CN110797427A - 倒装生长的双异质结四结柔性太阳能电池及其制备方法 - Google Patents

倒装生长的双异质结四结柔性太阳能电池及其制备方法 Download PDF

Info

Publication number
CN110797427A
CN110797427A CN201911212391.2A CN201911212391A CN110797427A CN 110797427 A CN110797427 A CN 110797427A CN 201911212391 A CN201911212391 A CN 201911212391A CN 110797427 A CN110797427 A CN 110797427A
Authority
CN
China
Prior art keywords
heterojunction
double
layer
sub
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911212391.2A
Other languages
English (en)
Other versions
CN110797427B (zh
Inventor
黄辉廉
黄珊珊
文宏
叶旺
刘建庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co Ltd
Original Assignee
Zhongshan Dehua Chip Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co Ltd filed Critical Zhongshan Dehua Chip Technology Co Ltd
Priority to CN201911212391.2A priority Critical patent/CN110797427B/zh
Publication of CN110797427A publication Critical patent/CN110797427A/zh
Application granted granted Critical
Publication of CN110797427B publication Critical patent/CN110797427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种倒装生长的双异质结四结柔性太阳能电池及其制备方法,包括采用倒装方式在GaAs衬底上依次生长的AlGaInP双异质结子电池、GaAs子电池、GamIn1‑mP渐变层、第一GaxIn1‑xAs双异质结子电池、GanIn1‑nP渐变层和第二GayIn1‑yAs双异质结子电池,各子电池之间通过隧道结连接,且生长完各子电池后剥离出GaAs衬底,所述AlGaInP双异质结子电池上设置有上电极,所述第二GayIn1‑yAs双异质结子电池上设置有下电极,并粘结在一支撑衬底上。本发明实现四结太阳能电池合理的带隙组合,在提高太阳能电池的整体开路电压和填充因子的同时,保持电池的光电流匹配,以提供更多的应用场景。

Description

倒装生长的双异质结四结柔性太阳能电池及其制备方法
技术领域
本发明涉及太阳能光伏发电的技术领域,尤其是指一种倒装生长的双异质结四结柔性太阳能电池及其制备方法。
背景技术
对于传统的砷化镓多结太阳能电池,其主流结构是整体保持晶格匹配,带隙组合为1.85/1.40/0.67eV的GaInP/GaInAs/Ge三结太阳能电池。然而,由于该电池结构对太阳光光谱的分配不合理,使太阳能电池受到串联结构的电流限制,无法对长波段的太阳光能量进行充分转换利用,限制了电池性能的提高。因此,为实现各子电池之间的晶格匹配和光电流的匹配,在三结电池结构中的GaInAs和Ge子电池之间插入一节带隙接近1.0eV的GaInNAs子电池形成带隙组合为1.9/1.42/1.02/0.75eV的GaInP/GaInAs/GaInN-As/Ge四结太阳能电池则可大幅提高电池转换效率,理论上该结构太阳能电池在AM0光谱下的效率可达33-34%,然而对于在晶格匹配情况下的四结太阳能电池,目前技术手段所生长的GaInNAs外延材料晶体质量较差,不仅材料缺陷多、载流子迁移率低,而且N源的成本也比较高,生长难度大。
由于衬底材料Ge或GaAs的热导系数较小,使得太阳能电池内部产生的热量不能及时散出,降低了电池效率;同时Ge或GaAs衬底厚度大,柔性差,极易碎,不易携带,造成太阳能电池实际转化效率和应用受到了限制。若能够把刚性太阳能电池制成柔性太阳能电池,不仅可以大幅度降低太阳能电池的重量,还可以借助柔性太阳能电池厚度薄、散热好、可弯曲、效率高、牢固可靠、寿命长、易携带的特点,能够在多种生产场景如可穿戴设备甚至是航空航天领域等为人们提供电力,极具广泛的应用前景和潜力。
如何实现多结太阳能电池合理的带隙组合,减小电流失配同时而又不提高电池制作成本和难度,以及提供更多的应用场景,成为当前III-V族太阳能电池亟需解决的问题。
发明内容
本发明的目的在于克服现有技术的不足与缺点,提出了一种倒装生长的双异质结四结柔性太阳能电池及其制备方法,实现四结太阳能电池合理的带隙组合,在提高太阳能电池的整体开路电压和填充因子的同时,保持电池的光电流匹配,以提供更多的应用场景。
为实现上述目的,本发明所提供的技术方案为:倒装生长的双异质结四结柔性太阳能电池,包括采用倒装方式在GaAs衬底上依次生长的AlGaInP双异质结子电池、GaAs子电池、GamIn1-mP渐变层、第一GaxIn1-xAs双异质结子电池、GanIn1-nP渐变层和第二GayIn1-yAs双异质结子电池,各子电池之间通过隧道结连接,且生长完各子电池后剥离出GaAs衬底,所述AlGaInP双异质结子电池上设置有上电极,所述第二GayIn1-yAs双异质结子电池上设置有下电极,并粘结在一支撑衬底上;所述GamIn1-mP渐变层的m值从上至下在0.52~0区间渐变,对应的晶格常数从与GaAs子电池匹配渐变为与第一GaxIn1-xAs双异质结子电池匹配,其中0.4<x<0.5;所述GanIn1-nP渐变层的n值从上至下在0.52~0区间渐变,对应的晶格常数从与第一GaxIn1-xAs双异质结子电池匹配渐变为与第二GayIn1-yAs双异质结子电池匹配,其中0.4<y<0.5。
进一步,所述AlGaInP双异质结子电池采用能够调节晶格常数大小和带隙的GaInAsP作为双异质结的基区,该子电池带隙为2.06eV,从上至下依次包括有n型窗口层、n型AlGaInP发射区、p型AlGaInP及GaInAsP基区、P型背场层;所述n型窗口层和p型背场层采用比AlGaInP双异质结子电池带隙宽的III-V族半导体材料。
进一步,所述第一GaxIn1-xAs双异质结子电池采用能够调节晶格常数大小和带隙的GaInAsP作为双异质结的基区,该子电池带隙为1.04eV,从上至下依次包括有n型窗口层、n型GaInP发射区、p型GaInAsP及GaxIn1-xAs基区、p型背场层;所述n型窗口层和p型背场层采用晶格常数与第一GaxIn1-xAs双异质结子电池一致且带隙宽于1.04eV的III-V族半导体材料。
进一步,所述第二GayIn1-yAs双异质结子电池采用能够调节晶格常数大小和带隙的GaInAsP作为双异质结的基区,该子电池带隙为0.70eV,从上至下依次包括有n型窗口层、n型GaInP发射区、p型GaInAsP及GayIn1-yAs基区、p型背场层;所述n型窗口层和p型背场层采用晶格常数与第二GayIn1-yAs双异质结子电池一致且带隙宽于0.7eV的III-V族半导体材料。
进一步,所述GaAs子电池带隙为1.42eV。
进一步,所述AlGaInP双异质结子电池、GaAs子电池、GamIn1-mP渐变层、第一GaxIn1- xAs双异质结子电池、GanIn1-nP渐变层和第二GayIn1-yAs双异质结子电池均与GaAs衬底保持晶格匹配。
本发明所提供的倒装生长的双异质结四结柔性太阳能电池的制备方法,包括以下步骤:
1)选择一GaAs衬底,在其上依次生长GaAs缓冲层、AlAs牺牲层、GaAs正面欧姆接触层;
2)在GaAs正面欧姆接触层上依次生长AlGaInP双异质结子电池、第一隧道结、GaAs子电池、第二隧道结、GamIn1-mP渐变层、第一GaxIn1-xAs双异质结子电池、第三隧道结、GanIn1-nP渐变层、第二GayIn1-yAs双异质结子电池和GaInAs背面欧姆接触层;
3)在GaInAs背面欧姆接触层上制备下电极并与一支撑衬底进行粘结;
4)剥离GaAs衬底和缓冲层,露出受光面,并在GaAs正面欧姆接触层上制备上电极,获得目标太阳能电池。
在步骤3)中,所述支撑衬底采用铁氟龙薄膜进行粘结和高温处理,或者采用铜钼铜柔性基板键合方法。
在步骤4)中,采用湿法腐蚀方法对GaAs衬底进行剥离。
在步骤1)、2)中,各结构层采用金属有机物化学气相沉积技术、分子束外延技术或气相外延技术生长形成。
本发明与现有技术相比,具有如下优点与有益效果:
1、双异质结四结柔性太阳能电池的带隙组合为2.06eV、1.42eV、1.04eV、0.70eV,具有较高的开路电压,提高了电池效率。
2、本发明利用GaInAsP材料可独立地改变其禁带宽度和晶格常数以实现与GaAs晶格匹配和InGaAs晶格匹配的自身特点,引入了双异质结子电池;采用GaInAsP材料作为双异质结的基区,在AlGaInP双异质结子电池中,即保持了与GaAs衬底的晶格匹配,还可替高带隙2.06eV的AlGaInP材料吸收0.66~0.78um波段的光;同理,GaInAsP还能分别保持与1.04eV、0.70eV带隙的InGaAs的晶格匹配,补充吸收0.91~1.67um波段的光。
3、引入GaInP渐变层,通过调节GaInP的In组分以解决GaAs材料与GaInAs材料的晶格失配问题。因此,该双异质结四结柔性太阳能电池一方面可提供了更高的开路电压,另一方面可有效地帮助四结太阳能电池进行匹配光电流,减少光电转换过程中的热能损失,有效提高电池的效率。
4、采用倒装生长方式进行外延生长,一方面制作出来的柔性太阳能电池具有厚度薄、散热好、可弯曲、效率高、牢固可靠、寿命长、易携带的特点,另一方面剥离后的衬底可重复利用,降低了生产成本;总之,本发明可以更加充分地利用太阳光能量,提高GaAs多结电池的光电转换效率,值得推广。
附图说明
图1是具体实施方式提供的倒装生长的双异质结四结柔性太阳能电池结构示意图。
图2、图3、图4分别为AlGaInP双异质结子电池、第一GaxIn1-xAs双异质结子电池、第二GayIn1-yAs双异质结子电池的结构示意图。
图5是倒装生长的双异质结四结柔性太阳能电池制成品的结构示意图。
图6是具体实施方式提供的倒装生长的双异质结四结柔性太阳能电池的制备方法步骤流程图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
如图1所示,本实施例所提供的倒装生长的双异质结四结柔性太阳能电池,采用倒装方式在GaAs衬底01上依次生长GaAs缓冲层02、AlAs牺牲层03、GaAs正面欧姆接触层04、AlGaInP双异质结子电池05、第一隧道结06、GaAs子电池07、第二隧道结08、GamIn1-mP渐变层09、第一GaxIn1-xAs双异质结子电池10、第三隧道结11、GanIn1-nP渐变层12、第二GayIn1-yAs双异质结子电池13和GaInAs背面欧姆接触层14,该倒装生长的双异质结四结柔性太阳能电池的带隙组合为2.06eV、1.42eV、1.04eV、0.70eV。
如图5所示,是上述倒装生长的双异质结四结柔性太阳能电池制成品的结构示意图,其中,根据图6所示,在GaAs衬底01上生长完各结电池后,在GaInAs背面欧姆接触层14上制备下电极15,将外延的电池结构与一支撑衬底16粘合,再把GaAs衬底与外延的电池结构剥离,在GaAs正面欧姆接触层04上制备上电极17,从而获得目标柔性太阳能电池芯片。
本实施例也提供了上述倒装生长的双异质结四结柔性太阳能电池的制作方法,包括但不局限于金属有机物化学气相沉积技术、分子束外延技术和气相外延技术,优选采用金属有机物化学气相沉积技术,该方法具体包括以下步骤:
选择一GaAs衬底01,依次按照逐渐远离GaAs衬底01的方向分别生长GaAs缓冲层02,AlAs牺牲层03,n型重掺杂的GaAs正面欧姆接触层04。
所述AlGaInP双异质结子电池05包括在依次按照逐渐远离GaAs衬底01方向设置n型AlInP窗口层051、n型AlGaInP发射区052、p型AlGaInP基区053、p型GaInAsP基区054及p型AlGaAs背场层055,如图2所示;所述AlGaInP材料带隙约为2.06eV,所述GaInAsP材料带隙在1.58~1.88eV区间。
所述第一隧道结06包括在依次按照逐渐远离GaAs衬底01方向设置p型AlGaAs重掺层以及n型GaInP重掺层。
所述GaAs子电池07包括在依次按照逐渐远离GaAs衬底01方向设置n型AlInP窗口层、n型GaInP发射区、p型GaAs基区、p型GaInP背场层;所述GaAs子电池07带隙约为1.42eV。
所述第二隧道结08包括在依次按照逐渐远离GaAs衬底01方向设置p型AlGaAs重掺层以及n型GaInP重掺层。
所述GamIn1-mP渐变层09,其In组分渐变,使得晶格常数渐变,所述GamIn1-mP渐变层09的晶格常数由GaAs材料的晶格常数向第一GaxIn1-xAs双异质结子电池10的晶格常数渐变,其中m的值在0.52~0区间,所述GamIn1-mP渐变层09用于克服第一GaxIn1-xAs双异质结子电池10与其余外延结构之间的晶格失配。
所述第一GaxIn1-xAs双异质结子电池10包括在依次按照逐渐远离GaAs衬底01方向设置n型AlInP窗口层101、n型GaInP发射区102、p型GaInAsP基区103、p型GaxIn1-xAs基区104、p型GaInP背场层105,如图3所示;所述GaInAsP材料带隙在1.24~1.36eV区间;所述GaxIn1-xAs材料带隙在0.9~1.24eV区间,其中0.4<x<0.5。
所述第三隧道结11包括在依次按照逐渐远离GaAs衬底01方向设置p型GaAs重掺层和n型GaAs重掺层。
所述GanIn1-nP渐变层12,其In组分渐变,使得晶格常数渐变,所述GanIn1-nP渐变层12的晶格常数由第一GaxIn1-xAs双异质结子电池10的晶格常数向第二GayIn1-yAs双异质结子电池13的晶格常数渐变,所述GanIn1-nP渐变层12用于克服第二GayIn1-yAs双异质结子电池与其余外延结构之间的晶格失配,其中n的值在0.52~0区间。
所述第二GayIn1-yAs双异质结子电池13包括在依次按照逐渐远离GaAs衬底01方向设置n型AlInP窗口层131、n型GaInP发射区132、p型GaInAsP基区133、p型GayIn1-yAs基区134、p型AlGaAs背场层135,如图4所示;所述GaInAsP材料带隙在0.9~1.04eV区间;所述GayIn1-yAs材料带隙在0.7~0.9eV区间,其中0.4<y<0.5。
在所述第二GayIn1-yAs双异质结子电池13上按照逐渐远离GaAs衬底01方向生长所述p型重掺杂GaInAs背面欧姆接触层14。
在所述GaInAs背面欧姆接触层14上制作下电极,所述下电极为p电极15。之后,所述第二GayIn1-yAs子电池13与一支撑衬底16进行粘合;在GaAs衬底01剥离后,在所述GaAs正面欧姆接触层04上制作上电极17,从而获得所需的太阳能电池。其中,所述支撑衬底16可采用但不限于铁氟龙薄膜或铜钼铜柔性基板。
接下来给出本实施例上述倒装生长的双异质结四结柔性太阳能电池制备方法的具体实施方式,参考图6所示的步骤进一步做出详细说明。
步骤S601,在一GaAs衬底上依次生长GaAs缓冲层,AlAs牺牲层,n型重掺杂的GaAs正面欧姆接触层。
步骤S602,在所述GaAs正面欧姆接触层上依次生长AlGaInP双异质结子电池,所述AlGaInP双异质结子电池包括依次按照逐渐远离GaAs衬底方向设置的n型AlInP窗口层、n型AlGaInP发射区、p型AlGaInP基区、p型GaInAsP基区及p型AlGaAs背场层。
步骤S603,在所述第一隧道结包括在依次按照逐渐远离GaAs衬底方向设置p型AlGaAs重掺层以及n型GaInP重掺层。
步骤S604,所述GaAs子电池包括在依次按照逐渐远离GaAs衬底方向设置n型AlInP窗口层、n型GaInP发射区、p型GaAs基区、p型GaInP背场层。
步骤S605,所述第二隧道结包括在依次按照逐渐远离GaAs衬底方向设置p型AlGaAs重掺层以及n型GaInP重掺层。
步骤S606,所述GamIn1-mP渐变层,其In组分渐变,使得晶格常数渐变,所述GamIn1-mP渐变层的晶格常数由GaAs材料的晶格常数向第一GaxIn1-xAs双异质结子电池的晶格常数渐变,其中m的值在0.52~0区间,所述GamIn1-mP渐变层用于克服第一GaxIn1-xAs双异质结子电池与其余外延结构之间的晶格失配。
步骤S607,所述第一GaxIn1-xAs双异质结子电池包括在依次按照逐渐远离GaAs衬底方向设置n型AlInP窗口层、n型GaInP发射区、p型GaInAsP基区、p型GaxIn1-xAs基区、p型GaInP背场层;所述GaInAsP材料带隙在1.24~1.36eV区间;所述GaxIn1-xAs材料带隙在0.9~1.24eV区间,其中0.4<x<0.5。。
步骤S607,所述第三隧道结包括在依次按照逐渐远离GaAs衬底方向设置p型GaAs重掺层和n型GaAs重掺层。
步骤S608,所述GanIn1-nP渐变层,其In组分渐变,使得晶格常数渐变,所述GanIn1-nP渐变缓冲层的晶格常数由第一GaxIn1-xAs双异质结子电池的晶格常数向第二GayIn1-yAs双异质结子电池的晶格常数渐变,所述GanIn1-nP渐变层用于克服第二GayIn1-yAs双异质结子电池与其余外延结构之间的晶格失配,其中n的值在0.52~0区间。
步骤S609,所述第二GayIn1-yAs双异质结子电池包括在依次按照逐渐远离GaAs衬底方向设置n型AlInP窗口层、n型GaInP发射区、p型GaInAsP基区、p型GayIn1-yAs基区、p型GaInP背场层;所述GayIn1-yAs材料带隙在0.7~0.9eV区间,GaInAsP材料带隙在0.74~1.36eV区间,其中0.4<x<0.5;所述GaInAsP材料带隙在0.9~1.04eV区间;所述GayIn1-yAs材料带隙在0.7~0.9eV区间,其中0.4<y<0.5。
步骤S610,在所述第二GayIn1-yAs双异质结子电池上按照逐渐远离GaAs衬底方向生长所述p型重掺杂GaInAs背面欧姆接触层。
步骤S611,在所述GaInAs背面欧姆接触层上制作下电极并与一支撑衬底进行粘合;在GaAs衬底剥离后,在所述GaAs正面欧姆接触层上制作上电极,从而获得目标的太阳能电池。其中,所述支撑衬底可采用但不限于铁氟龙薄膜或铜钼铜柔性基板制作。
接下来结合图1、2、3、4、5给出本发明一个优选实施例,对本发明提供的技术方案作进一步说明,本优选实施例采用金属有机物化学气相沉积技术生长本发明所述倒装生长的双异质结四结柔性太阳能电池。
1)在n型GaAs衬底01上分别依次生长厚度0.5umGaAs缓冲层02;厚度10nm的AlAs牺牲层03;n型掺杂约5×1018cm-3、厚度0.3um的GaAs层作为正面欧姆接触层04。
2)依次生长厚度约30nm的n型掺杂约2×1018cm-3的AlInP窗口层051、厚度约100nm的n型掺杂约2×1018cm-3的AlGaInP发射区052、厚度约600nm的p型掺杂约1×1017cm-3的AlGaInP基区053、厚度约300nm的p型掺杂约1×1017cm-3的GaInAsP基区054及厚度约600nm的p型掺杂约2×1018cm-3的AlGaAs背场层055,形成AlGaInP双异质结子电池05。
3)依次生长厚度约15nm的p型掺杂大于1×1019cm-3以上的AlGaAs重掺层,厚度约20nm的n型掺杂大于1×1019cm-3以上的GaInP重掺层,形成第一隧道结06。
4)依次生长厚度约30nm的n型掺杂约3×1018cm-3的AlInP窗口层、厚度约100nm的n型掺杂约2×1018cm-3的GaInP发射区、厚度约3000nm的p型掺杂约1×1017cm-3的GaAs基区、厚度约100nm的p型掺杂约1.3×1018cm-3的GaInP背场层,形成GaAs子电池07。
5)依次生长厚度约15nm的p型掺杂大于1×1019cm-3以上的AlGaAs重掺层,厚度约20nm的n型掺杂大于1×1019cm-3以上的GaInP重掺层,形成第二隧道结08。
6)依次生长厚度为2000~3000nm的n型掺杂浓度为3×1018cm-3生长GamIn1-mP渐变层09,m的值在0.52~0区间。
7)依次生长厚度约50nm的n型掺杂约1×1018cm-3的AlInP窗口层101、厚度约200nm的n型掺杂约1×1018cm-3的GaInP发射区102、厚度约600nm的p型掺杂约1×1017cm-3的GaInAsP基区103、厚度约1200nm的p型掺杂约1×1017cm-3的GaxIn1-xAs基区104、厚度约100nm的p型掺杂约3×1018cm-3的GaInP背场层105,形成第一GaxIn1-xAs双异质结子电池10。
8)依次生长厚度约15nm的p型掺杂大于1×1019cm-3以上的GaAs重掺层,厚度约20nm的n型掺杂大于1×1019cm-3以上的GaAs重掺层,形成第二隧道结11。
9)依次生长厚度为2000~3000nm的n型掺杂浓度为3×1018cm-3生长GanIn1-nP渐变层12,n的值在0.52~0区间。
10)依次生长厚度约50nm的n型掺杂约1×1018cm-3的AlInP窗口层131、厚度约200nm的n型掺杂约1×1018cm-3的GaInP发射区132、厚度约600nm的p型掺杂约1×1017cm-3的GaInAsP基区133、厚度约1200nm的p型掺杂约1×1017cm-3的GaxIn1-xAs基区134、厚度约100nm的p型掺杂约3×1018cm-3的GaInP背场层135,形成第二GayIn1-yAs双异质结子电池13;
11)最后生长厚度约300nm的p型掺杂约3×1018cm-3的GaInAs背面欧姆接触层14;获得如图1所示的双异质结四结太阳能电池。
柔性太阳能电池的制备工艺:在GaInAs背面欧姆接触层14上制作下电极15并与铁氟龙薄膜支撑衬底16进行粘结;采用湿法腐蚀方法将GaAs衬底01、GaAs缓冲层02、AlAs牺牲层03与电池外延结构剥离,露出受光面,GaAs正面欧姆接触层04上制备上电极17,从而获得目标太阳能电池,如图2所示。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (10)

1.倒装生长的双异质结四结柔性太阳能电池,其特征在于:包括采用倒装方式在GaAs衬底上依次生长的AlGaInP双异质结子电池、GaAs子电池、GamIn1-mP渐变层、第一GaxIn1-xAs双异质结子电池、GanIn1-nP渐变层和第二GayIn1-yAs双异质结子电池,各子电池之间通过隧道结连接,且生长完各子电池后剥离出GaAs衬底,所述AlGaInP双异质结子电池上设置有上电极,所述第二GayIn1-yAs双异质结子电池上设置有下电极,并粘结在一支撑衬底上;所述GamIn1-mP渐变层的m值从上至下在0.52~0区间渐变,对应的晶格常数从与GaAs子电池匹配渐变为与第一GaxIn1-xAs双异质结子电池匹配,其中0.4<x<0.5;所述GanIn1-nP渐变层的n值从上至下在0.52~0区间渐变,对应的晶格常数从与第一GaxIn1-xAs双异质结子电池匹配渐变为与第二GayIn1-yAs双异质结子电池匹配,其中0.4<y<0.5。
2.根据权利要求1所述的倒装生长的双异质结四结柔性太阳能电池,其特征在于:所述AlGaInP双异质结子电池采用能够调节晶格常数大小和带隙的GaInAsP作为双异质结的基区,该子电池带隙为2.06eV,从上至下依次包括有n型窗口层、n型AlGaInP发射区、p型AlGaInP及GaInAsP基区、P型背场层;所述n型窗口层和p型背场层采用比AlGaInP双异质结子电池带隙宽的III-V族半导体材料。
3.根据权利要求1所述的倒装生长的双异质结四结柔性太阳能电池,其特征在于:所述第一GaxIn1-xAs双异质结子电池采用能够调节晶格常数大小和带隙的GaInAsP作为双异质结的基区,该子电池带隙为1.04eV,从上至下依次包括有n型窗口层、n型GaInP发射区、p型GaInAsP及GaxIn1-xAs基区、p型背场层;所述n型窗口层和p型背场层采用晶格常数与第一GaxIn1-xAs双异质结子电池一致且带隙宽于1.04eV的III-V族半导体材料。
4.根据权利要求1所述的倒装生长的双异质结四结柔性太阳能电池,其特征在于:所述第二GayIn1-yAs双异质结子电池采用能够调节晶格常数大小和带隙的GaInAsP作为双异质结的基区,该子电池带隙为0.70eV,从上至下依次包括有n型窗口层、n型GaInP发射区、p型GaInAsP及GayIn1-yAs基区、p型背场层;所述n型窗口层和p型背场层采用晶格常数与第二GayIn1-yAs双异质结子电池一致且带隙宽于0.7eV的III-V族半导体材料。
5.根据权利要求1所述的倒装生长的双异质结四结柔性太阳能电池,其特征在于:所述GaAs子电池带隙为1.42eV。
6.根据权利要求1所述的倒装生长的双异质结四结柔性太阳能电池,其特征在于:所述AlGaInP双异质结子电池、GaAs子电池、GamIn1-mP渐变层、第一GaxIn1-xAs双异质结子电池、GanIn1-nP渐变层和第二GayIn1-yAs双异质结子电池均与GaAs衬底保持晶格匹配。
7.权利要求1所述的倒装生长的双异质结四结柔性太阳能电池的制备方法,其特征在于,包括以下步骤:
1)选择一GaAs衬底,在其上依次生长GaAs缓冲层、AlAs牺牲层、GaAs正面欧姆接触层;
2)在GaAs正面欧姆接触层上依次生长AlGaInP双异质结子电池、第一隧道结、GaAs子电池、第二隧道结、GamIn1-mP渐变层、第一GaxIn1-xAs双异质结子电池、第三隧道结、GanIn1-nP渐变层、第二GayIn1-yAs双异质结子电池和GaInAs背面欧姆接触层;
3)在GaInAs背面欧姆接触层上制备下电极并与一支撑衬底进行粘结;
4)剥离GaAs衬底和缓冲层,露出受光面,并在GaAs正面欧姆接触层上制备上电极,获得目标太阳能电池。
8.根据权利要求7所述的倒装生长的双异质结四结柔性太阳能电池的制备方法,其特征在于:在步骤3)中,所述支撑衬底采用铁氟龙薄膜进行粘结和高温处理,或者采用铜钼铜柔性基板键合方法。
9.根据权利要求7所述的倒装生长的双异质结四结柔性太阳能电池的制备方法,其特征在于:在步骤4)中,采用湿法腐蚀方法对GaAs衬底进行剥离。
10.根据权利要求7所述的倒装生长的双异质结四结柔性太阳能电池的制备方法,其特征在于:在步骤1)、2)中,各结构层采用金属有机物化学气相沉积技术、分子束外延技术或气相外延技术生长形成。
CN201911212391.2A 2019-12-02 2019-12-02 倒装生长的双异质结四结柔性太阳能电池及其制备方法 Active CN110797427B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911212391.2A CN110797427B (zh) 2019-12-02 2019-12-02 倒装生长的双异质结四结柔性太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911212391.2A CN110797427B (zh) 2019-12-02 2019-12-02 倒装生长的双异质结四结柔性太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN110797427A true CN110797427A (zh) 2020-02-14
CN110797427B CN110797427B (zh) 2024-03-29

Family

ID=69447186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911212391.2A Active CN110797427B (zh) 2019-12-02 2019-12-02 倒装生长的双异质结四结柔性太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN110797427B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713201A (zh) * 2020-12-29 2021-04-27 中山德华芯片技术有限公司 一种柔性砷化镓太阳能电池芯片及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077983A (zh) * 2012-12-28 2013-05-01 天津三安光电有限公司 多结太阳能电池及其制备方法
EP3091583A1 (en) * 2015-05-07 2016-11-09 SolAero Technologies Corp. Multijunction inverted metamorphic solar cell
US20170110613A1 (en) * 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
CN109326674A (zh) * 2018-11-27 2019-02-12 中山德华芯片技术有限公司 含多个双异质结子电池的五结太阳能电池及其制备方法
CN210692559U (zh) * 2019-12-02 2020-06-05 中山德华芯片技术有限公司 一种倒装生长的双异质结四结柔性太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077983A (zh) * 2012-12-28 2013-05-01 天津三安光电有限公司 多结太阳能电池及其制备方法
EP3091583A1 (en) * 2015-05-07 2016-11-09 SolAero Technologies Corp. Multijunction inverted metamorphic solar cell
US20170110613A1 (en) * 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
CN109326674A (zh) * 2018-11-27 2019-02-12 中山德华芯片技术有限公司 含多个双异质结子电池的五结太阳能电池及其制备方法
CN210692559U (zh) * 2019-12-02 2020-06-05 中山德华芯片技术有限公司 一种倒装生长的双异质结四结柔性太阳能电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713201A (zh) * 2020-12-29 2021-04-27 中山德华芯片技术有限公司 一种柔性砷化镓太阳能电池芯片及其制作方法
CN112713201B (zh) * 2020-12-29 2021-08-27 中山德华芯片技术有限公司 一种柔性砷化镓太阳能电池芯片及其制作方法

Also Published As

Publication number Publication date
CN110797427B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US7741146B2 (en) Demounting of inverted metamorphic multijunction solar cells
US9437769B2 (en) Four-junction quaternary compound solar cell and method thereof
TWI441343B (zh) 反向變質多接面太陽能電池中異質接面子電池
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
US20090288703A1 (en) Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
CN102184980B (zh) 基于晶片键合的三结太阳能电池及其制备方法
JP2015073130A (ja) 2つの変性層を備えた4接合型反転変性多接合太陽電池
US20150068581A1 (en) Fabrication Method for Multi-junction Solar Cells
CN103151413B (zh) 倒装四结太阳电池及其制备方法
WO2012174952A1 (zh) 一种高倍聚光多结太阳能电池及其制备方法
CN104300015A (zh) AlGaAs/GaInAs/Ge连续光谱太阳能电池
CN109326674B (zh) 含多个双异质结子电池的五结太阳能电池及其制备方法
CN103258872A (zh) 高效三结太阳能电池及其制作方法
CN105576068A (zh) 一种双面生长的InP五结太阳电池
CN210692559U (zh) 一种倒装生长的双异质结四结柔性太阳能电池
CN110797427B (zh) 倒装生长的双异质结四结柔性太阳能电池及其制备方法
TW201318189A (zh) 化合物半導體太陽能電池製造用積層體、化合物半導體太陽能電池及其製造方法
CN114171615B (zh) 一种硅基多结太阳电池及其渐变缓冲层
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
CN110556445A (zh) 一种叠层并联太阳能电池
CN102779865A (zh) 一种以锗为隧穿结的硅基三结太阳能电池
CN103165720B (zh) 正装三结级联太阳电池及其制备方法
CN111129196B (zh) 一种锗基叠层太阳电池及制备方法
CN112885921B (zh) 一种GaInP/GaAs/AlGaSb三结级联太阳电池及其制备方法
Bauhuis et al. Inverted thin film InGaP/GaAs tandem solar cells for CPV applications using epitaxial lift off

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant