求1所述的一种正向四结砷化镓太阳电池,其特征在于,所述第一组DBR由15-30对InxAlGaAs/InxGaAs结构组成,InxAlGaAs层和InxGaAs层的厚度根据λ/4n计算,其中1000nm≤λ≤1300nm,n为对应InxAlGaAs或者InxGaAs材料的折射率;所述第二组DBR由15-30对InxAlGaAs/InxGaAs结构组成,InxAlGaAs层和InxGaAs层的厚度根据λ/4n计算,其中750nm≤λ≤950nm,n为对应InxAlGaAs或者InxGaAs材料的折射率。
9.根据权利要求1所述的一种正向四结砷化镓太阳电池,其特征在于,所述AlGaInP背电场中Al的组分在0.3-0.8之间,厚度为0.02-0.15μm,所述GaInP基区及GaInP发射区的总厚度为0.5-1μm,所述IZO窗口层厚度为0.05-0.1μm。
10.根据权利要求1-9任一项所述的一种正向四结砷化镓太阳电池的制作方法,其特征在于,包括以下步骤:
S1.在P型Ge衬底上,高温下通过PH3扩散的形式,形成Ge底电池发射区,然后生长GaInP成核层,所述GaInP成核层同时作为Ge底电池的窗口层;
S2.在Ge底电池上生长GaAs缓冲层;
S3.在GaAs缓冲层上生长第一隧穿结;
S4.在第一隧穿结上生长InyAlGaAs缓冲层;
S5.在InyAlGaAs缓冲层上生长第一组DBR;
S6.在第一组DBR上生长第一子电池;
S7.在第一子电池上生长第二隧穿结;
S8.在第二隧穿结上生长第二组DBR;
S9.在第二组DBR上生长第二子电池;
S10.在第二子电池上生长第三隧穿结;
S11.在第三隧穿结上生长AlGaInP顶电池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111155240.5A CN113594285B (zh) | 2021-09-30 | 2021-09-30 | 一种正向四结砷化镓太阳电池及其制作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111155240.5A CN113594285B (zh) | 2021-09-30 | 2021-09-30 | 一种正向四结砷化镓太阳电池及其制作方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113594285A CN113594285A (zh) | 2021-11-02 |
CN113594285B true CN113594285B (zh) | 2021-12-21 |
Family
ID=78242492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111155240.5A Active CN113594285B (zh) | 2021-09-30 | 2021-09-30 | 一种正向四结砷化镓太阳电池及其制作方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113594285B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5851310A (en) * | 1995-12-06 | 1998-12-22 | University Of Houston | Strained quantum well photovoltaic energy converter |
CN107316909A (zh) * | 2017-08-11 | 2017-11-03 | 南昌凯迅光电有限公司 | 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103280482A (zh) * | 2012-04-29 | 2013-09-04 | 天津三安光电有限公司 | 多结太阳能电池及其制备方法 |
CN105762208B (zh) * | 2016-02-29 | 2018-02-23 | 天津蓝天太阳科技有限公司 | 一种正向失配四结级联砷化镓太阳电池及其制备方法 |
CN206584943U (zh) * | 2016-08-05 | 2017-10-24 | 天津蓝天太阳科技有限公司 | 一种正向生长的匹配四结太阳能电池 |
CN106531836A (zh) * | 2016-11-25 | 2017-03-22 | 罗雷 | 四结太阳能电池 |
CN112366243B (zh) * | 2019-07-25 | 2022-07-12 | 江苏宜兴德融科技有限公司 | 四结柔性太阳能电池及其制备方法 |
CN112447868B (zh) * | 2020-11-24 | 2022-05-20 | 中山德华芯片技术有限公司 | 一种高质量四结空间太阳电池及其制备方法 |
-
2021
- 2021-09-30 CN CN202111155240.5A patent/CN113594285B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5851310A (en) * | 1995-12-06 | 1998-12-22 | University Of Houston | Strained quantum well photovoltaic energy converter |
CN107316909A (zh) * | 2017-08-11 | 2017-11-03 | 南昌凯迅光电有限公司 | 一种多量子阱空间GaInP/InGaAs/Ge电池外延片的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113594285A (zh) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10355159B2 (en) | Multi-junction solar cell with dilute nitride sub-cell having graded doping | |
CN112447868B (zh) | 一种高质量四结空间太阳电池及其制备方法 | |
US9153724B2 (en) | Reverse heterojunctions for solar cells | |
TWI591838B (zh) | 用於太陽能電池之窗結構 | |
CN107527967B (zh) | 一种具有抗辐照结构的高效三结级联砷化镓太阳电池及其制造方法 | |
CN102651417B (zh) | 三结级联太阳能电池及其制备方法 | |
CN105355680B (zh) | 一种晶格匹配的六结太阳能电池 | |
CN112103356B (zh) | 一种高效三结砷化镓太阳电池及制作方法 | |
US20140090700A1 (en) | High-concentration multi-junction solar cell and method for fabricating same | |
CN210535681U (zh) | 一种晶格失配的五结太阳能电池 | |
CN112038426B (zh) | 一种晶格失配型三结砷化镓太阳电池及制作方法 | |
CN109301006A (zh) | 一种应用于晶格失配多结太阳能电池的新型dbr结构 | |
CN102412337A (zh) | 一种高效四结太阳能电池及其制作方法 | |
CN102790118A (zh) | GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法 | |
CN108878550B (zh) | 多结太阳能电池及其制备方法 | |
CN111430493B (zh) | 一种多结太阳能电池及供电设备 | |
CN209045576U (zh) | 一种应用于晶格失配多结太阳能电池的新型dbr结构 | |
CN113690335B (zh) | 一种改善型三结砷化镓太阳电池及其制作方法 | |
CN113594285B (zh) | 一种正向四结砷化镓太阳电池及其制作方法 | |
CN114335215B (zh) | 一种带有渐变隧穿结的砷化镓太阳电池及其制作方法 | |
CN105810760A (zh) | 一种晶格匹配的五结太阳能电池及其制作方法 | |
Barnham et al. | Recent Progress in QuantumWell Solar Cells | |
CN205385028U (zh) | 一种晶格匹配的六结太阳能电池 | |
CN103165720B (zh) | 正装三结级联太阳电池及其制备方法 | |
CN112864282B (zh) | 一种抗辐照高效砷化镓太阳电池的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: No.199, huangtang West Street, Airport Economic Zone, Nanchang City, Jiangxi Province, 330000 Patentee after: Nanchang Kaixun photoelectric Co.,Ltd. Address before: No.199, huangtang West Street, Airport Economic Zone, Nanchang City, Jiangxi Province, 330000 Patentee before: NANCHANG KAIXUN PHOTOELECTRIC Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder |