CN105762208B - 一种正向失配四结级联砷化镓太阳电池及其制备方法 - Google Patents

一种正向失配四结级联砷化镓太阳电池及其制备方法 Download PDF

Info

Publication number
CN105762208B
CN105762208B CN201610112347.4A CN201610112347A CN105762208B CN 105762208 B CN105762208 B CN 105762208B CN 201610112347 A CN201610112347 A CN 201610112347A CN 105762208 B CN105762208 B CN 105762208B
Authority
CN
China
Prior art keywords
battery
sub
layers
tunnel junctions
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610112347.4A
Other languages
English (en)
Other versions
CN105762208A (zh
Inventor
方亮
孟宪松
高伟
高慧
张宝
万荣华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Lantian Solar Tech Co ltd
Original Assignee
Tianjin Lantian Solar Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Lantian Solar Tech Co ltd filed Critical Tianjin Lantian Solar Tech Co ltd
Priority to CN201610112347.4A priority Critical patent/CN105762208B/zh
Publication of CN105762208A publication Critical patent/CN105762208A/zh
Application granted granted Critical
Publication of CN105762208B publication Critical patent/CN105762208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/065Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the graded gap type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only Ge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种正向失配四结级联砷化镓太阳电池,包括顶电池、子电池和底电池,顶电池上为接触层,顶电池和底电池之间依次为第一隧穿结、第二子电池、第二隧穿结、第三子电池、渐变缓冲层、第三隧穿结、缓冲层和成核层,底电池下为衬底。本发明中,顶电池、子电池、子电池和底电池的电流失配小,减小了光电转换过程中的热致损失,提高了电池效率;在子电池和第三隧穿结之间采用一个渐变缓冲层,避免了其它类型四结以上太阳电池采用两个或两个以上渐变缓冲层时较为严重的位错问题;本发明的方法不需要其他技术路线的剥离、金属键合或半导体键合等复杂工艺,电池性能的一致性和均匀性好,生产效率高,易于实现规模生产。

Description

一种正向失配四结级联砷化镓太阳电池及其制备方法
技术领域
本发明属于砷化镓太阳电池结构技术领域,尤其是一种正向失配四结级联砷化镓太阳电池及其制备方法。
背景技术
砷化镓太阳电池的发展是从上世纪50年代开始的,至今经过了从单结到多结叠层结构的几个发展阶段,其发展速度日益加快,效率也不断提高,转化率可达30%以上。目前设计多结级联砷化镓电池的主要思路是采用晶格匹配的设计,即优先考虑多结电池的晶格匹配而将光电流匹配放在次要的位置,德国Azurspace和美国Emcore公司的正向匹配三结级联GaInP/GaAs/Ge太阳电池在AM0光谱下的转换效率都接近30.0%,但此结构电池的光电流密度通常受限于顶电池,底电池上冗余的光电流密度不能被有效的利用,使其不能实现全光谱的吸收利用;同时三结级联砷化镓太阳电池有相当一部分大于对应子电池禁带宽度的能量以热能形式损失,因此要进一步提高多结砷化镓太阳电池的转化效率,必须采用四结或者四结以上级联来提高对太阳光谱的利用且进一步减少热损失。
为了有效的实现太阳电池的对全光谱的吸收利用,日本SHARP、美国NERL和德国Fraunhefor ISE等公司和研究机构采用晶格失配的设计,即优先考虑多结电池的光电流匹配而将晶格匹配放在次要的位置,研究了反向生长和半导体键合等技术。日本SHARP将倒置方法生长的GaInAs/GaAs/GaInP电池的转化效率提高到37.9%(AM1.5G),法国Soitec和德国Fraunhofer ISE等机构合作,采用Wafer bonding的方法制备的四结砷化镓太阳电池实现了46%(508×)的转换效率,美国Boeing Spectrolab采用键合技术制备的五结砷化镓太阳电池实现了35.8%(AM0)和38.8%(AM1.5G)的转换效率。
晶片键合的四结或者五结砷化镓太阳电池能够保证各个子电池的外延质量,但是仍然存在欧姆损耗和光学损失的问题,同时晶片键合需要GaAs和InP两个衬底,制作成本很高。反向生长的多结级联砷化镓太阳电池能够保证GaInP和GaAs子电池的外延质量,同时通过生长渐变缓冲层减少晶格失配带来的位错,但是渐变缓冲层并不能彻底消除位错对电池性能的影响,对于有两个以上渐变缓冲层的四结以上太阳电池,位错对电池性能的影响会加剧。
这些非标准的器件工艺和标准的GaInP/GaAs/Ge三结砷化镓太阳电池外延工艺较难兼容,影响电池性能的一致性和均匀性,并降低了砷化镓太阳电池的生产效率,增加了电池的制作成本,在可行性方面不容易实现,距离实际应用还有一定的距离。
发明内容
本发明的目的在于克服现有技术的不足,提供一种成本合理、工艺简单、性能优异的一种正向失配四结级联砷化镓太阳电池。
本发明采取的技术方案是:
一种正向失配四结级联砷化镓太阳电池,包括顶电池、子电池和底电池,其特征在于:顶电池上为接触层,顶电池和底电池之间依次为第一隧穿结、第二子电池、第二隧穿结、第三子电池、渐变缓冲层、第三隧穿结、缓冲层和成核层,底电池下为衬底。
而且,所述顶电池为AlGaInP或GaxIn1-xP顶电池,上下两个子电池为AlGaInAs子电池和GaInAs子电池,缓冲层为GaInAs缓冲层,成核层为GaInP成核层,底电池为Ge底电池,衬底为Ge衬底,顶电池和两个子电池三者晶格匹配,底电池与所述顶电池和两个子电池晶格失配。
而且,所述顶电池、子电池、子电池和底电池的禁带宽度优选为1.9eV、1.4eV、1.1eV和0.67eV。
而且,所述第一隧穿结、第二隧穿结和第三隧穿结均包含上层和下层,其中的上层可以是AlGaAs/GaInP,或者是AlGaAs/GaAs;其中的下层(势垒层)可以是Al(Ga)InP,或者是AlGaAs。
而且,
所述第一隧穿结包括n型掺杂的GaInP层和p型掺杂的AlGaAs层;所述GaInP层的掺杂浓度优选为1×1019~1×1020cm-3、厚度0.01~0.02μm;所述AlGaAs层的掺杂浓度优选为1×1019~1×1020cm-3、厚度0.01~0.02μm;
所述第二隧穿结包括n型掺杂的GaAs层和p型掺杂的AlGaAs层;所述GaAs层的掺杂浓度优选为1×1019~1×1020cm-3、厚度0.01~0.02μm;所述AlGaAs层的掺杂浓度优选为1×1019~1×1020cm-3、厚度0.01~0.02μm;
所述第三隧穿结包括n型掺杂的GaAs层和p型掺杂的AlGaAs层;所述GaAs层的掺杂浓度优选为1×1019~1×1020cm-3、厚度0.01~0.02μm;所述AlGaAs层的掺杂浓度优选为1×1019~1×1020cm-3、厚度0.01~0.02μm。
而且,所述渐变缓冲层采用In组分线性渐进和/或步进的方法将Ge底电池和GaInAs子电池串联,包括GaxIn1-xAs,其中Ga的组分由1.00变化至0.77,带隙小于1.1eV。
而且,所述顶电池、子电池均包括窗口层、发射区、基区和背场层。
而且,所述太阳电池使用MOCVD法或者MBE法依次生长制得成品。
而且,所述MOCVD法,Ge层的N型掺杂原子为As或P,其余层N型掺杂原子为Si、Se、S或Te,P型掺杂原子为Zn、Mg或C。
而且,所述MBE法中,Ge层的N型掺杂原子为As或P,其余层N型掺杂原子为Si、Se、S、Sn或Te,P型掺杂原子为Be、Mg或C。
本发明的优点和积极效果是:
本发明中,AlGaInP或GaInP顶电池、AlGaInAs子电池、GaInAs子电池和Ge底电池的禁带宽度分别为1.9eV,1.4eV,1.1eV,0.67eV,各个电池的电流失配小,减小了光电转换过程中的热致损失,提高了电池效率;在GaInAs子电池和第三隧穿结之间采用一个渐变缓冲层,避免了其它类型四结以上太阳电池采用两个或两个以上渐变缓冲层时较为严重的位错问题;最下方的衬底为Ge衬底,降低了成本;采用本发明的方法生产太阳电池时,技术路线大概4小时,不需要其他技术路线的剥离、金属键合或半导体键合等复杂工艺,电池性能的一致性和均匀性好,生产效率高,易于实现规模生产。
附图说明
图1为本发明太阳电池的结构示意图;
图2为本发明渐变缓冲层的显微镜图像;
图3为采用第二层渐变缓冲层的显微镜图像。
具体实施方式
下面结合实施例,对本发明进一步说明,下述实施例是说明性的,不是限定性的,不能以下述实施例来限定本发明的保护范围。
一种正向失配四结级联砷化镓太阳电池,如图1所示,包括顶电池、子电池和底电池,本发明的创新在于:顶电池上为接触层,顶电池和底电池之间依次为第一隧穿结、子电池、第二隧穿结、子电池、渐变缓冲层、第三隧穿结、缓冲层和成核层,底电池下为衬底。
本实施例中,所述顶电池为AlGaInP或GaInP顶电池,上下两个子电池为AlGaInAs子电池和GaInAs子电池,缓冲层为GaInAs缓冲层,成核层为GaInP成核层,底电池为Ge底电池,衬底为Ge衬底,顶电池和两个子电池三者晶格匹配,底电池与所述顶电池和两个子电池晶格失配。
所述顶电池(AlGaInP或GaInP)、子电池(AlGaInAs)、子电池(GaInAs)和Ge底电池的禁带宽度分别为1.9eV、1.4eV、1.1eV和0.67eV。所述第一隧穿结、第二隧穿结和第三隧穿结包含依次设置的AlGaAs层(或GaInP、GaAs层)和Al(Ga)InP(或AlGaAs)势垒层。
上述各个隧穿结具体结构是:
所述第一隧穿结包括n型掺杂的GaInP层和p型掺杂的AlGaAs层;所述GaInP层的掺杂浓度为1×1020cm-3、厚度0.01~0.02μm;所述AlGaAs层的掺杂浓度为1×1020cm-3、厚度0.01~0.02μm;
所述第二隧穿结包括n型掺杂的GaAs层和p型掺杂的AlGaAs层;所述GaAs层的掺杂浓度为1×1020cm-3、厚度0.01~0.02μm;所述AlGaAs层的掺杂浓度为1×1020cm-3、厚度0.01~0.02μm;
所述第三隧穿结包括n型掺杂的GaAs层和p型掺杂的AlGaAs层;所述GaAs层的掺杂浓度为1×1020cm-3、厚度0.01~0.02μm;所述AlGaAs层的掺杂浓度为1×1020cm-3、厚度0.01~0.02μm。
所述渐变缓冲层采用In组分线性渐进和/或步进的方法将Ge底电池和GaInAs子电池串联,包括GaxIn1-xAs,其中Ga的组分(X)由1.00变化至0.77,带隙小于1.1eV。所述AlGaInP(或GaInP)顶电池、AlGaInAs子电池和GaInAs子电池均包括窗口层、发射区、基区和背场层。
上述正向失配四结级联砷化镓太阳电池可以使用MOCVD法或者MBE法依次生长制得成品。
MOCVD法,Ge层的N型掺杂原子为As或P,其余层N型掺杂原子为Si、Se、S或Te,P型掺杂原子为Zn、Mg或C。
MBE法中,Ge层的N型掺杂原子为As或P,其余层N型掺杂原子为Si、Se、S、Sn或Te,P型掺杂原子为Be、Mg或C。
以MOCVD法(Metal Organic Chemical Vapor Deposition,金属有机化合物化学气相沉淀)为例,在p形Ge衬底上依次外延生长Ge底电池、GaInP成核层、GaInAs缓冲层、第三隧穿结、GaxIn1-xAs渐变缓冲层、GaInAs子电池、第二隧穿结、AlGaInAs子电池、第一隧穿结和AlGaInP或GaInP顶电池、以及n型重掺杂的GaAs接触层。
本发明中,顶电池(AlGaInP或GaInP)、子电池(AlGaInAs)、子电池(GaInAs)和Ge底电池的禁带宽度分别为1.9eV、1.4eV、1.1eV和0.67eV,各个电池的电流失配小,减小了光电转换过程中的热致损失,提高了电池效率。
在GaInAs子电池和第三隧穿结之间采用一个渐变缓冲层,避免了其它类型四结以上太阳电池采用两个或两个以上渐变缓冲层时较为严重的位错问题;具体比较见图2、3,采用图2所示的一层渐变缓冲层后,其表面的显微镜图像显示位错较少,而图3的采用两层渐变缓冲层后,表面形貌变差,具有较多的穿透性位错。
正向晶格失配四结砷化镓太阳电池在完成外延生长后不需要其他技术路线的剥离、金属键合或半导体键合等复杂工艺,技术路线大概4个小时,其它反向生长的的技术路线至少6个小时,还需要衬底剥离,键合等额外的时间。本发明电池性能的一致性和均匀性好,生产效率高,易于实现规模生产。

Claims (1)

1.一种正向失配四结级联砷化镓太阳电池,包括顶电池、子电池和底电池,其特征在于:顶电池上为接触层,顶电池和底电池之间依次为第一隧穿结、第二子电池、第二隧穿结、第三子电池、渐变缓冲层、第三隧穿结、缓冲层和成核层,底电池下为衬底;
所述顶电池为AlGaInP或GaxIn1-xP顶电池,上下两个子电池为AlGaInAs子电池和GaInAs子电池,缓冲层为GaInAs缓冲层,成核层为GaInP成核层,底电池为Ge底电池,衬底为Ge衬底,顶电池和两个子电池三者晶格匹配,底电池与所述顶电池和两个子电池晶格失配;
所述顶电池、子电池、子电池和底电池的禁带宽度为1.9eV、1.4eV、1.1eV和0.67eV;
所述第一隧穿结、第二隧穿结和第三隧穿结均包含上层和下层,其中的上层可以是AlGaAs/GaInP,或者是AlGaAs/GaAs;其中的下层(势垒层)可以是Al(Ga)InP,或者是AlGaAs;
所述第一隧穿结包括n型掺杂的GaInP层和p型掺杂的AlGaAs层;所述GaInP层的掺杂浓度为1×1019~1×1020cm-3、厚度0.01~0.02μm;所述AlGaAs层的掺杂浓度为1×1019~1×1020cm-3、厚度0.01~0.02μm;
所述第二隧穿结包括n型掺杂的GaAs层和p型掺杂的AlGaAs层;所述GaAs层的掺杂浓度为1×1019~1×1020cm-3、厚度0.01~0.02μm;所述AlGaAs层的掺杂浓度为1×1019~1×1020cm-3、厚度0.01~0.02μm;
所述第三隧穿结包括n型掺杂的GaAs层和p型掺杂的AlGaAs层;所述GaAs层的掺杂浓度为1×1019~1×1020cm-3、厚度0.01~0.02μm;所述AlGaAs层的掺杂浓度为1×1019~1×1020cm-3、厚度0.01~0.02μm;
所述渐变缓冲层采用In组分线性渐进和/或步进的方法将Ge底电池和GaInAs子电池串联,包括GaxIn1-xAs,其中Ga的组分由1.00变化至0.77,带隙小于1.1eV;
所述顶电池、子电池均包括窗口层、发射区、基区和背场层;
所述太阳电池使用MOCVD法或者MBE法依次生长制得成品;
所述MOCVD法,Ge层的N型掺杂原子为As或P,其余层N型掺杂原子为Si、Se、S或Te,P型掺杂原子为Zn、Mg或C;
所述MBE法中,Ge层的N型掺杂原子为As或P,其余层N型掺杂原子为Si、Se、S、Sn或Te,P型掺杂原子为Be、Mg或C。
CN201610112347.4A 2016-02-29 2016-02-29 一种正向失配四结级联砷化镓太阳电池及其制备方法 Active CN105762208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610112347.4A CN105762208B (zh) 2016-02-29 2016-02-29 一种正向失配四结级联砷化镓太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610112347.4A CN105762208B (zh) 2016-02-29 2016-02-29 一种正向失配四结级联砷化镓太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN105762208A CN105762208A (zh) 2016-07-13
CN105762208B true CN105762208B (zh) 2018-02-23

Family

ID=56330424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610112347.4A Active CN105762208B (zh) 2016-02-29 2016-02-29 一种正向失配四结级联砷化镓太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN105762208B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107871799B (zh) * 2016-09-27 2023-11-07 中国电子科技集团公司第十八研究所 一种正向失配四结太阳能电池
US20190252568A1 (en) * 2018-02-15 2019-08-15 Solar Junction Corporation High-temperature semiconductor barrier regions
CN112366243B (zh) * 2019-07-25 2022-07-12 江苏宜兴德融科技有限公司 四结柔性太阳能电池及其制备方法
CN110634984A (zh) * 2019-09-04 2019-12-31 中国电子科技集团公司第十八研究所 一种正向失配五结太阳电池
CN112563354A (zh) * 2019-09-26 2021-03-26 江苏宜兴德融科技有限公司 四结太阳能电池及其制备方法
CN111628021B (zh) * 2020-06-03 2021-11-23 苏州长光华芯光电技术股份有限公司 一种半导体器件和制造方法
CN112635608B (zh) * 2020-12-21 2023-06-23 中国电子科技集团公司第十八研究所 一种锗基晶格失配四结太阳电池
CN113594285B (zh) * 2021-09-30 2021-12-21 南昌凯迅光电有限公司 一种正向四结砷化镓太阳电池及其制作方法
CN114899254B (zh) * 2022-04-12 2023-07-07 中山德华芯片技术有限公司 一种三结太阳能电池及其制备方法与应用
CN117219705A (zh) * 2023-11-08 2023-12-12 华南理工大学 一种柔性砷化镓太阳电池及其制备方法
CN117476797B (zh) * 2023-12-27 2024-03-29 中山大学 一种多结太阳电池及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790118A (zh) * 2012-07-19 2012-11-21 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAs/Ge四结太阳能电池及其制备方法
CN102751389A (zh) * 2012-07-19 2012-10-24 厦门市三安光电科技有限公司 一种高效多结太阳能电池的制备方法
CN103077983A (zh) * 2012-12-28 2013-05-01 天津三安光电有限公司 多结太阳能电池及其制备方法
US20140182667A1 (en) * 2013-01-03 2014-07-03 Benjamin C. Richards Multijunction solar cell with low band gap absorbing layer in the middle cell

Also Published As

Publication number Publication date
CN105762208A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
CN105762208B (zh) 一种正向失配四结级联砷化镓太阳电池及其制备方法
US7122733B2 (en) Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
CN102299159B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池及其制备方法
CN101859813B (zh) 四结GaInP/GaAs/InGaAs/Ge太阳电池的制作方法
JP2015073130A (ja) 2つの変性層を備えた4接合型反転変性多接合太陽電池
CN103346191B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池及其制备方法
CN102790120B (zh) GaInP/GaAs/Ge三结级联太阳能电池及其制备方法
US20180331245A1 (en) Dual-junction thin film solar cell module, and preparation method thereof
CN103928539A (zh) 多结iii-v太阳能电池及其制造方法
CN103151413B (zh) 倒装四结太阳电池及其制备方法
CN102651419A (zh) 四结级联太阳能电池及其制备方法
CN106252451B (zh) 一种五结叠层太阳电池及其制备方法
CN103219414B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN206282866U (zh) 一种五结叠层太阳电池
CN110911510B (zh) 一种含超晶格结构的硅基氮化物五结太阳电池
CN105576068A (zh) 一种双面生长的InP五结太阳电池
CN103000740B (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN206584943U (zh) 一种正向生长的匹配四结太阳能电池
CN114171615B (zh) 一种硅基多结太阳电池及其渐变缓冲层
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN103346190B (zh) Si衬底的四结级联太阳能电池及其制备方法
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN103258874B (zh) 一种基于图形化锗衬底的三结太阳能电池及其制备方法
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN103165720B (zh) 正装三结级联太阳电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant