CN114171615B - 一种硅基多结太阳电池及其渐变缓冲层 - Google Patents

一种硅基多结太阳电池及其渐变缓冲层 Download PDF

Info

Publication number
CN114171615B
CN114171615B CN202111325702.3A CN202111325702A CN114171615B CN 114171615 B CN114171615 B CN 114171615B CN 202111325702 A CN202111325702 A CN 202111325702A CN 114171615 B CN114171615 B CN 114171615B
Authority
CN
China
Prior art keywords
layer
solar cell
silicon
buffer layer
junction solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111325702.3A
Other languages
English (en)
Other versions
CN114171615A (zh
Inventor
徐鹏飞
王岩
罗帅
季海铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Huaxing Laser Technology Co ltd
Original Assignee
Jiangsu Huaxing Laser Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Huaxing Laser Technology Co ltd filed Critical Jiangsu Huaxing Laser Technology Co ltd
Priority to CN202111325702.3A priority Critical patent/CN114171615B/zh
Publication of CN114171615A publication Critical patent/CN114171615A/zh
Application granted granted Critical
Publication of CN114171615B publication Critical patent/CN114171615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种硅基多结太阳电池及其渐变缓冲层,渐变缓冲层由石墨烯层和不同组分的III‑V族化合物层交替生长而成,硅基多结太阳电池包括Si衬底,在Si衬底的上表面按照层状叠加结构从下至上依次设置有Si子电池、渐变缓冲层、第一隧道结、AlGaAs子电池、第二隧道结和AlGaInP子电池。本发明硅基多结太阳电池利用III‑V族化合物材料与石墨烯相结合的多层复合结构的渐变缓冲层可消除晶硅衬底上GaAs、AlGaAs、AlGaInP等材料层受到的失配应力,降低材料层缺陷密度,提高电池的光电转换效率。

Description

一种硅基多结太阳电池及其渐变缓冲层
技术领域
本发明属于多结太阳电池的技术领域,尤其涉及一种硅基多结太阳电池及其渐变缓冲层。
背景技术
目前技术最为成熟、应用最为广泛的多结太阳电池是GaAs多结电池,其主流结构是由GaInP、GaInAs和Ge子电池组成的GaInP/GaInAs/Ge三结太阳电池,主要应用于航天卫星的空间电源系统中。然而该类GaAs多结电池需要以价格昂贵的Ge(或GaAs)单晶材料为衬底来制备,制作成本较高,难以应用于大规模的地面光伏电站。由于晶硅衬底成本较低,如果基于Si衬底来制作多结太阳电池则可以大大降低多结电池的制作成本,且得到的转换效率要明显高于传统的地面晶硅电池。
然而由于GaAs、AlGaAs、AlGaInP等III-V族材料与Si的晶格失配较大,基于晶硅衬底来制备Si基III-V族材料多结电池时会引入较多的材料缺陷,采用GaAsxP1-x、Ga1-yInyP等组分渐变缓冲层可以减少材料缺陷,但缺陷抑制效果依然有限,因此硅基多结太阳电池仍然需要克服很多技术问题。
发明内容
本发明所要解决的技术问题在于克服现有技术的不足和缺陷,提供一种硅基多结太阳电池及其渐变缓冲层,渐变缓冲层采用III-V族化合物与石墨烯相结合的多层复合结构,基于石墨烯二维材料的特性,使得石墨烯上的外延材料层晶格重组,降低每层外延层界面的应力,最终完全消除晶硅衬底上GaAs、AlGaAs、AlGaInP等材料层受到的失配应力,大幅减少外延层材料缺陷,提高多结太阳电池的光电转换效率。
为达到上述目的,本发明采用以下技术方案:
本发明提供了一种硅基多结太阳电池渐变缓冲层,所述渐变缓冲层由石墨烯层和不同组分的III-V族化合物层交替生长而成,所述渐变缓冲层的最底层和最顶层均为所述III-V族化合物层。
在上述技术方案中,交替生长对数为5-15对。
在上述技术方案中,每层所述III-V族化合物层厚度为50-300nm,每层所述石墨烯层的原子层数为1-8层。
在上述技术方案中,最底层的所述III-V族化合物层的材料为n型GaP,最顶层的所述III-V族化合物层的材料包括但不限于n型掺杂的GaAs、Ga0.5In0.5P,中间层的所述III-V族化合物层的材料包括但不限于n型掺杂的GaAsxP1-x、Ga1-yInyP,其中0<x<1,0<y<0.5,且x、y随着材料层由下至上而由小变大。
本发明还提供了一种硅基多结太阳电池,包括上述渐变缓冲层。
在上述技术方案中,所述硅基多结太阳电池还包括Si衬底,在所述Si衬底的上表面按照层状叠加结构从下至上依次设置有Si子电池、所述渐变缓冲层、第一隧道结、AlGaAs子电池、第二隧道结和AlGaInP子电池;
在上述技术方案中,所述Si衬底为p型Si单晶片。
在上述技术方案中,所述Si子电池中Si材料的光学带隙为1.12eV,所述Si子电池总厚度为100-500μm。
在上述技术方案中,所述AlGaAs子电池中AlGaAs材料的光学带隙为1.5-1.6eV,子电池总厚度为2-3μm。
在上述技术方案中,所述AlGaInP子电池中AlGaInP材料的光学带隙为1.9-2.0eV,AlGaInP材料的晶格常数与GaAs材料相同,子电池总厚度为0.5-1μm。
本发明的有益效果在于:本发明硅基多结太阳电池利用III-V族化合物材料与石墨烯相结合的多层复合结构的渐变缓冲层可消除晶硅衬底上GaAs、AlGaAs、AlGaInP等材料层受到的失配应力,降低材料层缺陷密度,提高电池的光电转换效率。
附图说明
图1是硅基多结太阳电池结构示意图;
其中:10、Si衬底;20、Si子电池;30、渐变缓冲层;31、石墨烯层;32、III-V族化合物层;40、第一隧道结;50、AlGaAs子电池;60、第二隧道结;70、AlGaInP子电池。
具体实施方式
为了更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明做进一步描述。本发明可以以许多不同的形式实施,而不应该被理解为限于在此阐述的实施例。相反,提供这些实施例,使得本公开将是彻底和完整的,并且将把本发明的构思充分传达给本领域技术人员,本发明将仅由权利要求来限定。
如图1所示,本发明提供了一种硅基多结太阳电池渐变缓冲层,渐变缓冲层30由石墨烯层31和不同组分的III-V族化合物层32交替生长而成,渐变缓冲层30的最底层和最顶层均为III-V族化合物层32。
作为其中一种实施例,交替生长对数为5-15对。每层III-V族化合物层32厚度为50-300nm,每层石墨烯层31的原子层数为1-8层。最底层的III-V族化合物层32的材料为n型GaP,最顶层的III-V族化合物层32的材料包括但不限于n型掺杂的GaAs、Ga0.5In0.5P,中间层的III-V族化合物层32的材料包括但不限于n型掺杂的GaAsxP1-x、Ga1-yInyP,其中0<x<1,0<y<0.5,且x、y随着材料层由下至上而由小变大。
本发明还提供了一种硅基多结太阳电池,从下至上依次层叠为Si衬底10、Si子电池20、渐变缓冲层30、第一隧道结40、AlGaAs子电池50、第二隧道结60、AlGaInP子电池70。
作为其中一种实施例,Si衬底10为p型Si单晶片。Si子电池20中Si材料的光学带隙为1.12eV,Si子电池20总厚度为100-500μm。AlGaAs子电池50中AlGaAs材料的光学带隙为1.5-1.6eV,子电池总厚度为2-3μm。AlGaInP子电池70中AlGaInP材料的光学带隙为1.9-2.0eV,AlGaInP材料的晶格常数与GaAs材料相同,子电池总厚度为0.5-1μm。
下面为本实施例上述硅基多结太阳电池的具体制备过程,包括下述步骤:
(1)选择4英寸p型单晶Si片为衬底10,采用金属有机化学气相沉积技术或分子束外延技术在Si衬底的上表面生长Si子电池20,总厚度为200μm;
(2)采用金属有机化学气相沉积技术或分子束外延技术在Si子电池上生长渐变缓冲层30,由石墨烯层和不同组分的GaAsxP1-x交替生长而成,交替生长对数为10对,每层石墨烯的原子层数为5层,每层GaAsxP1-x的厚度为150nm,GaAsxP1-x材料中As组分x从下至上由0逐步增加至1,固定增加步长为0.1;
(3)采用金属有机化学气相沉积技术或分子束外延技术在渐变缓冲层上生长第一隧道结40和AlGaAs子电池50,AlGaAs材料的光学带隙为1.55eV,子电池总厚度为3μm;
(4)采用金属有机化学气相沉积技术或分子束外延技术在AlGaAs子电池上生长第二隧道结60和AlGaInP子电池70,AlGaInP材料的光学带隙为1.95eV,子电池总厚度为0.8μm。
综上,本发明利用单晶Si衬底,采用III-V族化合物材料与石墨烯相结合的多层复合组分渐变缓冲层可消除在晶硅衬底上生长GaAs、AlGaAs、AlGaInP等材料时所生产的失配应力,大大降低太阳电池各材料层中的缺陷密度,减小太阳电池的少子复合,从而提升光电响应效率,提高太阳电池的光电转换效率,最终得到高效率、低成本的硅基多结太阳电池。总之,本发明可以基于晶硅衬底制作较高转换效率的多结太阳电池,具有较强的应用价值,值得推广。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

1.一种硅基多结太阳电池渐变缓冲层,其特征在于:所述渐变缓冲层(30)由石墨烯层(31)和不同组分的III-V族化合物层(32)交替生长而成,所述渐变缓冲层(30)的最底层和最顶层均为所述III-V族化合物层(32);
最底层的所述III-V族化合物层(32)的材料为n型GaP,最顶层的所述III-V族化合物层(32)的材料包括但不限于n型掺杂的GaAs、Ga0.5In0.5P,中间层的所述III-V族化合物层(32)的材料包括但不限于n型掺杂的GaAsxP1-x、Ga1-yInyP,其中0<x<1,0<y<0.5,且x、y随着材料层由下至上而由小变大。
2.根据权利要求1所述渐变缓冲层,其特征在于:交替生长对数为5-15对。
3.根据权利要求1所述渐变缓冲层,其特征在于:每层所述III-V族化合物层(32)厚度为50-300nm,每层所述石墨烯层(31)的原子层数为1-8层。
4.一种硅基多结太阳电池,其特征在于:包括权利要求1-3任一项所述渐变缓冲层(30)。
5.根据权利要求4所述硅基多结太阳电池,其特征在于:所述硅基多结太阳电池还包括Si衬底(10),在所述Si衬底(10)的上表面按照层状叠加结构从下至上依次设置有Si子电池(20)、所述渐变缓冲层(30)、第一隧道结(40)、AlGaAs子电池(50)、第二隧道结(60)和AlGaInP子电池(70)。
6.根据权利要求5所述硅基多结太阳电池,其特征在于:所述Si衬底(10)为p型Si单晶片。
7.根据权利要求5所述硅基多结太阳电池,其特征在于:所述Si子电池(20)中Si材料的光学带隙为1.12eV,所述Si子电池(20)总厚度为100-500μm。
8.根据权利要求5所述硅基多结太阳电池,其特征在于:所述AlGaAs子电池(50)中AlGaAs材料的光学带隙为1.5-1.6eV,子电池总厚度为2-3μm。
9.根据权利要求5所述硅基多结太阳电池,其特征在于:所述AlGaInP子电池(70)中AlGaInP材料的光学带隙为1.9-2.0eV,AlGaInP材料的晶格常数与GaAs材料相同,子电池总厚度为0.5-1μm。
CN202111325702.3A 2021-11-10 2021-11-10 一种硅基多结太阳电池及其渐变缓冲层 Active CN114171615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111325702.3A CN114171615B (zh) 2021-11-10 2021-11-10 一种硅基多结太阳电池及其渐变缓冲层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111325702.3A CN114171615B (zh) 2021-11-10 2021-11-10 一种硅基多结太阳电池及其渐变缓冲层

Publications (2)

Publication Number Publication Date
CN114171615A CN114171615A (zh) 2022-03-11
CN114171615B true CN114171615B (zh) 2023-12-29

Family

ID=80478539

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111325702.3A Active CN114171615B (zh) 2021-11-10 2021-11-10 一种硅基多结太阳电池及其渐变缓冲层

Country Status (1)

Country Link
CN (1) CN114171615B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476797B (zh) * 2023-12-27 2024-03-29 中山大学 一种多结太阳电池及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637775A (zh) * 2012-04-11 2012-08-15 天津三安光电有限公司 三结太阳能电池及其制备方法
CN104465809A (zh) * 2014-11-28 2015-03-25 瑞德兴阳新能源技术有限公司 一种双面生长的硅基四结太阳电池
CN105280745A (zh) * 2014-06-05 2016-01-27 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAs/Ge四结级联太阳电池及其制作方法
CN105826420A (zh) * 2016-05-12 2016-08-03 中山德华芯片技术有限公司 一种具有反射层的双面生长四结太阳能电池及其制备方法
WO2017119235A1 (ja) * 2016-01-06 2017-07-13 シャープ株式会社 Iii-v族化合物半導体太陽電池、iii-v族化合物半導体太陽電池の製造方法、および人工衛星
CN111816741A (zh) * 2020-07-07 2020-10-23 中国科学院长春光学精密机械与物理研究所 基于范德华外延的GaN基单片集成白光LED及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170047223A1 (en) * 2015-08-13 2017-02-16 The Regents Of The University Of California Epitaxial growth of gallium arsenide on silicon using a graphene buffer layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637775A (zh) * 2012-04-11 2012-08-15 天津三安光电有限公司 三结太阳能电池及其制备方法
CN105280745A (zh) * 2014-06-05 2016-01-27 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAs/Ge四结级联太阳电池及其制作方法
CN104465809A (zh) * 2014-11-28 2015-03-25 瑞德兴阳新能源技术有限公司 一种双面生长的硅基四结太阳电池
WO2017119235A1 (ja) * 2016-01-06 2017-07-13 シャープ株式会社 Iii-v族化合物半導体太陽電池、iii-v族化合物半導体太陽電池の製造方法、および人工衛星
JPWO2017119235A1 (ja) * 2016-01-06 2018-11-08 シャープ株式会社 Iii−v族化合物半導体太陽電池、iii−v族化合物半導体太陽電池の製造方法、および人工衛星
CN105826420A (zh) * 2016-05-12 2016-08-03 中山德华芯片技术有限公司 一种具有反射层的双面生长四结太阳能电池及其制备方法
CN111816741A (zh) * 2020-07-07 2020-10-23 中国科学院长春光学精密机械与物理研究所 基于范德华外延的GaN基单片集成白光LED及其制备方法

Also Published As

Publication number Publication date
CN114171615A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
US10263129B2 (en) Multijunction photovoltaic device having SiGe(Sn) and (In)GaAsNBi cells
US7122733B2 (en) Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
CN102569475B (zh) 一种四结四元化合物太阳能电池及其制备方法
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
CN105762208B (zh) 一种正向失配四结级联砷化镓太阳电池及其制备方法
TWI591838B (zh) 用於太陽能電池之窗結構
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
US20140196774A1 (en) Multi-junction iii-v solar cell
CN114171615B (zh) 一种硅基多结太阳电池及其渐变缓冲层
CN105576068B (zh) 一种双面生长的InP五结太阳电池
EP2246905A2 (en) Multijunction photovoltaic structure with three-dimensional subcell and method thereof
CN110911510B (zh) 一种含超晶格结构的硅基氮化物五结太阳电池
CN103077983A (zh) 多结太阳能电池及其制备方法
CN109326674B (zh) 含多个双异质结子电池的五结太阳能电池及其制备方法
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN110556445A (zh) 一种叠层并联太阳能电池
CN109103278B (zh) 一种无铝的高效六结太阳能电池及其制备方法
CN114005902B (zh) 一种基于GaAs衬底的倒装多结太阳电池
CN110797427A (zh) 倒装生长的双异质结四结柔性太阳能电池及其制备方法
CN111129196B (zh) 一种锗基叠层太阳电池及制备方法
CN112885921B (zh) 一种GaInP/GaAs/AlGaSb三结级联太阳电池及其制备方法
CN112713211B (zh) 一种硅基六结太阳电池及其制作方法
CN117476797B (zh) 一种多结太阳电池及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant